首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract Eclogites occur in three districts of the northern and southern parts of Tien-Shan. Three eclogites collected from the Aktyuz, Makbal and Atbashy districts were analyzed; the P-T paths of three eclogites were estimated by analyzing compositional growth zoning and retrograde reaction of garnet and omphacite. Aktyuz and Makbal eclogites have not preserved the prograde path. An Aktyuz eclogite that underwent a quartz eclogite facies metamorphism (about T = 600°C, P = 12 kbar) has recorded three stages of retrograde metamorphism. Four stages of retrograde metamorphism were recognized in a Makbal eclogite; the garnet-omphacite geothermometer gave about T = 560°C at 20 kbar as the highest metamorphic condition. Garnet from a garnetchloritoid-talc schist of the Makbal district includes quartz pseudomorphs after coesite; some units evidently underwent a low-temperature part of coesite eclogite fades metamorphism. Prograde and retrograde paths were recognized in an Atbashy eclogite; five stages of metamorphic reaction were observed in the Atbashy sample. The prograde path from stage I to stage III has been recorded in garnet and omphacite in which quartz pseudomorphs after coesite are included. The peak metamorphism of stage III took place at about 660°C at 25 kbar. The stages IV and V are retrograde. UHP eclogite facies metamorphism took place twice in Kyrghyzstan. The Aktyuz and Atbashy eclogites gave Rb-Sr mineral-isochron ages of about 750 Ma and 270 Ma, respectively. The K-Ar age of paragonite from the Makbal eclogite is about 480 Ma.  相似文献   

2.
Shunsuke Endo 《Island Arc》2010,19(2):313-335
Evidence for eclogite‐facies metamorphism is widespread in the Western Iratsu body of the oceanic subduction type Sanbagawa Belt, Southwest Japan. Previous studies in this region focused on typical mafic eclogites and have revealed the presence of an early epidote‐amphibolite facies metamorphism overprinted by a phase of eclogite facies metamorphism. Ca‐rich and titanite‐bearing eclogite, which probably originated from a mixture of basaltic and calc‐siliceous sediments, is also relatively common in the Western Iratsu body, but there has been no detailed petrological study of this lithology. Detailed petrographic observations reveal the presence of a relic early epidote‐amphibolite facies metamorphism preserved in the cores of garnet and titanite in good agreement with studies of mafic eclogite in the area. Thermobarometric calculations for the eclogitic assemblage garnet + omphacite + epidote + quartz + titanite ± rutile ± phengite give peak‐P of 18.5–20.5 kbar at 525–565°C and subsequent peak‐T conditions of about 635°C at 14–16 kbar. This eclogite metamorphism initiated at about 445°C/11–15 kbar, implying a significantly lower thermal gradient than the earlier epidote‐amphibolite facies metamorphism (~650°C/12 kbar). These results define a PT path with early counter‐clockwise and later clockwise trajectories. The overall PT path may be related to two distinct phases in the tectono‐thermal evolution in the Sanbagawa subduction zone. The early counter‐clockwise path may record the inception of subduction. The later clockwise path is compatible with previously reported PT paths from the other eclogitic bodies in the Sanbagawa Belt and supports the tectonic model that these eclogitic bodies were exhumed as a large‐scale coherent unit shortly before ridge subduction.  相似文献   

3.
W. Cui  X. Wang 《Island Arc》1995,4(4):347-361
Abstract According to field occurrence and P-T condition, eclogites of southern Henan and northern Hubei Provinces can be divided into two types: medium temperature (MT) and low temperature (LT) eclogites. MT eclogite occurs as layers or lenticular bodies within migmatized gneiss of the Dabie Group. This study is the first to report an occurrence of the assemblages coesite and kyanite + talc in this area. Garnet exhibits a distinct prograde compositional zoning and has mineral inclusions with rotational textures indicating syntectonic growth. Five evolutionary stages are outlined. (1) Pre-eclogite stage, determined by the inclusions of barroisite + zoisite + quartz in the cores of zoned garnets. (2) Eclogite stage, characterized by garnet + omphacite + kyanite ± talc + coesite + rutile, represents the peak metamorphism. The peak conditions are estimated to be T = 600-700°C, P >27 kb. (3) Glaucophane stage, without an appearance of plagioclase, is assigned to a transitional stage. Blades of glaucophane form rims around garnet grains as a result of the reaction talc + jadeite = glaucophane. This marks the beginning of retrograde metamorphism. (4) Symplectite stage, where eclogitic minerals break down, and Amp + Pl symplectite develops around garnet or omphacite; (5) Later retrograde stage is represented by epidote-amphibolite assemblages. Low temperature eclogite appears as blocks in the Qijiaoshan Formation (part of the Susong Group). Four stages can be identified: (1) Pre-eclogite stage, amphibole + epidote + sphene inclusions occur in garnet core; (2) Eclogite stage, consists of garnet + omphacite + rutile + quartz + phengite + glaucophane + zoisite. The peak conditions are T = 490-560°C, P <15 kb; (3) Symplectitic stage, is characterized by the breakdown of eclogitic minerals; (4) Greenschist facies stage, is recorded by a greenschist facies assemblage. The difference between the two types of eclogites suggests contrasting processes. A model is proposed whereby partial melting of continental crust and the emplacement of tonalite occurs during the exhumation of ultrahigh-pressure eclogite terrain.  相似文献   

4.
Wei  Lin  Masaki  Enami 《Island Arc》2006,15(4):483-502
Abstract Jadeite‐bearing eclogites and associated blueschists locally crop out in a greenschist facies area at Kuldkourla, near the Akeyazhi River in the western Chinese Tianshan region, northwestern China. Garnet in these metamorphic rocks shows prograde zoning with increasing Mg and decreasing Mn from the crystal center towards the rim, and is divided into Ca‐poor/Fe‐rich core and Ca‐rich/Fe‐poor mantle parts. The garnet cores include the assemblages of (i) jadeite/omphacite (Xjd = 0.34–0.96) + barroisite/taramite; and (ii) omphacite + barroisite/pargasite, with paragonite, epidote, rutile and quartz as major phases with rare albite. The garnet mantles rarely contain inclusions of omphacite, glaucophane, epidote, rutile and quartz. Major matrix phases of the pre‐exhumation stage are omphacite, glaucophane, paragonite, rutile and quartz. These mineral parageneses give pressure (P)‐temperature (T) conditions of 0.9 GPa/390°C?1.4 GPa/560°C for the stage of the garnet core formation, 1.8 GPa/520°C for the stage of the garnet mantle formation, and 2.2 GPa/495°C‐2.4 GPa/535°C for the peak eclogite facies assemblage in the matrix. The estimated P‐T conditions and continuous changes of mineral parageneses imply a counterclockwise P‐T path which is a combination of (i) an early prograde stage of high‐pressure/low‐temperature (HP/LT) blueschist facies and/or LP/LT eclogite facies; (ii) a later prograde stage involving compression with minimal heating; and (iii) a climax‐of‐subduction stage characterized by a slight decrease of temperature with increasing pressure. The negative dP/dT of the latest subduction stage is possibly a record of the following events after a continuous subduction and ridge approach: (i) material migration within the upper part of the subducting slab, which has an inverse thermal gradient caused by ductile flow and/or slab break during subduction; and/or (ii) temporary cooling of the wedge mantle–slab interface by continuous subduction of a relatively cold slab following subduction of a hotter ridge.  相似文献   

5.
Yasuo  Miyagi  Akira  Takasu 《Island Arc》2005,14(3):215-235
Abstract   Prograde eclogites occur in the Tonaru epidote amphibolite mass in the Sambagawa Metamorphic Belt of central Shikoku. The Tonaru mass is considered to be a metamorphosed layered gabbro, and occurs as a large tectonic block (approximately 6.5 km × 1 km) in a high-grade portion of the Sambagawa schists. The Tonaru mass experienced high- P /low- T prograde metamorphism from the epidote-blueschist facies to the eclogite facies prior to its emplacement into the Sambagawa schists. The estimated P – T conditions are T  = 300–450°C and P  = 0.7–1.1 GPa for the epidote-blueschist facies, and the peak P – T conditions for the eclogite facies are T  = 700–730°C and P  ≥ 1.5 GPa. Following the eclogite facies metamorphism, the Tonaru mass was retrograded to the epidote amphibolite facies. It subsequently underwent additional prograde Sambagawa metamorphism, together with the surrounding Sambagawa schists, until the conditions of the oligoclase–biotite zone were reached. The high- P /low- T prograde metamorphism of the eclogite facies in the Tonaru mass and other tectonic blocks show similar steep d P /d T geothermal gradients despite their diverse peak P – T conditions, suggesting that these tectonic blocks reached different depths in the subduction zone. The individual rocks in each metamorphic zone of the Sambagawa schists also recorded steep d P /d T geothermal gradients during the early stages of the Sambagawa prograde metamorphism, and these gradients are similar to those of the eclogite-bearing tectonic blocks. Therefore, the eclogite-bearing tectonic blocks reached greater depths in the subduction zone than the Sambagawa schists. All the tectonic blocks were ultimately emplaced into the hanging wall side of the later-subducted Sambagawa high-grade schists during their exhumation.  相似文献   

6.
Abstract To investigate the regional thermobaric structure of the diamondiferous Kokchetav ultrahigh‐pressure and high‐pressure (UHP–HP) massif and adjacent units, eclogite and other metabasites in the Kulet and Saldat–Kol regions, northern Kazakhstan, were examined. The UHP–HP massif is subdivided into four units, bounded by subhorizontal faults. Unit I is situated at the lowest level of the massif and consists of garnet–amphibolite and acidic gneiss with minor pelitic schist and orthogneiss. Unit II, which structurally overlies Unit I, is composed mainly of pelitic schist and gneiss, and whiteschist locally with abundant eclogite blocks. The primary minerals observed in Kulet and Saldat–Kol eclogites are omphacite, sodic augite, garnet, quartz, rutile and minor barroisite, hornblende, zoisite, clinozoisite and phengite. Rare kyanite occurs as inclusions in garnet. Coesite inclusions occur in garnet porphyroblasts in whiteschist from Kulet, which are closely associated with eclogite masses. Unit III consists of alternating orthogneiss and amphibolite with local eclogite masses. The structurally highest unit, Unit IV, is composed of quartzitic schist with minor pelitic, calcareous, and basic schist intercalations. Mineral assemblages and compositions, and occurrences of polymorphs of SiO2 (quartz or coesite) in metabasites and associated rocks in the Kulet and Saldat–Kol regions indicate that the metamorphic grades correspond to epidote–amphibolite, through high‐pressure amphibolite and quartz–eclogite, to coesite–eclogite facies conditions. Based on estimations by several geothermobarometers, eclogite from Unit II yielded the highest peak pressure and temperature conditions in the UHP–HP massif, with metamorphic pressure and temperature decreasing towards the upper and lower structural units. The observed thermobaric structure is subhorizontal. The UHP–HP massif is overlain by a weakly metamorphosed unit to the north and is underlain by the low‐pressure Daulet Suite to the south; boundaries are subhorizontal faults. There is a distinct pressure gap across these boundaries. These suggest that the highest grade unit, Unit II, has been selectively extruded from the greatest depths within the UHP–HP unit during the exhumation process, and that all of the UHP–HP unit has been tectonically intruded and juxtaposed into the adjacent lower grade units at shallower depths of about 10 km.  相似文献   

7.
H. Tabata  S. Maruyama  & Z. Shi 《Island Arc》1998,7(1-2):142-158
The ultrahigh- and high-pressure (UHP–HP) metamorphic belt of the Dabie Mountains, central China, formed by the Triassic continental subduction and collision, is divided into four metamorphic zones; from south to north, the greenschist facies zone, epidote amphibolite to amphibolite facies zone, quartz eclogite zone, and coesite eclogite zone, based on metabasite mineral assemblages. Most of the coesite-bearing eclogites consist mainly of garnet and omphacite with homogeneous compositions and have partially undergone hydration reactions to form clinopyroxene + plagioclase + calcic amphibole symplectites during amphibolite facies overprinting. However, the least altered eclogites sometimes contain garnet and omphacite that preserve compositional zoning patterns which may have originated during their growth at peak temperature conditions of ∼ 750 °C, suggesting a short duration of UHP metamorphic conditions and/or consequent rapid cooling during exhumation. Systematic investigation on peak metamorphic temperatures of coesite eclogite have revealed that, contrary to the general trend of metamorphic grade in the southern Dabie unit, the coesite eclogite zone shows rather flat thermal structure (T = 600 ± 50 °C) with the highest temperature reaching up to 850 °C and no northward increase in metamorphic temperature, which is opposed to the previous interpretations. This feature, along with the preservation of compositional zonation, implies complicated differential movement of each eclogite mass during UHP metamorphism and the return from the deeper subduction zone at mantle depths to the surface.  相似文献   

8.

Zircon grains were selected from two types of ultrahigh-pressure (UHP) eclogites, coarse-grained phengite eclogite and fine-grained massive eclogite, in the Yukahe area, the western part of the North Qaidam UHP metamorphic belt. Most zircon grains show typical metamorphic origin with residual cores in some irregular grains and sector, planar or misty internal textures on the cathodoluminescence (CL) images. The contents of REE and HREE of the core parts of grains range from 173 to 1680 μg/g and 170 to 1634 μg/g, respectively, in phengite eclogite, and from 37 to 2640 μg/g and 25.7 to 1824 μg/g, respectively, in massive eclogite. The core parts exhibit HREE-enriched patterns, representing the residual zircons of protolith of the Yukahe eclogite. The contents of REE and HREE of the rim parts and the grains free of residual cores are much lower than those for the core parts. They vary from 13.1 to 89.5 μg/g and 12.5 to 85.7 μg/g, respectively, in phengite eclogite, and from 9.92 to 45.8 μg/g and 9.18 to 43.8 μg/g, respectively, in massive eclogite. Negative Eu anomalies and Th/U ratios decrease from core to rim. Positive Eu anomalies are shown in some grains. These indicate that the presence of garnet and the absence of plagioclase in the peak metamorphic mineral assemblage, and the zircons formed under eclogite facies conditions. LA-ICP-MS zircon U-Pb age data indicate that phengite eclogite and massive eclogite have similar metamorphic age of 436±3Ma and 431±4Ma in the early Paleozoic and magmatic protolith age of 783–793 Ma and 748–759 Ma in the Neo-proterozoic. The weighted mean age of the metamorphic ages (434±2 Ma) may represent the UHP metamorphic age of the Yukahe eclogites. The metamorphic age is well consistent with their direct country rocks of gneisses (431±3 Ma and 432±19 Ma) and coesite-bearing pelitic schist in the Yematan UHP eclogite section (423–440 Ma). These age data together with field observation and lithology, allow us to conclude that the Yukahe eclogites were Neo-proterozoic igneous rocks and may have experienced subduction and UHP metamorphism with continental crust at deep mantle during the early Paleozoic, therefore the metamorphic age of 434±2 Ma of the Yukahe eclogites probably represents the continental deep subduction time in this area.

  相似文献   

9.
Low temperature eclogite facies metamorphism in Western Tianshan, Xinjiang   总被引:3,自引:0,他引:3  
According to the field occurrences and petrological study, the low temperature eclogite facies metamorphic rocks in Western Tianshan of Xinjiang can be divided into five types: (i) massive glaucophane-epidote eclogites and glaucophane-paragonite eclogites; (ii) schistose or gneissic mica eclogites; (iii) banded calcite eclogites; (iv) pillow glaucophane eclogites; (v) garnet-omphacite quartzites. Their eclogite facies metamorphism has undergone four stages of evolution: (i) pre-peak lawsonite-blueschist facies stage,T = 350–4000°C,P = 0.7–0.9 GPa; (ii) peak eclogite facies stage,T = 530 ± 20°C,P = 1.6–1.9 GPa; (iii) retrograde epidote-blueschist facies stage, T=500–530°C,P = 0.9–1.2 GPa and (iv) retrograde blueschist-greenschist facies stage,T= 450–550°C,P= 0.7–0.8 GPa. The metamorphic PT path of Western Tianshan eclogites is characterized by clockwise ITD resulting from the subduction of Tarim plate northward to Yili-Central Tianshan plate followed by fast uplift to the surface. But there were at least two stages of blueschist facies retrograde metamorphism overprinted during their uplift.  相似文献   

10.
The extensive gneisses in the high‐pressure and ultrahigh‐pressure metamorphic terrane in the Dabie‐Sulu orogen usually show no evidence of eclogite‐facies metamorphism. The garnet‐mica‐plagioclase gneisses from the Qiliping region in the western Dabie Orogen, comprise garnet, phengite, biotite, plagioclase, quartz, rutile, ilmenite, chlorite, epidote, and hornblende. The garnet porphyroblasts, with inclusions of quartz, epidote, and rutile, exhibit slight compositional zonations, from core to mantle with an increase in pyrope and a decrease in spessartine, and from mantle to rim with a decrease in pyrope and grossular and an increase in spessartine. The high‐Si phengite indicates that the gneisses may be subjected to a high‐pressure metamorphism. By the P–T pseudosections calculated in a system NCKMnFMASHTO (Na2O‐CaO‐K2O‐MnO‐FeO‐MgO‐Al2O3‐SiO2‐H2O‐TiO2‐O) for two representative samples, the metamorphic P–T path, reconstructed by the compositionally zoned garnet, shows that the prograde metamorphism is characterized by a temperature increase with a slight pressure increase from the conditions of 17.6 ± 1.5 kbar at 496 ± 15°C to the peak‐pressure ones of 21.8 ± 1.5–22.7 ± 1.5 kbar at 555 ± 15–561 ± 15°C; the early retrograde stage is dominated by decompression with a temperature increase to the maximum of 608 ± 15–611 ± 18°C at 10.3 ± 1.5–11.0 ± 1.5 kbar; and the late retrograde one is predominated by pressure and temperature decreases. The mineral assemblages in the prograde metamorphism are predicted to contain garnet, glaucophane, jadeite, lawsonite, phengite, quartz, rutile, and/or chlorite, which is different from those observed at present. Such high‐pressure metamorphism can partly be reconstructed by the P–T pseudosection in combination with the high‐Si phengite and garnet compositions in the core and mantle. This provides an important constraint on the subduction and exhumation of the terrane during the continent–continent collision between the Yangtze and Sino‐Korean cratons.  相似文献   

11.
The present paper reports, for the first time, the occurrence of an omphacite‐bearing mafic schist from the Asemi‐gawa region of the Sanbagawa belt (southwest Japan). The mafic schist occurs as thin layers within pelitic schist of the albite–biotite zone. Omphacite in the mafic schist only occurs as inclusions in garnet, and albite is the major Na phase in the matrix, suggesting that the mafic schist represents highly retrogressed eclogite. Garnet grains in the sample show prograde‐type compositional zoning with no textural or compositional break, and contain mineral inclusions of omphacite, quartz, glaucophane, barroisite/hornblende, epidote and titanite. In addition to the petrographic observations, Raman spectroscopy and focused ion beam system–transmission electron microscope analyses were used for identification of omphacite in the sample. The omphacite in the sample shows a strong Raman peak at 678 cm?1, and concomitant Raman peaks are all consistent with those of the reference omphacite Raman spectrum. The selected area electron diffraction pattern of the omphacite is compatible with the common P2/n omphacite structure. Quartz inclusions in the mafic schist preserve high residual pressure values of Δω1 > 8.5 cm?1, corresponding to the eclogite facies conditions. The combination of Raman geothermobarometries and garnet–clinopyroxene geothermometry gives peak pressure–temperature (PT) conditions of 1.7–2.0 GPa and 440–540 °C for the mafic schist. The peak P–T values are comparable to those of the schistose eclogitic rocks in other Sanbagawa eclogite units of Shikoku. These findings along with previous age constraints suggest that most of the Sanbagawa schistose eclogites and associated metasedimentary rocks share similar simple P–T histories along the Late Cretaceous subduction zone.  相似文献   

12.
We present the first data on bulk‐rock major and trace element compositions for a suite of eclogite‐ and blueschist‐facies rocks from the Bantimala Complex, Indonesia, with the aim of better constraining the protolith origins and nature of the subducted crust. The eclogites can be classified into two groups: glaucophane‐rich eclogite and glaucophane‐free eclogite, whereas the blueschists are divided into albite–epidote glaucophanite and quartz–glaucophane schists. SiO2 contents of the eclogites are 43.3–49.6 wt%, with Na2O + K2O contents 3.7–4.7 wt%. The blueschists show a wider range of compositions, with SiO2 = 40.7–63.8 wt% and Na2O + K2O = 2.7–4.5 wt%. Trace element data suggest that the eclogite protoliths include both enriched and normal mid‐oceanic ridge basalt (E‐MORB and N‐MORB) and also gabbroic cumulates. The blueschists show more variation in protoliths, which include N‐MORB, Oceanic Island Basalt (OIB) and Island Arc Basalt (IAB). Plots of element concentrations against the immobile Zr show considerable mobility of large ion lithophiles but not of high field‐strength elements during high‐pressure metamorphism, and indicate that the high SiO2 content of some blueschists is probably due to metasomatism by a LILE‐rich siliceous aqueous fluid. Strong correlations between K, Rb, Ba and Cs suggests that enrichment of these elements occurred by a single process. All the protoliths were subducted, metamorphosed to blueschist/eclogite‐facies and subsequently exhumed. It is noteworthy that the samples deduced to have come from thicker‐crust environments (OIB, IAB) were subducted to shallower depths (blueschist‐facies) than MORB‐derived samples, all except one of which reached eclogite‐facies conditions. The geochemical data of this study demonstrate the variety of ocean floor types that were subducted under the southeast margin of Sundaland in the late Jurassic period.  相似文献   

13.
Lower crustal high grade metamorphic rocks have been successively found at Pamirs nearby the western Himalayan syntaxis, Namjagbarwa and Dinggye nearby the eastern Himalayan syntaxis and the central segment of the Himalayan Orogenic Belt, respec-tively[1―4]. In particular, some researchers deduced that there were probably eclogites at some locations[5]. Moreover, some geochronological data of these lower crustal granulites also have been accumulated. For example, the high-pressure granulit…  相似文献   

14.
Abstract The central part of the Kokchetav Massif is exposed in the Chaglinka–Kulet area, northern Kazakhstan. The ultrahigh-pressure–high-pressure (UHP–HP) metamorphic belt in this area is composed of four subhorizontal lithological units (Unit I–IV) metamorphosed under different pressure–temperature (P–T) conditions. The coesite- and diamond-bearing Unit II, which consists mainly of whiteschist and eclogite blocks, is tectonically sandwiched between the amphibolite-dominant Unit I on the bottom and the orthogneiss-dominant Unit III on the top. Total combined thickness of these units is less than 2 km. The rocks of the UHP–HP metamorphic belt are affected by at least four deformational events post-dating peak metamorphism: (i) The earliest penetrative deformation is characterized by non-coaxial ductile flow in a NW–SE direction. The shear sense indicators in oriented samples from Unit I provide consistent top-to-the-northwest motions and those from Unit III provide top-to-the-southeast, south or south-west motions; (ii) Upright folds with subhorizontal enveloping surface refold earlier foliations including shear-indicators throughout the metamorphic belt; (iii) The third stage of deformation is denoted by large-scale bending around a subvertical axis; and (iv) Late localized fault (or shear) zones cut all earlier structures. The fault zones have subvertical shear planes and their displacements are essentially strike-slip in manner. The subhorizontal structure and opposite shear directions between Unit I and Unit III during the earlier deformation stage suggest north-westward extrusion of UHP Unit II.  相似文献   

15.
The presence of relics of high-pressure and ultra-high pressure metamorphic assemblages in metasedi-ments and granitoid gneisses provides important evi-dence for deep subduction of continental crust (litho-sphere), and also an important criteria on "in situmetamorphism" and "tectonic emplacement" relation-ship between gneisses and enclosed eclogites. In re-cent years, eclogite and garnet peridotite lenses en-closed within quartz-feldspathic gneisses or peliticgneisses were discovered separately…  相似文献   

16.
M. Ebanu  A. Nagasaki 《Island Arc》1999,8(4):459-474
Kyanite-bearing ultrahigh-pressure (UHP) eclogites occur as blocks in orthogneisses at Yangzhuang, in the Junan area of the southwestern Sulu province, eastern China. Eclogites have variable bulk rock compositions, with Al2O3 = 16–27 wt%, FeO* + MgO = 6–22 wt% and CaO = 9–13 wt%. Major minerals are garnet, omphacite, phengitic white mica, zoisite, kyanite, rutile and an SiO2 phase. Fe-rich staurolite (Mg ? Mg# = 0.24 ± 0.01) and paragonite–margarite aggregates are rarely included in the cores of prograde zoned garnet. Metamorphic conditions ranged from 520 to 650°C and <1.4 GPa at an early prograde stage, and mostly reached 660–830°C and 2.7–3.5 GPa at the peak UHP stage. The estimated dP/dT of the prograde P–T path is less than 0.25 GPa/100°C at earlier stages and increases to 0.7–1.4 GPa/100°C just before the UHP stage. The kink of the prograde P–T path closely resembles the steady-state P–T paths proposed, assuming a two-parameter brittle-plastic shear stress model. The estimated P–T path adequately explains the absence of prograde lawsonite and sodic amphibole and the common occurrence of coexisting zoisite, kyanite and sodic-calcic amphibole in the UHP eclogites throughout the Sulu province. Simple clockwise prograde P–T paths for Sulu UHP eclogites proposed in earlier studies should be carefully re-examined.  相似文献   

17.
Taro  Ubukawa  Akiko  Hatanaka  Keisaku  Matsumoto  Takao  Hirajima 《Island Arc》2007,16(4):553-574
Abstract Various modes of occurrence of talc were identified in piemontite‐quartz schists collected from schist and eclogite units in the Kotsu area of the Sanbagawa Belt, eastern Shikoku, Japan. They can be classified into the following types: (A) matrix and (B) pull‐apart talc. The matrix talc is associated with aegirineaugite or glaucophane in the eclogite unit and with albite or chlorite in the schist unit. The pull‐apart talc is developed at the pull‐apart of microboudin structures of Na‐amphibole, along with albite or chlorite in samples from both units, suggesting that the pull‐apart talc was formed by Na‐amphibole consuming reactions in both units. The talc–aegirineaugite–phengite association is found in a thin layer (a few millimetres thick), with higher Na2O/(Na2O + Al2O3 + MgO) ratio in the ANM (Al2O3–Na2O–MgO) diagram projected from phengite, epidote and other minerals, in the eclogite unit. Crystals of aegirineaugite have decreased jadeite content [= 100 × Al/(Na + Ca)] and increased aegirine content [= 100 × (Na – Al)/(Na + Ca)] from the core (ca Jd40Aeg40Di20) to the rim (ca Jd23Aeg53Di24), and are replaced by winchite and albite in varying degrees at the crystal margins. Na‐amphibole is glaucophane/crossite, commonly rimmed by Al‐poor crossite or winchite at the margin in the eclogite unit, although it is relatively homogeneous crossite in the schist unit. These textures suggest that the talc‐phengite‐(aegirineaugite or glaucophane) assemblage equilibrated during an early stage of metamorphism and the pull‐apart talc was formed at a later stage in the eclogite unit. A plausible petrogenetic grid in the NCKFe3+MASH system with excess piemontite (regarded as epidote), hematite, quartz and water, pseudosection analysis for the aegirineaugite‐bearing layer and the observed mineral assemblages suggest that the talc‐aegirineaugite‐phengite assemblage is stable under high pressure conditions (ca 560–580°C and 18–20 kbar). The pull‐apart talc was formed at ca 565–580°C and 9.5–10.5 kbar by the reaction of glaucophane/crossite + paragonite = talc + albite during the decompression stage, suggesting that the piemontite‐quartz schist in the eclogite unit experienced high‐pressure metamorphism at ca 50–60 km depth and was then exhumed to ca 30 km depth under nearly adiabatic conditions.  相似文献   

18.
Petrogenesis of garnet lherzolite, Cima di Gagnone, Lepontine Alps   总被引:10,自引:0,他引:10  
Garnet lherzolite at Cima di Gagnone has chemical and mineralogical properties similar to those of other garnet lherzolites in the lower Pennine Adula/Cima Lunga Nappe (Alpe Arami, Monte Duria). The Cima di Gagnone occurrence encloses mafic boudins that belong to an eclogite-metarodingite suite common in the numerous neighboring ultramafic lenses. The ultramafic rocks at Cima di Gagnone, including the garnet lherzolite, are interpreted as tectonic fragments of an originally larger lherzolite body that underwent at least partial serpentinization prior to regional metamorphism. This lherzolite body cycled through at least three metamorphic facies: greenschist or blue-schist (as antigorite serpentinite) → eclogite (as garnet lherzolite), pre-Alpine or early Alpine → amphibolite facies (as chlorite-enstatite-tremolite peridotite), Lepontine metamorphism. Relics of titanoclinohumite in the garnet peridotite, as also recorded by Möckel near Alpe Arami, are consistent with this metamorphic history, since they indicate a possible connection with Pennine antigorite serpentinites, e.g., Liguria, Piedmont, Zermatt-Saas, Malenco, Pustertal, all of which have widespread titanoclinohumite belonging to the antigorite paragenesis. Estimated pressures in excess of 20 kbar and temperatures of 800°±50°C for the garnet lherzolite assemblage are not inconsistent with conditions inferred for Gagnone and Arami eclogites. These conditions could have been reached during deep subduction zone metamorphism. It is shown by calculation that the effects of Fe and Cr on the location of the garnet lherzolite/spinel lherzolite phase boundary largely counter-balance each other.  相似文献   

19.
Abstract In the first extensive, systematic study of inclusions in zircons from ultrahigh-pressure (UHP) and high-pressure (HP) metamorphic rocks of the Kokchetav Massif of Kazakhstan (separated from 232 rock samples from all representative lithologies and geographic regions), we identified graphite, quartz, garnet, phengite, phlogopite, rutile, albite, K-feldspar, amphibole, zoisite, kyanite, calcite, dolomite, apatite, monazite, omphacite and jadeite, as well as the diagnostic UHP metamorphic minerals (i.e. microdiamond and coesite) by laser Raman spectroscopy. In some instances, coesite + quartz and diamond + graphite occur together in a single rock sample, and inclusion aggregates also comprise polycrystalline diamond crystals overgrowing graphite. Secondary electron microscope and cathodoluminescence studies reveal that many zircons display distinct zonation textures, which comprise core and wide mantle, each with distinctive inclusion microassemblages. Pre-UHP metamorphic minerals such as graphite, quartz, phengite and apatite are common in the core, whereas diamond, coesite, garnet and jadeite occupy the mantle. The inclusions in core are irrelevant to the UHP metamorphism. The zircon core is of detrital or relatively low-grade metamorphic origin, whereas the mantle is of HP to UHP metamorphic origin. The zonal arrangement of inclusions and the presence of coesite and diamond without back-reaction imply that aqueous fluids were low to absent within the zircons during both prograde and retrograde metamorphism, and that the zircon preserves a prograde pressure–temperature record of the Kokchetav metamorphism which, elsewhere, has been more or less obliterated in the host rock.  相似文献   

20.
Zircon U–Pb dating of the Tonaru metagabbro body in the Sanbagawa metamorphic belt, southwest Japan, suggests that igneous events at ca 200–180 Ma were involved in the protolith formation. The trace element compositions of the Tonaru zircons are enriched in U (a fluid‐mobile element) and Sc (an amphibole‐buffered element), and depleted in Nb (a fluid‐immobile element), suggesting that the parental magmas related to the Tonaru metagabbros formed in an arc setting. Integration of our results with previous studies of the metasedimentary rocks in the Tonaru body clearly indicates that the protoliths of the Tonaru body were produced by oceanic‐arc magmatism. With the previous geochronological and geological studies, the tectono‐magmatic–metamorphic history of the Tonaru and other mafic bodies in the Sanbagawa metamorphic belt may be summarized as follows: (i) the protolith formation by the oceanic‐arc magmatic event had occurred at 200–180 Ma; (ii) the protoliths were accreted in the trench at ca 130–120 Ma; and (iii) they were completely subducted into the depth of the eclogite‐facies condition after 120 Ma.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号