首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Shunsuke Endo 《Island Arc》2010,19(2):313-335
Evidence for eclogite‐facies metamorphism is widespread in the Western Iratsu body of the oceanic subduction type Sanbagawa Belt, Southwest Japan. Previous studies in this region focused on typical mafic eclogites and have revealed the presence of an early epidote‐amphibolite facies metamorphism overprinted by a phase of eclogite facies metamorphism. Ca‐rich and titanite‐bearing eclogite, which probably originated from a mixture of basaltic and calc‐siliceous sediments, is also relatively common in the Western Iratsu body, but there has been no detailed petrological study of this lithology. Detailed petrographic observations reveal the presence of a relic early epidote‐amphibolite facies metamorphism preserved in the cores of garnet and titanite in good agreement with studies of mafic eclogite in the area. Thermobarometric calculations for the eclogitic assemblage garnet + omphacite + epidote + quartz + titanite ± rutile ± phengite give peak‐P of 18.5–20.5 kbar at 525–565°C and subsequent peak‐T conditions of about 635°C at 14–16 kbar. This eclogite metamorphism initiated at about 445°C/11–15 kbar, implying a significantly lower thermal gradient than the earlier epidote‐amphibolite facies metamorphism (~650°C/12 kbar). These results define a PT path with early counter‐clockwise and later clockwise trajectories. The overall PT path may be related to two distinct phases in the tectono‐thermal evolution in the Sanbagawa subduction zone. The early counter‐clockwise path may record the inception of subduction. The later clockwise path is compatible with previously reported PT paths from the other eclogitic bodies in the Sanbagawa Belt and supports the tectonic model that these eclogitic bodies were exhumed as a large‐scale coherent unit shortly before ridge subduction.  相似文献   

2.
A variety of low‐ to high‐pressure metamorphic assemblages occur in the metabasic rocks and metachert in the Upper Cretaceous–Eocene ophiolite belt of the central part of the Naga Hills, an area in the northern sector of the Indo–Myanmar Ranges in the Indo–Eurasian collision zone. The ophiolite suite includes peridotite tectonite containing garnet lherzolite xenoliths, layered ultramafic–mafic cumulates, metabasic rocks, basaltic lava, volcaniclastics, plagiogranite, and pelagic sediments emplaced as dismembered and imbricated bodies at thrust contacts between moderately metamorphosed accretionary rocks/basement (Nimi Formation/Naga Metamorphics) and marine sediments (Disang Flysch). It is overlain by coarse clastic Paleogene sediments of ophiolite‐derived rocks (Jopi/Phokphur Formation). The metabasic rocks, including high‐grade barroisite/glaucophane‐bearing epidote eclogite and glaucophane schist, and low‐grade greenschist and prehnite–clinochlore schist, are associated with lava flows and ultramafic cumulates at the western thrust contact. Chemically, the metabasites show a low‐K tholeiitic affinity that favors derivation from a depleted mantle source as in the case of mid‐ocean ridge basalt. Thermobarometry indicates peak P–T conditions of about 20 kb and 525°C. Retrogression related to uplift is marked by replacement of barroisite and omphacite by glaucophane followed by secondary actinolite, albite, and chlorite formation. A metabasic lens with an eclogite core surrounded by successive layers of glaucophane schist and greenschist provides field evidence of retrogression and uplift. Presence of S‐C mylonite in garnet lherzolite and ‘mica fish’ in glaucophane schist indicates ductile deformation in the shear zone along which the ophiolite was emplaced.  相似文献   

3.
The decompressional pressure–temperature (P–T) path was estimated for ultrahigh‐pressure (UHP) eclogite from the Sulu region of eastern China by applying geo‐thermobarometers to well‐preserved equilibrium mineral pairs. The sample studied is a kyanite‐bearing eclogite that was collected from the Taohang area of the Sulu region. Garnet is relatively homogeneous in chemical composition, but omphacite has a clear chemical zoning with decreasing jadeite content from core to rim. Assuming that peak‐P equilibrium compositions are preserved in the cores of garnet (Grt) and omphacite (Omp), P–T conditions were calculated to be about 700°C and 3.4 GPa. On the other hand, the jadeite content of omphacite rims varies from 0.35 to 0.46 mol.%. Nevertheless, the variation in Fe/Mg ratios of omphacite rims is very small. Temperatures of 566 ± 54°C were obtained at 1.5 GPa for garnet rim and omphacite rim pairs. These petrological considerations indicate that temperatures should have significantly declined during the early decompression stage of this eclogite. In other areas of the Sulu region, isothermal decompression paths were proposed, and it was concluded that the UHP rocks were exhumed as a large mass tens of kilometers in thickness to avoid thermal effects from the surrounding materials. However, the newly identified decompression path accompanying the significant cooling may indicate that the Taohang outcrop was located at the margin of the Sulu UHP terrane. Thus, the decompressional P–T path is not unique in the Sulu region and varies depending on the location.  相似文献   

4.
Wei  Lin  Masaki  Enami 《Island Arc》2006,15(4):483-502
Abstract Jadeite‐bearing eclogites and associated blueschists locally crop out in a greenschist facies area at Kuldkourla, near the Akeyazhi River in the western Chinese Tianshan region, northwestern China. Garnet in these metamorphic rocks shows prograde zoning with increasing Mg and decreasing Mn from the crystal center towards the rim, and is divided into Ca‐poor/Fe‐rich core and Ca‐rich/Fe‐poor mantle parts. The garnet cores include the assemblages of (i) jadeite/omphacite (Xjd = 0.34–0.96) + barroisite/taramite; and (ii) omphacite + barroisite/pargasite, with paragonite, epidote, rutile and quartz as major phases with rare albite. The garnet mantles rarely contain inclusions of omphacite, glaucophane, epidote, rutile and quartz. Major matrix phases of the pre‐exhumation stage are omphacite, glaucophane, paragonite, rutile and quartz. These mineral parageneses give pressure (P)‐temperature (T) conditions of 0.9 GPa/390°C?1.4 GPa/560°C for the stage of the garnet core formation, 1.8 GPa/520°C for the stage of the garnet mantle formation, and 2.2 GPa/495°C‐2.4 GPa/535°C for the peak eclogite facies assemblage in the matrix. The estimated P‐T conditions and continuous changes of mineral parageneses imply a counterclockwise P‐T path which is a combination of (i) an early prograde stage of high‐pressure/low‐temperature (HP/LT) blueschist facies and/or LP/LT eclogite facies; (ii) a later prograde stage involving compression with minimal heating; and (iii) a climax‐of‐subduction stage characterized by a slight decrease of temperature with increasing pressure. The negative dP/dT of the latest subduction stage is possibly a record of the following events after a continuous subduction and ridge approach: (i) material migration within the upper part of the subducting slab, which has an inverse thermal gradient caused by ductile flow and/or slab break during subduction; and/or (ii) temporary cooling of the wedge mantle–slab interface by continuous subduction of a relatively cold slab following subduction of a hotter ridge.  相似文献   

5.
Abstract To investigate the regional thermobaric structure of the diamondiferous Kokchetav ultrahigh‐pressure and high‐pressure (UHP–HP) massif and adjacent units, eclogite and other metabasites in the Kulet and Saldat–Kol regions, northern Kazakhstan, were examined. The UHP–HP massif is subdivided into four units, bounded by subhorizontal faults. Unit I is situated at the lowest level of the massif and consists of garnet–amphibolite and acidic gneiss with minor pelitic schist and orthogneiss. Unit II, which structurally overlies Unit I, is composed mainly of pelitic schist and gneiss, and whiteschist locally with abundant eclogite blocks. The primary minerals observed in Kulet and Saldat–Kol eclogites are omphacite, sodic augite, garnet, quartz, rutile and minor barroisite, hornblende, zoisite, clinozoisite and phengite. Rare kyanite occurs as inclusions in garnet. Coesite inclusions occur in garnet porphyroblasts in whiteschist from Kulet, which are closely associated with eclogite masses. Unit III consists of alternating orthogneiss and amphibolite with local eclogite masses. The structurally highest unit, Unit IV, is composed of quartzitic schist with minor pelitic, calcareous, and basic schist intercalations. Mineral assemblages and compositions, and occurrences of polymorphs of SiO2 (quartz or coesite) in metabasites and associated rocks in the Kulet and Saldat–Kol regions indicate that the metamorphic grades correspond to epidote–amphibolite, through high‐pressure amphibolite and quartz–eclogite, to coesite–eclogite facies conditions. Based on estimations by several geothermobarometers, eclogite from Unit II yielded the highest peak pressure and temperature conditions in the UHP–HP massif, with metamorphic pressure and temperature decreasing towards the upper and lower structural units. The observed thermobaric structure is subhorizontal. The UHP–HP massif is overlain by a weakly metamorphosed unit to the north and is underlain by the low‐pressure Daulet Suite to the south; boundaries are subhorizontal faults. There is a distinct pressure gap across these boundaries. These suggest that the highest grade unit, Unit II, has been selectively extruded from the greatest depths within the UHP–HP unit during the exhumation process, and that all of the UHP–HP unit has been tectonically intruded and juxtaposed into the adjacent lower grade units at shallower depths of about 10 km.  相似文献   

6.
Taro  Ubukawa  Akiko  Hatanaka  Keisaku  Matsumoto  Takao  Hirajima 《Island Arc》2007,16(4):553-574
Abstract Various modes of occurrence of talc were identified in piemontite‐quartz schists collected from schist and eclogite units in the Kotsu area of the Sanbagawa Belt, eastern Shikoku, Japan. They can be classified into the following types: (A) matrix and (B) pull‐apart talc. The matrix talc is associated with aegirineaugite or glaucophane in the eclogite unit and with albite or chlorite in the schist unit. The pull‐apart talc is developed at the pull‐apart of microboudin structures of Na‐amphibole, along with albite or chlorite in samples from both units, suggesting that the pull‐apart talc was formed by Na‐amphibole consuming reactions in both units. The talc–aegirineaugite–phengite association is found in a thin layer (a few millimetres thick), with higher Na2O/(Na2O + Al2O3 + MgO) ratio in the ANM (Al2O3–Na2O–MgO) diagram projected from phengite, epidote and other minerals, in the eclogite unit. Crystals of aegirineaugite have decreased jadeite content [= 100 × Al/(Na + Ca)] and increased aegirine content [= 100 × (Na – Al)/(Na + Ca)] from the core (ca Jd40Aeg40Di20) to the rim (ca Jd23Aeg53Di24), and are replaced by winchite and albite in varying degrees at the crystal margins. Na‐amphibole is glaucophane/crossite, commonly rimmed by Al‐poor crossite or winchite at the margin in the eclogite unit, although it is relatively homogeneous crossite in the schist unit. These textures suggest that the talc‐phengite‐(aegirineaugite or glaucophane) assemblage equilibrated during an early stage of metamorphism and the pull‐apart talc was formed at a later stage in the eclogite unit. A plausible petrogenetic grid in the NCKFe3+MASH system with excess piemontite (regarded as epidote), hematite, quartz and water, pseudosection analysis for the aegirineaugite‐bearing layer and the observed mineral assemblages suggest that the talc‐aegirineaugite‐phengite assemblage is stable under high pressure conditions (ca 560–580°C and 18–20 kbar). The pull‐apart talc was formed at ca 565–580°C and 9.5–10.5 kbar by the reaction of glaucophane/crossite + paragonite = talc + albite during the decompression stage, suggesting that the piemontite‐quartz schist in the eclogite unit experienced high‐pressure metamorphism at ca 50–60 km depth and was then exhumed to ca 30 km depth under nearly adiabatic conditions.  相似文献   

7.
Abstract Eclogites occur in three districts of the northern and southern parts of Tien-Shan. Three eclogites collected from the Aktyuz, Makbal and Atbashy districts were analyzed; the P-T paths of three eclogites were estimated by analyzing compositional growth zoning and retrograde reaction of garnet and omphacite. Aktyuz and Makbal eclogites have not preserved the prograde path. An Aktyuz eclogite that underwent a quartz eclogite facies metamorphism (about T = 600°C, P = 12 kbar) has recorded three stages of retrograde metamorphism. Four stages of retrograde metamorphism were recognized in a Makbal eclogite; the garnet-omphacite geothermometer gave about T = 560°C at 20 kbar as the highest metamorphic condition. Garnet from a garnetchloritoid-talc schist of the Makbal district includes quartz pseudomorphs after coesite; some units evidently underwent a low-temperature part of coesite eclogite fades metamorphism. Prograde and retrograde paths were recognized in an Atbashy eclogite; five stages of metamorphic reaction were observed in the Atbashy sample. The prograde path from stage I to stage III has been recorded in garnet and omphacite in which quartz pseudomorphs after coesite are included. The peak metamorphism of stage III took place at about 660°C at 25 kbar. The stages IV and V are retrograde. UHP eclogite facies metamorphism took place twice in Kyrghyzstan. The Aktyuz and Atbashy eclogites gave Rb-Sr mineral-isochron ages of about 750 Ma and 270 Ma, respectively. The K-Ar age of paragonite from the Makbal eclogite is about 480 Ma.  相似文献   

8.
W. Cui  X. Wang 《Island Arc》1995,4(4):347-361
Abstract According to field occurrence and P-T condition, eclogites of southern Henan and northern Hubei Provinces can be divided into two types: medium temperature (MT) and low temperature (LT) eclogites. MT eclogite occurs as layers or lenticular bodies within migmatized gneiss of the Dabie Group. This study is the first to report an occurrence of the assemblages coesite and kyanite + talc in this area. Garnet exhibits a distinct prograde compositional zoning and has mineral inclusions with rotational textures indicating syntectonic growth. Five evolutionary stages are outlined. (1) Pre-eclogite stage, determined by the inclusions of barroisite + zoisite + quartz in the cores of zoned garnets. (2) Eclogite stage, characterized by garnet + omphacite + kyanite ± talc + coesite + rutile, represents the peak metamorphism. The peak conditions are estimated to be T = 600-700°C, P >27 kb. (3) Glaucophane stage, without an appearance of plagioclase, is assigned to a transitional stage. Blades of glaucophane form rims around garnet grains as a result of the reaction talc + jadeite = glaucophane. This marks the beginning of retrograde metamorphism. (4) Symplectite stage, where eclogitic minerals break down, and Amp + Pl symplectite develops around garnet or omphacite; (5) Later retrograde stage is represented by epidote-amphibolite assemblages. Low temperature eclogite appears as blocks in the Qijiaoshan Formation (part of the Susong Group). Four stages can be identified: (1) Pre-eclogite stage, amphibole + epidote + sphene inclusions occur in garnet core; (2) Eclogite stage, consists of garnet + omphacite + rutile + quartz + phengite + glaucophane + zoisite. The peak conditions are T = 490-560°C, P <15 kb; (3) Symplectitic stage, is characterized by the breakdown of eclogitic minerals; (4) Greenschist facies stage, is recorded by a greenschist facies assemblage. The difference between the two types of eclogites suggests contrasting processes. A model is proposed whereby partial melting of continental crust and the emplacement of tonalite occurs during the exhumation of ultrahigh-pressure eclogite terrain.  相似文献   

9.
Abstract The amphibolites occur sporadically as thin layers and blocks throughout the Sulu Terrane, eastern China. All analyzed amphibolite from outcrop and drill cores from prepilot drill hole CCSD‐PP1 and CCSD‐PP2, Chinese Continental Scientific Drilling Project in the Sulu Terrane, are retrograded eclogites overprinted by amphibolite‐facies retrograde metamorphism, with characteristic mineral assemblages of amphibole + plagioclase + epidote ± quartz ± biotite ± ilmenite ± titanite. However, coesite and coesite‐bearing ultrahigh‐pressure (UHP) mineral assemblages are identified by Raman spectroscopy and electron microprobe analysis as inclusions in zircons separated from these amphibolites. In general, coesite and other UHP mineral inclusions are preserved in the cores and mantles of zircons, whereas quartz inclusions occur in the rims of the same zircons. The UHP mineral assemblages consist mainly of coesite + garnet + omphacite + rutile, coesite + garnet + omphacite, coesite + garnet + omphacite + phengite + rutile + apatite, coesite + omphacite + rutile and coesite + magnesite. Compositions of analyzed mineral inclusions are very similar to those of matrix minerals from Sulu eclogites. These UHP mineral inclusion assemblages yield temperatures of 631–780°C and pressures of ≥2.8 × 103 MPa, representing the P–T conditions of peak metamorphism of these rocks, which are consistent with those (T = 642–726°C; P ≥ 2.8 × 103 MPa) deduced from adjacent eclogites. These data indicate that the amphibolites are the retrogressive products of UHP eclogites.  相似文献   

10.
Yui  Kouketsu  Masaki  Enami 《Island Arc》2010,19(1):165-176
Aragonite and omphacite-bearing metapelite occurs in the albite–biotite zone of the Togu (Tohgu) area, Besshi region, Sambagawa metamorphic belt, central Shikoku, Japan. This metapelite consists of alternating graphite-rich and graphite-poor layers that contain garnet, phengite, chlorite, epidote, titanite, calcite, albite, and quartz. A graphite-poor layer contains a 1.5-cm ivory-colored lens that mainly consists of phengite, calcite, albite, and garnet. Aragonite, omphacite, and paragonite occur as inclusions in the garnet of the ivory lens. The aragonite has a composition that is close to the CaCO3 end-member: the FeCO3 and MnCO3 components are both less than 0.3 mol% and the SrCO3 component is about 1 mol%. The aragonite + omphacite + quartz assemblage in garnet indicates equilibrium conditions of P  > 1.1–1.3 GPa and T  = 430–550°C. Quartz grains sealed in garnet of the aragonite and omphacite-bearing sample and other metapelites in the Togu area preserve a high residual pressure that is equivalent to the Sambagawa eclogite samples. These facts suggest that: (i) the Togu area experienced eclogite facies metamorphism; and (ii) thus, eclogite facies metamorphism covered the Sambagawa belt more extensively than previously recognized.  相似文献   

11.
Petrological modeling is a powerful technique to address different types of geological problems via phase-equilibria predictions at different pressure–temperature-composition conditions. Here, we show the versatility of this technique by (1) performing thermobarometrical calculations using phase equilibrium diagrams to explore the petrological evolution of high-pressure (HP) metabasites from the Renge and Sanbagawa belts, Japan and (2) forward-modeling the mineral–melt evolution of the subducted fresh and altered oceanic crust along the Nankai subduction zone geotherm at the Kii peninsula, Japan. In the first case, we selected three representative samples from these metamorphic belts: a glaucophane eclogite and a garnet glaucophane schist from the Renge belt (Omi area) and a quartz eclogite from the Sanbagawa belt (Besshi area). We calculated the peak metamorphic conditions at ~2.0–2.3 GPa and ~550–630 °C for the HP metabasites from the Renge belt, whereas for the quartz eclogite, the peak equilibrium conditions were calculated at 2.5–2.8 GPa and ~640–750 °C. According to our models, the quartz eclogite experienced partial melting after peak metamorphism. In terms of the petrological evolution of the subducted uppermost portion of the oceanic crust along the warm Nankai geotherm, our models show that fluid release occurs at ~20–60 km, likely promoting high pore-fluid pressure, and thus, seismicity at these depths; dehydration is controlled by chlorite breakdown. Our petrological models predict partial melting at >60 km, mainly driven by phengite and amphibole breakdown. According to our models, the melt proportion is relatively small, suggesting that slab anatexis is not an efficient mechanism for generating voluminous magmatism at these conditions. Modeled melt compositions correspond to high-SiO2 adakites; these are similar to compositions found in the Daisen and Sambe volcanoes, in southwest Japan, suggesting that the modeled melts may serve as an analog to explain adakite petrogenesis.  相似文献   

12.
Ultrahigh-pressure (UHP) eclogites often show strong plastic deformation and anisotropy of seismic properties. We report in this paper the seismic velocity and anisotropy of eclogite calculated from the crystallographic preferred orientations (CPOs) of constituent minerals (garnet, omphacite, quartz and rutile) and single crystal elastic properties. We also compared the calculated results with the measured results in similar eclogites. Our results suggest that (1) Except that garnet is a seismically quasi-isotropic mineral, omphacite, quartz, coesite and rutile all have strong seismic anisotropies (AVp = 23.0%―40.9%, Max. AVs = 18.5%―47.1%). They are the major sources for anisotropy in eclogite. The average seismic velocities are fast in garnet and rutile, moderate in omphacite and coesite, and slow in quartz. (2) The deformed eclogites have the maximum Vp (8.33―8.75 km/s) approximately parallel to foliation and lineation, the minimum Vp (8.25―8.62 km/s) approximately normal to foliation and lineation and the Vp anisotropies of 1.0―1.7%. Their Vs are 4.93―4.97 km/s. The corresponding maximum anisotropies (0.73%―1.78%) of Vs are at 45° to both foliation and lineation and the minimum anisotropies at positions normal to lineation on the foliation plane. The Vs1 polarization planes are approximately parallel to foliation. The mean Vp and Vs of eclogite under UHP peak metamorphism conditions (P = 3―5 GPa, T = 900―1100℃) are estimated to be 3.4%―7.2% and 6.3%―12.1% higher than those at ambient pressure and temperature conditions, respectively. (3) Omphacite component dominates the anisotropy of eclogite while garnet component reduces the anisotropy and increases the seismic velocities. Quartz component has a small effect on the anisotropy but reduces the seismic velocities of eclogite. The effect of rutile component is negligible on seismic properties of eclogite due to its trivial volume fraction. (4) The increase of volume fraction of omphacite in eclogite will reduce the seismic velocities and increase the anisotropy. Omphacitite has seismic velocities reduced by 6%―8% and anisotropies increased to 3%―4% compared to those of garnetite. Our results suggest that the seismic properties calculated with single crystal elastic properties and CPOs are equivalent to those measured in laboratory. Moreover, it provides insights into the mineral physical interpretations of eclogite seismic properties.  相似文献   

13.
Metamorphic rocks experience change in the mode of deformation from ductile flow to brittle failure during their exhumation. We investigated the spatial variation of phengite K–Ar ages of pelitic schist of the Sambagawa metamorphic rocks (sensu lato) from the Saruta River area, central Shikoku, to evaluate if those ages are disturbed by faults or not. As a result, we found that these ages change by ca 5 my across the two boundaries between the lower‐garnet and albite–biotite, and the albite–biotite and upper‐garnet zones. These spatial changes in phengite K–Ar ages were perhaps caused by truncation of the metamorphic layers by large‐scale normal faulting at D2 phase under the brittle‐ductile transition conditions (ca 300°C) during exhumation, because an actinolite rock was formed along a fault near the former boundary. Assuming that the horizontal metamorphic layers and a previously estimated exhumation rate of 1 km/my before the D2 phase, the change of 5 my in phengite K–Ar ages is converted to a displacement of about 10 km along the north‐dipping, low‐angle normal fault documented in the previous study. Phengite 40Ar–39Ar ages (ca 85 to 78 Ma) in the actinolite rock could be reasonably comparable to the phengite K–Ar ages of the surrounding non‐faulted pelitic schist, because the K–Ar ages of pelitic schist could have been also reset at temperatures close to the brittle–ductile transition conditions far below the closure temperature for thermal retention of argon in phengite (about 500–600°C).  相似文献   

14.
Abstract The Maksyutov Complex, situated in the southern Ural Mountains of Russia, is the first location where quartz aggregates within garnets exhibiting radial fractures were identified as coesite pseudomorphs (Chesnokov & Popov 1965). The complex consists of two tectonic units: a structurally lower eclogite-bearing schist unit and an overlying meta-ophiolite unit. Both units show evidence for multiple stages of metamorphism and deformation. The high-pressure metamorphism of the eclogite-bearing schist unit, discussed in this report, is suspected to be related to a collision between the Russian platform and a fragment of the Siberian continent during the early Cambrian. At least three stages of metamorphism (M1-3) and two stages of deformation (S1 and S2) were observed in thin sections: M1) garnet (Alm55-60, Prp22-28, Grs16-20) + omphacite (Jd46-56) + phengite (Si ≅ 3.5) + rutile; M2) garnet + glaucophane ± lawsonite + white mica; and M3) epidote + chlorite ± albite ± actinolite + white mica. Observed mineral parageneses define a retrograde P-T path for the eclogite. Mineral assemblages within the most representative eclogite from the lower unit of the Maksyutov Complex indicate minimum peak pressures of 15 kbar at temperatures of approximately 600°C. If the presence of coesite pseudomorph is confirmed, the peak ultrahigh-pressure metamorphism may be as high as 27 kbar at 615°C.  相似文献   

15.
H. Tabata  S. Maruyama  & Z. Shi 《Island Arc》1998,7(1-2):142-158
The ultrahigh- and high-pressure (UHP–HP) metamorphic belt of the Dabie Mountains, central China, formed by the Triassic continental subduction and collision, is divided into four metamorphic zones; from south to north, the greenschist facies zone, epidote amphibolite to amphibolite facies zone, quartz eclogite zone, and coesite eclogite zone, based on metabasite mineral assemblages. Most of the coesite-bearing eclogites consist mainly of garnet and omphacite with homogeneous compositions and have partially undergone hydration reactions to form clinopyroxene + plagioclase + calcic amphibole symplectites during amphibolite facies overprinting. However, the least altered eclogites sometimes contain garnet and omphacite that preserve compositional zoning patterns which may have originated during their growth at peak temperature conditions of ∼ 750 °C, suggesting a short duration of UHP metamorphic conditions and/or consequent rapid cooling during exhumation. Systematic investigation on peak metamorphic temperatures of coesite eclogite have revealed that, contrary to the general trend of metamorphic grade in the southern Dabie unit, the coesite eclogite zone shows rather flat thermal structure (T = 600 ± 50 °C) with the highest temperature reaching up to 850 °C and no northward increase in metamorphic temperature, which is opposed to the previous interpretations. This feature, along with the preservation of compositional zonation, implies complicated differential movement of each eclogite mass during UHP metamorphism and the return from the deeper subduction zone at mantle depths to the surface.  相似文献   

16.
Yong-Feng  Zhu  Hans-Joachim  Massonne  Thomas  Theye 《Island Arc》2007,16(4):508-535
Abstract Four phengite‐bearing eclogites, taken from different depths of the Chinese continental scientific drilling (CCSD) borehole in the Sulu ultrahigh pressure terrane, eastern China, were studied with the electron microprobe. The compositional zonations of garnet and omphacite are moderate, whereas phengite compositions generally vary significantly in a single sample from core to rim by decrease of the Si content. Various geothermobarometric methods were applied to constrain the P‐T conditions of these eclogites on the basis of the compositional variability of the above minerals. The constrained P‐T path for sample B218 is characterized by pressure decrease from ca 3.0 GPa (ca 600°C) to 1.3 GPa (ca 550°C). Eclogite B310 yielded P‐T conditions of 3.0 GPa and 750°C. The path for eclogite B1008 starts at about 650°C and 3.6–3.9 GPa (stage I) followed by a pressure decrease to 2.8–3.0 GPa and a significant temperature rise (stages II and IIIa, 750–810°C). Afterwards, this rock cooled down to 620–660°C at still high pressures (2.5–2.7 GPa, stage IIIb). Retrograde conditions were about 670°C and 1.3 GPa (stage IV). Eclogite B1039 yielded a P‐T path starting at ca 600°C and 3.3–3.9 GPa (stage I). A pressure decrease to about 3.0 GPa (stage II, 590–610°C) and then a moderate isobaric temperature increase to ca 630°C (stage III) followed. Stage IV is characterized by temperatures of 650°C at pressures close to 1.3 GPa. During and after this stage (hydrous) fluids partially rich in potassium penetrated the rocks causing minor changes. Relatively high oxygen fugacities led to andradite and magnetite among the newly formed minerals. We think that the above findings can be best explained by mass flow in a subduction channel. Thus, we conclude that the assembly of UHP rocks of the CCSD site, eclogites, quartzofeldspathic rocks, and peridotites, cannot represent a crustal section that was already coherent at UHP conditions as it is the common belief currently. The coherency was attained after significant exhumation of these UHP rocks.  相似文献   

17.
The extensive gneisses in the high‐pressure and ultrahigh‐pressure metamorphic terrane in the Dabie‐Sulu orogen usually show no evidence of eclogite‐facies metamorphism. The garnet‐mica‐plagioclase gneisses from the Qiliping region in the western Dabie Orogen, comprise garnet, phengite, biotite, plagioclase, quartz, rutile, ilmenite, chlorite, epidote, and hornblende. The garnet porphyroblasts, with inclusions of quartz, epidote, and rutile, exhibit slight compositional zonations, from core to mantle with an increase in pyrope and a decrease in spessartine, and from mantle to rim with a decrease in pyrope and grossular and an increase in spessartine. The high‐Si phengite indicates that the gneisses may be subjected to a high‐pressure metamorphism. By the P–T pseudosections calculated in a system NCKMnFMASHTO (Na2O‐CaO‐K2O‐MnO‐FeO‐MgO‐Al2O3‐SiO2‐H2O‐TiO2‐O) for two representative samples, the metamorphic P–T path, reconstructed by the compositionally zoned garnet, shows that the prograde metamorphism is characterized by a temperature increase with a slight pressure increase from the conditions of 17.6 ± 1.5 kbar at 496 ± 15°C to the peak‐pressure ones of 21.8 ± 1.5–22.7 ± 1.5 kbar at 555 ± 15–561 ± 15°C; the early retrograde stage is dominated by decompression with a temperature increase to the maximum of 608 ± 15–611 ± 18°C at 10.3 ± 1.5–11.0 ± 1.5 kbar; and the late retrograde one is predominated by pressure and temperature decreases. The mineral assemblages in the prograde metamorphism are predicted to contain garnet, glaucophane, jadeite, lawsonite, phengite, quartz, rutile, and/or chlorite, which is different from those observed at present. Such high‐pressure metamorphism can partly be reconstructed by the P–T pseudosection in combination with the high‐Si phengite and garnet compositions in the core and mantle. This provides an important constraint on the subduction and exhumation of the terrane during the continent–continent collision between the Yangtze and Sino‐Korean cratons.  相似文献   

18.
Garnet grains in Sanbagawa quartz eclogites from the Besshi region, central Shikoku commonly show a zoning pattern consisting of core and mantle/rim that formed during two prograde stages of eclogite and subsequent epidote–amphibolite facies metamorphism, respectively. Garnet grains in the quartz eclogites are grouped into four types (I, II, III, and IV) according to the compositional trends of their cores. Type I garnet is most common and sometimes coexists with other types of garnet in a thin section. Type I core formed with epidote and kyanite during the prograde eclogite facies stage. The inner cores of types II and III crystallized within different whole‐rock compositions of epidote‐free and kyanite‐bearing eclogite and epidote‐ and kyanite‐free eclogite at the earlier prograde stage, respectively. The inner core of type IV probably formed during the pre‐eclogite facies stage. The inner cores of types II, III, and IV, which formed under different P–T conditions of prograde metamorphism and/or whole‐rock compositions, were juxtaposed with the core of type I, probably due to tectonic mixing of rocks at various points during the prograde eclogite facies stage. After these processes, they have shared the following same growth history: (i) successive crystal growth during the later stage of prograde eclogite facies metamorphism that formed the margin of the type I core and the outer cores of types II, III, and IV; (ii) partial resorption of the core during exhumation and hydration stage; and (iii) subsequent formation of mantle zones during prograde metamorphism of the epidote–amphibolite facies. The prograde metamorphic reactions may not have progressed under an isochemical condition in some Sanbagawa metamorphic rocks, at least at the hand specimen scale. This interpretation suggests that, in some cases, material interaction promoted by mechanical mixing and fluid‐assisted diffusive mass transfer probably influences mineral reactions and paragenesis of high‐pressure metamorphic rocks.  相似文献   

19.
Zircon U–Pb dating of the Tonaru metagabbro body in the Sanbagawa metamorphic belt, southwest Japan, suggests that igneous events at ca 200–180 Ma were involved in the protolith formation. The trace element compositions of the Tonaru zircons are enriched in U (a fluid‐mobile element) and Sc (an amphibole‐buffered element), and depleted in Nb (a fluid‐immobile element), suggesting that the parental magmas related to the Tonaru metagabbros formed in an arc setting. Integration of our results with previous studies of the metasedimentary rocks in the Tonaru body clearly indicates that the protoliths of the Tonaru body were produced by oceanic‐arc magmatism. With the previous geochronological and geological studies, the tectono‐magmatic–metamorphic history of the Tonaru and other mafic bodies in the Sanbagawa metamorphic belt may be summarized as follows: (i) the protolith formation by the oceanic‐arc magmatic event had occurred at 200–180 Ma; (ii) the protoliths were accreted in the trench at ca 130–120 Ma; and (iii) they were completely subducted into the depth of the eclogite‐facies condition after 120 Ma.  相似文献   

20.
Two unusual diamonds were studied from kimberlites from China, which contain both ultramafic and eclogitic mineral inclusions in the same diamond hosts. Diamond L32 contains seven Fe-rich garnets, four omphacites and one olivine inclusion. Four olivine, one sanidine and one coesite were recovered from diamond S32. Both garnet and omphacite inclusions have similar compositions as those from other localities of the world, and show basaltic bulk composition. All the garnet and omphacite inclusions in diamond L32 have positive Eu anomalies (Eu/Eu*1.64 1.79). These observations support the proposal that mantle eclogite is the metamorphic product of subducted ancient oceanic crust. The Mg/(Mg + Fe) ratio of the olivine inclusions from the two diamonds (91-92) are evidently lower than the normal olivine inclusions in diamonds from the same kimberlite pipe (92-95). The following model is proposed for the formation of diamonds with “mixed” mineral inclusions. Ascending diamond-bearing eclogite (recycled oceanic crust) entrained in mantle plumes may experience extensive partial melting, whereas the ambient peridotite matrix remains subsolidus in the diamond stable field. This provides a mechanism for the transport of diamond from its original eclogitic host to an ultramafic one. Subsequent re-growth of diamond in the new environment makes it possible to capture mineral inclusions of different lithological suites. Partial melts of basaltic sources may interact with the surrounding peridotite, resulting in the relatively lower Mg/(Mg + Fe) ratios of the coexisting olivine inclusions from the studied diamonds. Diamonds with “mixed” mineral inclusions demonstrate that plume activity also occurred in the Archean cratons.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号