首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
介绍了GPS跟踪站数据传输技术的作用和意义,评述了GPS跟踪站数据传输技术的研究现状,指出了自动化、多文件、低成本以及增强可靠性等四个发展趋势,提出了改进北京房山GPS跟踪站数据传输的更新设备、升级工作软件和提高数据利用率的设想。  相似文献   

2.
本文简要地阐述了遥感技术与当今社会发展基本问题的关系,介绍了遥感传感器的技术进步和发展特点、传感平台定位和遥感数据处理等问题,并对实现GPS、RS和GIS整体数据处理问题进行了探讨。  相似文献   

3.
本文对组合GNSS系统进行静态相对定位测量与RTK测量试验,研究结果表明:在静态相对定位测量中,BDS的数据利用率、多路径效应误差优于GPS与GLONASS,BDS的定位精度优于GLONASS略低于GPS;组合系统中GPS/BDS与GPS/BDS/GLONASS的定位精度较优,引入GLONASS对定位精度改善的作用不明显。在RTK测量中,当观测条件理想时,GPS/BDS较GPS可见卫星数目多,PDOP值低,中误差小。当观测条件较差时,GPS/BDS较GPS可见卫星数目多,PDOP平均值低,中误差小,限差内固定解获得时间减少76.1%;GPS/BDS/GLONASS较GPS/BDS在中误差、水平精度和垂直精度上更优,限差内固定解获得时间更稳定可靠。  相似文献   

4.
随着以遥感(RS)、全球定位系统(GPS)、地理信息系统(GIS)、网络技术和计算机集成技术为核心的高新技术的快速发展,使得大面积、快速、准确掌握和预报农业生产信息成为可能。本文介绍了利用上述高新技术建立农业信息采集监测系统的技术路线。  相似文献   

5.
本文介绍了(GPS)快速静态,实时动态(RTK)定位等技术在测绘生产中的高效率应用。  相似文献   

6.
本文在介绍Rinex标准数据格式的基础上,以SuperStar GPS-OEM主板接收的二进制原始数据为例,详细介绍了利用VB6.0实现GPS主板原始数据向标准的Rinex数据格式的转换方法。该方法对不同类型的GPS(OEM)接收机原始数据处理具有指导意义。  相似文献   

7.
地面沉降与地下水过量开采以及城市建设有关.测定地面沉降主要是采用水准测量方法,由于GPS技术的迅速发展,使得应用GPS技术测定地面沉降成为可能,GPS技术具有精度高、速度快、工作量小、全天候等特点.文中论述了应用GPS技术测定城市地面沉降的基本方法,通过对S市的4次定期观测,取得了有益的结果.  相似文献   

8.
连续运行GPS定位服务系统的探讨   总被引:1,自引:0,他引:1  
介绍了连续运行GPS定位服务的概念、实现模式及其在测绘行业中的应用。  相似文献   

9.
针对2018年实现全星座试运行的日本区域性卫星导航系统QZSS的定位服务性能评估问题,首次利用MGEX实验网日本区域4个均可接收全部4颗QZSS卫星信号的测站数据对GPS/QZSS系统在日本境内的定位服务性能进行了分析。结果表明:联合QZSS的GPS系统在各种遮挡环境下的定位性能较独立GPS系统均有显著改善;这些改善在高截止高度角情况下更为明显。  相似文献   

10.
石平  张文安 《测绘通报》2016,(1):88-90,94
通过贵阳市航空摄影测量项目的实施,形成了一套有效可行的IMU/GPS辅助航空摄影测量技术方法。介绍了项目所采用的检校场的布设方法、IMU/GPS辅助光束法区域网像控布点方法,以及IMU/GPS辅助空中三角测量技术,分析了IMU/GPS辅助空中三角测量和DEM/DOM成果精度,论述了该项目所形成的IMU/GPS辅助航空摄影测量技术方法的适用范围和局限性。  相似文献   

11.
GPS水准及其在测绘工程中的应用   总被引:6,自引:3,他引:3  
随着似大地水准面的不断精化,GPS水准有可能代替繁重的几何水准工作,介绍了似大地水准面的确定方法,并基于我国新一代似大地水准面CQG2000,在高山区GPS高程拟合的正常高中误差达到±0.21m。结合GPS实际工程分析,GPS高程拟合精度在平原地区可达到像控点高程精度要求。  相似文献   

12.
QZSS系统与GPS系统具有较好的兼容性,同时其播发两个频段的增强信号,增强信号中包括GPS卫星轨道、钟差、电离层等改正信息,通过增强服务可以使GPS用户获得更高精度的实时定位结果。本文利用CCJ2、GUAM、MIZU、TSK2测站的实测数据对QZSS增强信号对GPS定位增强的效果进行分析。结果表明:基于L1-SAIF信号的SLAS增强服务能有效提高用户的GPS单点定位精度;基于LEX信号的CLAS增强服务目前可以实现分米级实时定位精度。  相似文献   

13.
2000~2010年间GPS的改进   总被引:1,自引:0,他引:1  
简要介绍了GPS发展的历史和现状,GPS改进的背景,详细介绍了2000-2010年间,GPS将作的主要改进,分析了各种改进措施所带来的影响;最后对非特许有户如何面对这种改进提出了建议。  相似文献   

14.
GPS与InSAR技术在滑坡监测中的应用研究   总被引:17,自引:2,他引:15  
合成孔径雷达干涉测量技术(InSAR)应用于地面形变监测已经成为地质灾害研究热点。本文分析了In-SAR技术在滑坡变形监测中的特点与技术优势,监测中InSAR、GPS的结合能够同时提高监测在空间域与时间域的分辨率;本文叙述了GPS、InSAR结合技术的理论与方法。说明利用干涉雷达结合GPS技术对滑坡进行监测是可行的,具有十分广阔的应用前景。  相似文献   

15.
针对利用GPS接收机在接收L 波段信号时对周围植被水分含量较为敏感的特性,使用GPS反射信号的变化,进行测站归一化植被指数(NDVI)反演. 利用2个GPS参考站近5年的连续观测数据计算的归一化微波反射指数(NMRI),构建了反演NDVI的一元线性模型. NMRI整体变化趋势与同时间段内中分辨率成像光谱仪(MODIS) NDVI趋势表现一致,其反演结果相关系数R分别为0.626 53、0.625 73,均方根误差(RMSE)分别为0.051 29和0.055 08,进而使用BP神经网络模型反演相关系数分别提高了2%、6%. 表明GPS干涉反射测量(GPS-IR)反演区域NDVI结果具有较高可靠性. 该研究为获取精确位置、实时连续、高分辨率的 NDVI 提供了一定的理论支撑.   相似文献   

16.
针对GPS坐标时序数据中存在的共模误差(CME),研究利用堆栈滤波(SF)、网络反演滤波(NIF)和主成分分析(PCA)三种方法进行剔除,以提高GPS监测区域地表位移的精度. 通过构建GPS坐标时序模型,去除明显构造运动,提取噪声残差时序,将隐含在噪声残差时序中的区域CME利用SF、NIF、PCA方法提取出来. 以日本房总半岛2019—2021年GPS坐标时序为例,比较三种方法和GPS站点空间分辨率对CME提取的影响,分析CME去除前后慢滑移地表位移的变化. 研究结果表明:SF、NIF、PCA方法提取CME的结果基本一致;GPS站点空间分辨率降低,提取的CME离散度增大;CME对慢滑移地表水平位移的大小和方向均会产生影响,需进行剔除.   相似文献   

17.
全球卫星导航系统(GNSS)与超宽带(UWB)等定位系统在室内外复杂环境下作用范围有限,并且单一定位源均无法获得从室外到室内连续可靠的定位结果等问题,针对北斗卫星导航系统(BDS)+GPS/UWB松组合定位方法展开研究,设计了室内外动态定位实验与过渡区域静态定位实验,利用扩展卡尔曼滤波器(EKF)对定位误差状态进行最优估计,并对BDS+GPS组合、UWB以及BDS+GPS/UWB松组合三种定位模式进行分析评价. 实验结果表明:在室内外的过渡区域,BDS+GPS/UWB松组合改善了GNSS-实时动态定位(RTK)的定位精度,扩展了GNSS-RTK的作用范围;BDS+GPS/UWB松组合相比于各单一定位源在一定程度上提高了系统从室外到室内定位的连续性与定位结果的可用性.   相似文献   

18.
扩展卡尔曼滤波(EKF)是GPS/INS组合导航系统工程实现中常用的一种数据融合方式.但EKF线性化误差在一定程度上影响了GPS/INS组合导航系统精度的提高.Unscented卡尔曼滤波器(UKF)是一种非线性滤波器,它能有效地减小线性化误差对GPS/INS组合导航系统精度的影响.基于四元数法建立了GPS/INS组合导航系统的非线性误差方程模型;最后通过数字仿真验证了UKF组合导航系统应用中的性能.  相似文献   

19.
扩展卡尔曼滤波(EKF)是GPS/INS组合导航系统工程实现中常用的一种数据融合方式。但EKF线性化误差在一定程度上影响了GPS/INS组合导航系统精度的提高。Unscented卡尔曼滤波器(UKF)是一种非线性滤波器,它能有效地减小线性化误差对GPS/INS组合导航系统精度的影响。基于四元数法建立了GPS/INS组合导航系统的非线性误差方程模型;最后通过数字仿真验证了UKF组合导航系统应用中的性能。  相似文献   

20.
介绍GPS接收机数据的RINEX标准交换格式,讨论二进制数据格式文件向文本文件转换的方法及需要注意的问题,通过分析HemisphereJ、avad、AC12、NavCom 4种不同OEM板二进制数据格式,指出GPS接收机的二进制数据文件向RINEX文件转换的一般方法,并编程实现所有程序,验证方法的正确性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号