首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
LA-ICP-MS and SHRIMP U-Pb dating of zircons from orthogneisses and amphibolite from the Central Zone of the Kunlun Orogen is reported in this paper. One orthogneiss sample has metamorphic zircons yielding weighted average 206Pb/238U age of 517.0 5.0/-6.0 Ma, and the other orthogneiss sample con- tains zircons with inherited magmatic cores giving three population 207Pb/206Pb ages of 955 Ma, 895 Ma and 657 Ma for the magmatic protolith, and metamorphic recrystallized rims with peak 206Pb/238U ages of 559 12/?17 Ma and 516 ± 13 Ma. The amphibolite yielded three populations of weighted average 206Pb/238U age of 482.0 10/?8.0 Ma, 516.2 ± 5.8 Ma and 549 ± 10 Ma for the metamorphic zircons. These dating results recorded the tectonothermal events that occurred in the early Paleozoic and the Pre- cambrian time. The records of the Cambrian magmatic-metamorphic event in the Qinling Orogen, the Altyn Tagh belt, north margin of the Qaidam Block and the Kunlun Orogen suggest that continental assembly probably occurred in the early evolutionary history of the Proto-Tethys.  相似文献   

2.
The SHRIMP zircon U-Pb geochronology of three typical samples, including two monzonitic granites from the Lincang batholith and a rhyolite from the Manghuai Formation are presented in the southern Lancangjiang, western Yunnan Province. The analyses of zircons for the biotite monzonitic granites from the northern (02DX-137) and southern (20JH-10) Lincang batholith show the single and tight clusters on the concordia, and yield the weighted mean 206Pb/238U ages of 229.4 ± 3.0 Ma and 230.4 ± 3.6 Ma, respectively, representing the crystallized ages of these granites. The zircons for the rhyolitic sample (02DX-95) from the Manghuai Formation give a weighted mean 206Pb/238U age of 231.0 ± 5.0 Ma. These data suggest that the igneous rocks from the Lincang granitic batholith and Manghuai Formation have a similar crystallized age. In combination with other data, it is inferred that both were generated at a narrow age span (∼230 Ma) and were originated from the postcollisional tectonic regime. An early Proterozoic 206Pb/238U apparent age of 1977±44 Ma is additionally obtained from one zircon from the biotite monzonitic granite (southern Lincang batholith), indicative of development of the early Proterozoic Yangtze basement in the region. These precisely geochronological data provide important constraints on better understanding the Paleozoic tectonic evolution of the Tethys, western Yunnan Province.  相似文献   

3.
The Tadhak alkaline ring-complex of Permian age provides two whole rock UPb isochrons giving concordant ages in agreement within relative errors with the RbSr isochron age:235U207Pb isochron: 271 ± 32Ma(MSWD= 0.3);238U206Pb isochron: 254 ± 18Ma(MSWD= 7.8), both on 8 whole-rock samples. The existence of these isochrons indicates that in favorable conditions U (and Pb) can be immobile. This can be due either to the lack of hard oxidizing conditions and/or to the location of U, in very low concentrations, in weathering-resistant minerals. The initial ratios (206Pb/204Pb = 18.714 ± 70and207Pb/204Pb = 15.589 ± 16), corrected for their Permian age, lie in the range observed for oceanic island basalts or continental alkali basalts and indicate an origin in a similar mantle, without any significant crustal contamination. This was also suggested by the initial87Sr/86Sr ratio of 0.70457 ± 4. Moreover, these Sr and Pb isotopic characteristics belong to the field of the so-called “Dupal” anomaly and indicate that it existed already 270 Ma ago. This study shows the potential interest of isotopic investigations of within-plate alkaline ring-complexes to characterize subcontinental mantle compositions, particularly in the past.  相似文献   

4.
To constrain the timing of the tectonothermal events and formation process of a plutonic suite, U–Pb dating was carried out by laser ablation inductively coupled plasma mass spectrometry combined with cathodoluminescence imaging on zircon grains extracted from the Bato pluton, northern Yamizo Mountains, Japan. The Bato pluton consists of gabbro and diorite. Zircon grains separated from a gabbro sample had a unimodal 238U–206Pb age (105.7 ±1.0 Ma). It was interpreted as the solidification age of the gabbro. Cathodoluminescence observation showed that the zircon grains from a diorite sample were characterized by anhedral cores, oscillatory zoned mantles, and dark rims. The 238U–206Pb age of the anhedral cores ranged from 2 165 Ma to 161 Ma, indicating the assimilation of surrounding sedimentary rocks. The 238U–206Pb ages of the oscillatory zoned mantles and dark rims are 109.0 ±1.3 Ma and 107.7 ±1.3 Ma, respectively. Observation under polarizing microscopy suggests that the anhedral cores occurred before plagioclase and hornblende, and the oscillatory zones around the anhedral cores had crystallized at the same time as the crystallization of biotite. Moreover, the dark rims formed at the same time as the crystallization of quartz and K‐feldspar. The formation process of the gabbro‐diorite complex in the Bato pluton was inferred as follows. (i) A mafic initial magma intruded into Mesozoic sedimentary rocks, and the assimilation of these sedimentary rocks led to geochemical variation yielding a dioritic composition. Subsequently, plagioclase and hornblende of the diorite were crystallized before 109.0 ±1.3 Ma. (ii) Biotite crystallized in the middle stage around 109.0 ±1.3 Ma. (iii) Quartz and K‐feldspar of the diorite were crystallized at 107.7 ±1.3 Ma. The gabbroic magma solidified (105.7 ±1.0 Ma) after solidification of the diorite.  相似文献   

5.
Determination of the age of the Precambrian-Cambrian boundary is critical in understanding early evolution of life on Earth. SIMS U-Pb zircon analyses of the Bed 5 tuff layer of the Meishucun section were carried out closely following the guidance of cathodoluminescence images, and the majority of analyses were conducted on the oscillatory zircon grains. Thirteen measurements yield a highly reliable Concordia U-Pb age of 536.7 ± 3.9 Ma for the Bed 5 horizon. A grand mean of 206Pb/238U age of 535.2± 1.7 Ma (...  相似文献   

6.
De-Ru  Xu  Bin  Xia  Peng-Chun  Li  Guang-Hao  Chen  Ci  Ma  Yu-Quan  Zhang 《Island Arc》2007,16(4):575-597
Abstract Metabasites within the Paleozoic volcanic‐clastic sedimentary sequences in Hainan Island, South China, show large differences not only in the nature of protoliths, but also in zircon U‐Pb sensitive high mass‐resolution ion microprobe (SHRIMP) ages. The protoliths for the Tunchang area metabasites have intraoceanic arc geochemical affinities. In the east‐central island gabbroic to diabasic rocks and pillow lavas are also present, while the Bangxi area metabasites with back‐arc geochemical affinities in the northwest island consist of basaltic, gabbroic and/or picritic rocks. Three types of zircon domains/crystals in the Tunchang area metabasites are defined. Type 1 is comagmatic and yields concordant to approximately concordant 206 Pb/238 U ages ranging from 442.1 ± 13.7 Ma to 514.3 ± 30.2 Ma with a weighted U‐Pb mean age of 445 ± 10 Ma. Type 2 is inherited and yields a weighted 207 Pb/206 Pb mean age of 2488.1 ± 8.3 Ma. Type 3 is magmatic with a 207 Pb/206 Pb age of ca 1450 Ma. Magmatic zircons in the Bangxi area metabasites yield a weighted U‐Pb mean age of 269 ± 4 Ma. We suggest 450 Ma is the minimum age for crystallization of protoliths of the Tunchang area metabasites, because the age range of ca 440–514 Ma probably corresponds to both the time of igneous crystallization and the high‐temperature overprint. The presence of abundant inherited zircons strongly favors derivation of these rocks from a NMORB‐like mantle proximal to continental crust. A protolith age of ca 270 Ma for the Bangxi area metabasites probably records expansion of an epircontinental back‐arc basin and subsequent generation of a small oceanic basin. The presence of ophiolitic rocks with an age of ca 450 Ma, not only in Hainan Island, but also in the Yangtze block, highlights the fact that the South China Caledonian Orogeny was not intracontinental in nature, but characterized by an ocean‐related event.  相似文献   

7.
We have measured 238U–206Pb, 235U–207Pb, and 232Th–208Pb ages on Quaternary zircons by laser ablation, single-collector, magnetic sector inductively coupled plasma mass spectrometry (LA-ICP-MS). To obtain reliable ages for Quaternary zircons, corrections for initial disequilibrium associated with deficits and excesses of both 230Th and 231Pa relative to secular equilibrium resulting from differential partitioning during zircon crystallization or source melting must be made. In contrast, the 232Th–208Pb decay system is clearly advantageous for samples affected by disequilibrium because the 232Th decay system lacks long-lived intermediate daughter isotopes. Conventionally, the initial disequilibrium for the 238U and 235U decay series has been determined by the distribution ratio between the melt and zircon (i.e., ƒTh/U = (Th/U)Zircon/(Th/U)Melt and ƒPa/U = (Pa/U)Zircon/(Pa/U)Melt). In our study, these correction factors were determined from comparison of the measured 238U–206Pb and 235U–207Pb ages with 232Th–208Pb ages obtained for three zircons of known eruption and, in some cases, zircon crystallization ages (Kirigamine Rhyolite, Bishop Tuff, and Toga Pumice). The resulting correction factors are ƒTh/U = 0.19 ± 0.14 and ƒPa/U = 3.66 ± 0.89 (Kirigamine Rhyolite), ƒTh/U = 0.24 ± 0.20 and ƒPa/U = 3.1 ± 1.2 (Bishop Tuff), and ƒTh/U = 0.28 ± 0.17 and ƒPa/U = 3.04 ± 0.99 (Toga Pumice). Although the uncertainties of these f values are relatively large, our results support the adequacy of the conventional approach for correction of initial disequilibrium. A recent study published results that apparently show zircon crystallization ages are younger than the eruption age of Bishop Tuff. It seems to be difficult to eliminate these discrepancies, even if the Th/U partitioning and disequilibrium generated during partial melting are taken into account for recalculation of its zircon age. However, magma chamber process and history of Bishop Tuff are too complex to obtain accurate zircon ages by U–Pb method. To overcome this, therefore, the Th–Pb zircon dating method is a key technique for understanding complex, pre-eruptive magma processes, and further efforts to improve its precision and accuracy are desirable.  相似文献   

8.
1 Geological setting Hainan Island is situated in the conjunction region between the Euro-Asian plate, the Indian-Australian plate and the Pacific plate, its tectonic setting and evolution is implicated in understanding the continen-tal margin accretion and evolution of East Asia and the formation of the South China sea. The Jiusuo-Lingshui fault zone divides Hainan Island into the Yaxian Pa-leozoic massif in the south and the Qiongzhong Pa-leozoic massif in the north (Fig. 1), they con…  相似文献   

9.
High spatial resolution U–Pb dates of zircons from two consanguineous ignimbrites of contrasting composition, the high-silica rhyolitic Toconao and the overlying dacitic Atana ignimbrites, erupted from La Pacana caldera, north Chile, are presented in this study. Zircons from Atana and Toconao pumice clasts yield apparent 238U/206Pb ages of 4.11±0.20 Ma and 4.65±0.13 Ma (2σ), respectively. These data combined with previously published geochemical and stratigraphic data, reveal that the two ignimbrites were erupted from a stratified magma chamber. The Atana zircon U–Pb ages closely agree with the eruption age of Atana previously determined by K–Ar dating (4.0±0.1 Ma) and do not support long (>1 Ma) residence times. Xenocrystic zircons were found only in the Toconao bulk ignimbrite, which were probably entrained during eruption and transport. Apparent 238U/206Pb zircon ages of 13 Ma in these xenocrysts provide the first evidence that the onset of felsic magmatism within the Altiplano–Puna ignimbrite province occurred approximately 3 Myr earlier than previously documented.  相似文献   

10.
Seven LA-ICP-MS zircon U-Pb datings from granitoids in the southern basement of the Songliao basin were done in order to constrain the ages of the basin basement. The cathodoluminescence (CL) images of the zircons from seven granitoids indicate that they are euhedral-subhedral ones with striped ab-sorption and obvious oscillatory zoning rims. The dating results show that a weighted mean 206Pb/238U age is 236±3 Ma for quartz diorite (sample No.T6-1) located in the western slope of the basin,that weighted mean 206Pb/238U ages are 319±1 Ma (2126 m) and 361±2 Ma (1994 m) for diorite (sample No.YC1-1) and granite (sample No.YC1-2) located in northern part of southeastern uplift of the basin,respectively,and that weighted mean 206Pb/238U ages are 161±5 Ma,165±2 Ma,165±1 Ma and 161±4 Ma for samples Q2-1,SN121,SN122,and SN72 granitoids located in southern part of southeastern uplift of the basin,respectively. The statistical results of ages suggest that the middle Jurassic granitoids con-stitute the main part of basement granitoids,and that the Hercynian and Indo-Sino magmatisms also occur in the basin basement. It is implied that the Songliao basin should be a rift one formed in the intracontinent or active continental margin settings in the late Mesozoic after the Middle Jurassic orogeny took place.  相似文献   

11.
Late Cretaceous (66.2 ± 0.5 Ma amphibole and 66.7 ± 0.2 Ma phlogopite 40Ar/39Ar ages) nephelinitic volcanic rocks from Godzilla Seamount in the eastern North Atlantic (34°N latitude) have trace element and Sr–Nd–Pb–Hf-isotope compositions similar to the Enriched Mantle I (EM-I) endmember, except for their low 207Pb/204Pb relative to 206Pb/204Pb ratios (206Pb/204Pbin = 17.7, 207Pb/204Pbin = 15.34) plotting below the Northern Hemisphere Reference Line on the uranogenic Pb isotope diagram. O isotope data on amphibole separates are mantle-like (δ18O = 5.6–5.8‰). Age and location of the isolated Godzilla Seamount, however, preclude it from being derived from the Madeira or Canary hotspots, making a lower-mantle origin unlikely. Therefore we propose derivation from a shallow (lithospheric/asthenospheric) melting anomaly. As observed in mid-ocean-ridge and ocean-island basalts, there is a systematic decrease of 207Pb/204Pb ratios (and Δ7/4) in the individual EM-I endmember type localities towards northern latitudes with Godzilla lying on the extension of this trend. This trend is mirrored in ultra-potassic volcanic rocks such as lamproites and kimberlites, which reflect the composition of enriched subcontinental lithospheric mantle. Therefore, a global pattern in 207Pb/204Pb ratios and Δ7/4 is suggested. The geochemical composition of EM-I endmember type localities, including Godzilla lavas, and the enriched (DUPAL) anomaly in the southern hemisphere could reflect derivation from ancient, metasomatized subcontinental lithospheric mantle. We propose a two-stage model to explain the trace element and isotopic composition of the EM-I mantle endmember localities worldwide: 1) during the early history of the Earth, subcontinental lithosphere was metasomatized by melts from subducted slabs along convergent margins generating high μ (238U/204Pb) sources, and 2) as the Earth cooled, hydrous fluids replaced hydrous melts as the main slab component metasomatizing the subcontinental lithospheric mantle (generating EM-I sources with lower μ). In accordance with this model, the global variations in 207Pb/204Pb ratios and Δ7/4 could reflect geographic differences in μ and/or the age at which the transition from stages 1 to 2 took place in the Archaean lithosphere. The model would require a re-definition of the EM-I endmember to low 206Pb/204Pb, high 208Pb/204Pb (positive Δ8/4) but variable 207Pb/204Pb (positive and negative Δ7/4).  相似文献   

12.
Comparative UPb dating of zircon, xenotime and monazite from two different samples of the Himalayan “Makalu” granite shows the two U decay series to be in disequilibrium, particularly in monazite. This disequilibrium is due to excess or deficit amounts of radiogenic206Pb which originate from an excess or deficit of230Th, respectively, occurring initially in the mineral. Such an initial disequilibrium is caused by UTh fractionation between the crystallising mineral and the magma. Therefore, the UPb ages of Th-rich minerals such as monazite (and allanite) have to be corrected for excess206Pb due to excess230Th, whereas Th-poor minerals such as zircon and xenotime require a correction for a deficit of206Pb due to deficiency of230Th. The extent of this correction depends on the degree of ThU fractionation and on the age of the rock. For the two monazite populations analysed here, these excess amounts of206Pb were, with reference to the amount of radiogenic206Pb, 8–10% and 15–20% respectively, and less than 1% for zircon and xenotime. The varying degrees of Th enrichment relative to U in monazite show that the ThU partition coefficients for this mineral are not constant within a single granite. Furthermore, for monazite there is evidence for excess amounts of radiogenic207Pb originating from the decay of initial excess231Pa, also enriched during crystal growth.The very low Th/U ratios of 0.196 and 0.167, determined for thetwo whole rocks from which the minerals have been extracted, substantiate the view that granite formation is a fundamental mechanism for ThU fractionation in continental crust.The different ages of 21.9 ± 0.2m.y. and24.0 ± 0.4m.y., obtained by averaging the corrected238U206Pb ages of the monazites, suggest that the apparently homogeneous Makalu granite was generated over a period of at least 2 m.y.  相似文献   

13.
SHRIMP zircon U–Pb dating, mineral chemical, element geochemical and Sr–Nd–Pb–Hf isotopic data have been determined for the Yulong monzogranite-porphyry in the eastern Tibet, China. The Yulong porphyry was emplaced into Triassic strata at about 39 Ma. The rocks are weakly peraluminous and show shoshonitic affinity, i.e., alkalis-rich, high K2O contents with high K2O / Na2O ratios, enrichment in LREE and LILE. They also show some affinities with the adakite, e.g., high SiO2 and Al2O3, and low MgO contents, depleted in Y and Yb, and enrichment in Sr with high Sr / Y and La / Yb ratios, and no Eu anomalies. The Yulong porphyry has radiogenic 87Sr / 86Sr (0.7063–0.7070) and unradiogenic 143Nd / 144Nd (εNd =  2.0 to − 3.0) ratios. The Pb isotopic compositions of feldspar phenocrysts separated from the Yulong porphyry show a narrow range of 206Pb / 204Pb ratios (18.71–18.82) and unusually radiogenic 207Pb / 204Pb (15.65–15.67) and 208Pb / 204Pb (38.87–39.00) ratios. In situ Hf isotopic composition of zircons that have been SHRIMP U–Pb dated is characterized by clearly positive initial εHf values, ranging from + 3.1 to + 5.9, most between + 4 and + 5. Phenocryst clinopyroxene geothermometry of the Yulong porphyry indicates that the primary magmas had anomalously high temperature (> 1200 °C). The source depth for the Yulong porphyry is at least 100 km inferred by the metasomatic volatile phase (phlogopite–carbonate) relations. Detailed geochemical and Sr–Nd–Pb–Hf isotopic compositions not only rule out fractional crystallization or assimilation-fractional crystallization processes, but also deny the possibility of partial melting of subducted oceanic crust or basaltic lower crust. Instead, low degree (1–5%) partial melting of a metasomatized lithosphere (phlogopite–garnet clinopyroxenite) is compatible with the data. This example gives a case study that granite can be derived directly by partial melting of an enriched lithospheric mantle, which is important to understand the source and origin of diverse granites.  相似文献   

14.
Baogutu copper deposit in Western Junggar area is a mesoscopic porphyry deposit found in recent years. Study on its geochronology will help further understand ore genesis and regional ore-forming pattern. A series of small quartz-diorite and granodiorite stocks outcrop at Baogutu area, numbered I―X according to their size. A detailed exploration on Number V stock confirmed it as a mesoscopic scale copper deposit, and various exploration work has been carried out on other stocks with ore-forming evidence. Th...  相似文献   

15.
Supracrustal rocks around the North Pole Dome area, Western Australia, provide valuable information regarding early records of the evolution of crustal processes, surface environments, and biosphere. Owing to the occurrence of the oldest known microfossils, the successions at the North Pole Dome area have attracted interest from many researchers. The Paleoarchean successions (Warrawoona Group) mainly comprise mafic‐ultramafic greenstones with intercalated cherts and felsic lavas. Age constraints on the sediments have been mainly based on zircon U–Pb geochronology. However, many zircon grains have suffered from metamictization and contain anomalously high contents of common Pb, which makes interpretation of the U–Pb data complicated. In order to provide more convincing chronological constraints, an U–Pb Concordia age is widely accepted as the best estimate. Most zircons separated from two adamellites also suffered from severe metamictization. In our analyses, less metamictized domains were selected using a pre‐ablation technique in conjunction with elemental mapping, and then their U–Pb isotopic compositions were determined with a laser ablation inductively coupled plasma mass spectrometry. Most analyzed domains contained certain amounts of common Pb (204Pb/206Pb > 0.000 1), whereas three and five U–Pb data points with less common Pb (204Pb/206Pb < 0.000 1) were obtained. These U–Pb datasets yielded U–Pb Concordia ages of ca 3 445 Ma and 3 454 Ma, respectively. These ages represent the timing of the adamellite intrusion, and constrain the minimum depositional age of the Warrawoona Group. In addition, a single xenocrystic zircon grain showed a 207Pb/206Pb age of ca 3 545 Ma, supporting the idea that the sialic basement of the Pilbara Craton existed prior to 3 500 Ma. The in situ U–Pb zircon dating combined with the pre‐ablation technique has the potentials to identify non‐metamictized parts and to yield precise and accurate geochronological data even from partially metamictized zircons.  相似文献   

16.
The SHRIMP zircon U-Pb geochronology of three typical samples, including two monzo nitic granites from the Lincang batholith and a rhyolite from the Manghuai Formation are presented in the southern Lancangjiang, western Yunnan Province. The analyses of zircons for the biotite monzonitic granites from the northern (02DX-137) and southern (20JH-10) Lincang batholith show the single and tight clusters on the concordia, and yield the weighted mean 206Pb/238U ages of 229.4 ± 3.0 Ma and 230.4 ± 3.6 Ma, respectively, representing the crystallized ages of these granites. The zircons for the rhyolitic sample (02DX-95) from the Manghuai Formation give a weighted mean 206Pb/238U age of 231.0 ± 5.0 Ma. These data suggest that the igneous rocks from the Lincang granitic batholith and Manghuai Formation have a similar crystallized age. In combination with other data, it is inferred that both were generated at a narrow age span (~230 Ma) and were originated from the postcollisional tectonic regime. An early Proterozoic 206Pb/238U apparent age of 1977±44 Ma is additionally obtained from one zircon from the biotite monzonitic granite (southern Lincang batholith), indicative of devel- opment of the early Proterozoic Yangtze basement in the region. These precisely geochronological data provide important constraints on better understanding the Paleozoic tectonic evolution of the Tethys, western Yunnan Province.  相似文献   

17.
18.
Portions of highland breccia boulder 7 collected during the Apollo 17 mission were studied using UThPb and RbSr systematics. A RbSr internal isochron age of3.89 ± 0.08b.y. with an initial87Sr/86Sr of0.69926 ± 0.00008 was obtained for clast 1 (77135,57) (a troctolitic microbreccia). A troctolitic portion of microbreccia clast 77215,37 yielded a UPb internal isochron of3.8 ± 0.2b.y. and an initial206Pb/207Pb of 0.69. These internal isochron age are interpreted as reflecting metamorphic events, probably related to impacts, which reset RbSr and UPb mineral systems of older rocks.Six portions of boulder 7 were analyzed for U, Th, and Pb as whole rocks. Two chemical groups appear to be defined by the U, Th, and Pb concentration data. Chemical group A is characterized by U, Th, and Pb concentrations and238U/204Pb values which are higher than those of group B. Group A rocks have typical232Th/238U ratios of ~ 3.85, whereas-group B rocks have unusually high Th/U values of ~ 4.1.Whole-rock UPb and PbPb ages are nearly concordant. Two events appear to be reflected in these data — one at ~ 4.4 b.y. and one at ~ 4.5 b.y. The chemical groupings show no correlation with documented ages. The old ages of ~ 4.4 b.y. and ~ 4.5 b.y. may, like the younger ~ 4.0 b.y. ages, be related to basin excavation events.  相似文献   

19.
The occurrence of ultrahigh pressure (UHP) minerals, such as coesite and diamond in crustal rocks in orogenic belts suggests that a huge amount of continental crust can be subducted to man-tle depth during the continental-continental collision[1—6]. This…  相似文献   

20.
The relationships between the intrusion of gneissose granitoids and the attainment of regional high‐T conditions recorded in metamorphic rocks from the Ryoke belt of the Mikawa area, central Japan, are explored. Seven gneissose granitoid samples (tonalite, granodiorite, granite) were collected from three distinct plutonic bodies that are mapped as the so‐called “Older Ryoke granitoids.” Based on bulk‐rock compositions and U–Pb zircon ages obtained by laser ablation inductively coupled plasma mass spectrometry, the analyzed granitoids can be separated into two groups. Gneissose granitoids from the northern part of the area give weighted mean 206Pb/238U ages of 99 ±1 Ma (two samples) and 95 ±1 Ma (one sample), whereas those from the southern part yield 81 ±1 Ma (two samples) and 78–77 ±1 Ma (two samples). Regional comparisons allow correlation of the northern granitoids (99–95 Ma) with the Kiyosaki granodiorite, and mostly with the Kamihara tonalite found to the east. The southern granitoids are tentatively renamed as “78–75 Ma (Hbl)?Bt granite” and “81–75 Ma Hbl?Bt tonalite” (Hbl, hornblende; Bt, biotite). and seem to be broadly coeval members of the same magmatic suite. With respect to available age data, no gneissose granitoid from the Mikawa area shows a U–Pb zircon age which matches that of high‐T metamorphism (ca 87 Ma). The southern gneissose granitoids (81–75 Ma), although they occur in the highest‐grade metamorphic zone, do not seem to represent the heat source which produced the metamorphic field gradient with a low dP/dT slope.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号