首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Shandong province is located on the east coast of China and has a coastline of about 3100 km. There are only a few tsunami events recorded in the history of Shandong Province, but the tsunami hazard assessment is still necessary as the rapid economic development and increasing population of this area. The objective of this study was to evaluate the potential danger posed by tsunamis for Shandong Province. The numerical simulation method was adopted to assess the tsunami hazard for coastal areas of Shandong Province. The Cornell multi-grid coupled tsunami numerical model (COMCOT) was used and its efficacy was verified by comparison with three historical tsunami events. The simulated maximum tsunami wave height agreed well with the observational data. Based on previous studies and statistical analyses, multiple earthquake scenarios in eight seismic zones were designed, the magnitudes of which were set as the potential maximum values. Then, the tsunamis they induced were simulated using the COMCOT model to investigate their impact on the coastal areas of Shandong Province. The numerical results showed that the maximum tsunami wave height, which was caused by the earthquake scenario located in the sea area of the Mariana Islands, could reach up to 1.39 m off the eastern coast of Weihai city. The tsunamis from the seismic zones of the Bohai Sea, Okinawa Trough, and Manila Trench could also reach heights of >1 m in some areas, meaning that earthquakes in these zones should not be ignored. The inundation hazard was distributed primarily in some northern coastal areas near Yantai and southeastern coastal areas of Shandong Peninsula. When considering both the magnitude and arrival time of tsunamis, it is suggested that greater attention be paid to earthquakes that occur in the Bohai Sea. In conclusion, the tsunami hazard facing the coastal area of Shandong Province is not very serious; however, disasters could occur if such events coincided with spring tides or other extreme oceanic conditions. The results of this study will be useful for the design of coastal engineering projects and the establishment of a tsunami warning system for Shandong Province.  相似文献   

2.
As a first step towards the development of inundation maps for the northwestern Indian Ocean, we simulated the near-field inundation of two large tsunami in the Makran subduction zone (MSZ). The tsunami scenarios were based on large historical earthquakes in the region. The first scenario included the rupture of about 500 km of the plate boundary in the eastern MSZ, featuring a moment magnitude of Mw 8.6. The second scenario involved the full rupture of the plate boundary resulting from a Mw 9 earthquake. For each scenario, the distribution of tsunami wave height along the coastlines of the region is presented. Also, detailed runup modeling was performed at four main coastal cities in the region for the second scenario. To investigate the possible effect of splay fault branching on tsunami wave height, a hypothetical splay fault was modeled which showed that it can locally increase the maximum wave height by a factor of 2. Our results showed that the two tsunami scenarios produce a runup height of 12-18 m and 24-30 m, respectively. For the second scenario, the modeled inundation distance was between 1 and 5 km.  相似文献   

3.
2016年全球地震海啸监测预警与数值模拟研究   总被引:2,自引:0,他引:2  
回顾了国家海洋环境预报中心(国家海洋局海啸预警中心)2016年全球地震海啸监测预警的总体状况, 并基于震源生成模型和海啸传播数值模型的计算结果详细介绍了几次主要海啸事件及其影响特性。2016年全年国家海洋环境预报中心总共对全球6.5级(中国近海5.5级)以上海底地震响应了45次,发布海啸信息81期, 没有发生对我国有明显影响的海啸。结合精细化的数值模拟结果和浮标监测数据,重点介绍了苏门达腊7.8级地震海啸、厄瓜多尔7.8级地震海啸、新西兰7.1级和7.8级地震海啸, 以及所罗门7.8级地震海啸的波动特征和传播规律, 模拟结果与实测海啸波符合较好。针对厄瓜多尔7.8级地震海啸事件, 本文比较分析了均匀断层模型和多源有限断层模型对模拟结果的影响; 针对新西兰7.1级地震海啸, 探讨了色散效应对海啸波在大水深、远距离传播过程的影响规律。  相似文献   

4.
Bathing beaches are usually the first to suffer disasters when tsunamis occur, owing to their proximity to the sea. Several large seismic fault zones are located off the coast of China. The impact of each tsunami scenario on Chinese bathing beaches is different. In this study, numerical models of the worst tsunami scenarios associated with seismic fault zones were considered to assess the tsunami hazard of bathing beaches in China. Numerical results show that tsunami waves from the Pacific Ocean could affect the East China Sea coast through gaps between the Ryukyu Islands. The Zhejiang and Shanghai coasts would be threatened by a tsunami from Ryukyu Trench, and the coasts of Hainan and Guangdong provinces would be threatened by a tsunami from the Manila Trench. The tsunami hazard associated with the Philippine Trench scenario needs particular attention. Owing to China’s offshore topography, the sequential order of tsunami arrival times to coastal provinces in several tsunami scenarios is almost the same. According to the tsunami hazard analysis results, Yalongwan Beach and eight other bathing beaches are at the highest hazard level. A high-resolution numerical calculation model was established to analyze the tsunami physical characteristics for the high-risk bathing beaches. To explore mitigating effects of a tsunami disaster, this study simulated tsunami propagation with the addition of seawalls. The experimental results show that the tsunami prevention seawalls constructed in an appropriate shallow water location have some effect on reducing tsunami hazard. Seawalls separated by a certain distance work even better. The analysis results can provide a scientific reference for subsequent preventive measures such as facility construction and evacuation.  相似文献   

5.
Major earthquakes occurred in the region of the Central Kuril Islands on November 15, 2006 (M w = 8.3) and January 13, 2007 (M w = 8.1). These earthquakes generated strong tsunamis recorded throughout the entire Pacific Ocean. The first was the strongest trans-Pacific tsunami of the past 42 years (since the Alaska tsunami in 1964). The high probability of a strong earthquake (M w ≥ 8.5) and associated destructive tsunami occurring in this region was predicted earlier. The most probable earthquake source region was investigated and possible scenarios for the tsunami generation were modeled. Investigations of the events that occurred on November 15, 2006, and January 13, 2007, enabled us to estimate the validity of the forecast and compare the parameters of the forecasted and observed earthquakes and tsunamis. In this paper, we discuss the concept of “seismic gaps,” which formed the basis for the forecast of these events, and put forward further assumptions about the expected seismic activity in the region. We investigate the efficiency of the tsunami warning services and estimate the statistical parameters for the observed tsunami waves that struck the Far Eastern coast of Russia and Northern Japan. The propagation and transformation of the 2006 and 2007 tsunamis are studied using numerical hydrodynamic modeling. The spatial characteristics of the two events are compared.  相似文献   

6.
Stefano Tinti 《Marine Geodesy》2013,36(3-4):243-254
Abstract

In the Mediterranean Sea, tsunamigenic sources may be found in several areas in the belt running from Gibraltar up to the Black Sea, but they are concentrated mainly around Italy and Greece. Most of the sources are located close to the coasts and excite tsunamis reaching the coasts soon after the generation time. Tsunami research and tsunami mitigation programs are only in a very initial stage in the Mediterranean area. The present activities are focused chiefly to tsunami potential evaluation and on tsunami propagation modeling. The establishment of efficient observational networks, centers for data management and services, and systems for issuing tsunami warnings are some of the most urgent needs. In this context, the envisaged contribution of marine geodesy is twofold. First, monitoring of submarine active faults and submarine volcanic areas by means of systems capable of detecting seafloor deformation may contribute in identifying periods in which the probability of tsunami generation increases beyond a threshold value, especially in those tsunamigenic zones where geodetic observations on land are insufficient (for example, eastern Sicily in Italy and the Hellenic Arc in southern Greece). Second, since most of the active sources are close to the coastline, computations of tsunami propagation and run‐up may be significantly enhanced by a better knowledge of the bathymetry of the seabelt facing the coasts.  相似文献   

7.
深圳海域潮汐海啸波耦合数值研究   总被引:3,自引:0,他引:3  
以COMCOT海啸模式和TPXO7.1全球潮汐模式为基础,采用三层嵌套网格,建立了南海海啸与潮汐耦合计算模型,分析深圳海域海啸和潮汐相互作用。潮汐计算结果与实测数据吻合较好,高、低潮位平均误差小于15 cm,20 cm;在潮汐验证的基础上,以马尼拉海沟潜在地震海啸源为案例,进行8.0,9.0级地震海啸与潮汐耦合情景模拟计算,计算结果表明,9级地震海啸在深圳海域外海波高为140~150 cm,如先行波为正波发生在高潮时将产生异常高潮位,负波发生在低潮时将产生异常低潮位,线性叠加计算结果偏大,在25.0 cm之内,到达时间差异小于6 min。  相似文献   

8.
越洋海啸的数值模拟及其对我国的影响分析   总被引:7,自引:2,他引:5  
简要介绍了地震海啸产生的物理机制、海啸波在大洋中的传播特性以及海啸所具有的超强破坏力可能引发的巨大灾害;概述了全球地震海啸发生的频率和太平洋区域历史海啸的时空分布;整理分析了我国沿海发生海啸的频次和空间分布。针对越洋海啸传播的特点,采用基于波浪追逐原理和自适应网格加密技术的海啸数值模型对1960智利海啸进行了数值模拟,将模拟的结果与历史记录进行了对比,验证了模型的可靠性。通过对数值模拟结果的分析,初步讨论了我国沿海地区越洋海啸的危险性,并定量阐述了越洋海啸对我国各海区的影响。  相似文献   

9.
基于数值模拟的渤海海域地震海啸危险性定量化研究   总被引:1,自引:1,他引:0  
根据地震海啸产生的条件,结合渤海海域的地形特征、地质构造、地震学特征和历史地震及海啸记录对渤海海域潜在的地震海啸进行了数值模拟研究。分析了渤海可能引发地震海啸的震源区域,讨论了渤海发生海啸灾害的可能性。文中通过数值模拟再现了渤海历史上几次规模较大的地震事件可能引发的海啸情景,研究分析了可能的地震海啸在渤海及周边海域的传播过程及波动特征.地震海啸传播模型采用基于四叉树原理的自适应网格加密技术,有效解决了局部分辨率与计算效率之间的矛盾。数值计算包括地震海啸产生及传播过程。利用该模型对渤海潜在的地震海啸进行了数值计算,基于数值计算结果定量阐述了渤海海域潜在地震海啸对渤海局部岸段及北黄海沿岸的影响,给出了渤海可能地震海啸危险性划分;研究结果将为我国海啸危险性分析和海啸预警技术研究工作提供技术支持。  相似文献   

10.
11.
影响地震海啸的震源参数众多且具有很强的不确定性,充分评估海啸风险需要大量的情景模拟.本文基于建立的概率海啸风险模型,采用一种高效的海啸模拟方法,评估了南海主要岛礁的概率海啸风险.通过对历史地震数据的分析,综合考虑震级、震中位置、震源深度的随机性,形成了百万数量级的潜在地震情景集,并通过叠加近似方法实现了大量地震情景引发...  相似文献   

12.
马尼拉俯冲带潜在地震海啸对我国南部沿海城市构成巨大威胁,利用情景式数值模拟技术重构灾害过程并评估危险等级有助于理解南海海啸传播规律并指导预警预报和防灾减灾工作。根据美国太平洋海洋环境研究中心(Pacific Marine Environmental Laboratory, PMEL)发布的马尼拉俯冲带断层参数设计Mw 7.5、Mw 8.1和Mw 8.5三个震级下共19个震源,应用非静压海啸数值模型(Non-hydrostatic Evolution of Ocean WAVE, NEOWAVE)模拟各震源激发海啸在南海海盆的传播过程,通过最大波辐和测点时间序列发现海啸波能量传输分布并评估代表区域危险等级。研究表明, Mw 7.5级地震海啸对我国南部沿海的影响较低,波幅一般不超过30 cm; Mw 8.1级地震海啸对华南沿海主要造成太平洋海啸预警中心定义的Ⅱ或Ⅲ级海啸危险等级,海啸影响范围和能量分布特征由震源位置决定; Mw 8.5级地震海啸主要对中国沿海构...  相似文献   

13.
The tsunami generated by the December 2004 Sumatra-Andaman earthquake had a devastating effect on some parts of Kerala coast, which is a coast located in southwest India. Results of post-tsunami field surveys carried out to understand the changes in coastal morphology and sediment characteristics in the worst affected Kayamkulam region of Kerala coast are documented in this study. Analysis of offshore bathymetric data indicates the shifting of depth contours towards shore, indicating erosion of sediments and deepening of innershelf due to the tsunami. Depth measurement along the backwater (T-S canal) in the hinterland region indicates siltation due to the inundation of the canal.  相似文献   

14.
This paper describes the development of tsunami scenarios from the National Seismic Hazard Maps for design of coastal infrastructure in the Pacific Northwest. The logic tree of Cascadia earthquakes provides four 500-year rupture configurations at moment magnitude 8.8, 9.0, and 9.2 for development of probabilistic design criteria. A planar fault model describes the rupture configurations and determines the earth surface deformation for tsunami modeling. A case study of four bridge sites at Siletz Bay, Oregon illustrates the challenges in modeling of tsunamis on the Pacific Northwest coast. A nonlinear shallow-water model with a shock-capturing scheme describes tsunami propagation across the northeastern Pacific as well as barrier beach overtopping, bore formation, and detailed flow conditions at Siletz Bay. The results show strong correlation with geological evidence from the six paleotsunamis during the last 2800 years. The proposed approach allows determination of tsunami loads that are consistent with the seismic loads currently in use for design of buildings and structures.  相似文献   

15.
The tsunami generated by the December 2004 Sumatra-Andaman earthquake had a devastating effect on some parts of Kerala coast, which is a coast located in southwest India. Results of post-tsunami field surveys carried out to understand the changes in coastal morphology and sediment characteristics in the worst affected Kayamkulam region of Kerala coast are documented in this study. Analysis of offshore bathymetric data indicates the shifting of depth contours towards shore, indicating erosion of sediments and deepening of innershelf due to the tsunami. Depth measurement along the backwater (T-S canal) in the hinterland region indicates siltation due to the inundation of the canal.  相似文献   

16.
海上丝绸之路海啸灾害危险分析   总被引:1,自引:0,他引:1  
海上丝绸之路不仅是商业和贸易的通道, 也是东西方文化友谊的道路。2004年印度洋海啸对丝路沿线的多个沿海国家造成了重大破坏。因此需要对海啸发生规律和危害进行分析, 以确保海上丝绸之路上经济和文化交流的安全。为探索和识别海上丝绸之路上的海啸灾害, 本文给出了历史海啸事件的特征和规律。从震源震级、震源深度和水深等震源参数中发现了一些历史海啸数据背后的有用信息。本文还探讨了不同震级引起海啸的概率问题。分析结果表明:海上丝绸之路上的海啸主要发生在8个主要构造断层, 每个断层都有不同的海啸发生规律。在统计分析的基础上, 本文采用数值模型模拟了海上丝绸之路沿岸的潜在海啸,计算结果展示了海上丝绸之路沿岸的潜在海啸灾害程度。本文的研究成果有助于海啸灾害预警, 能够为保证海上丝绸之路贸易交流的安全提供科学参考。  相似文献   

17.
The “seismic silence” period in the seismic gap in the region of the Komandor Islands (hereinafter, the Komandor seismic gap) is close to the duration of the maximal recurrence interval for the strongest earthquakes of the Aleutian Islands. This indicates the possibility of a strong earthquake occurring here in the nearest time. In the present work, the results of simulation for a tsunami from such an earthquake are presented. The scheme successfully used by the authors for the nearest analog—the 2004 Sumatra-Andaman earthquake—is applied. The magnitude of the supposed earthquake is assumed to be 9.0; the tsunamigenic source is about 650 km long and consists of 9 blocks. The parameters of the tsunami propagation in the Pacific Ocean and the characteristics of the waves on the coasts are computed for several possible scenarios of blocks’ motion. The spectral analysis of the obtained wave characteristics is made and the effects of the wave front interference are found. Simulation has shown that the wave heights at some coastal sites can reach 9 m and, thus, may cause considerable destruction and deaths.  相似文献   

18.
Abstract

Canada has increased the number of tsunami warning stations on the Pacific Coast from two to three. The last gauge was installed at the north end of Vancouver Island, thereby filling a large gap previously existing and providing full coverage along the coast. The record of gauges at two of the three locations is accessible either by telephone or by means of meteor burst communication, alleviating the difficulties experienced during the tsunami threat of May 6, 1986, when telephone communications were disrupted by heavy use. The gauge at Langara Island will be relocated in a more accessible and also a more tsunami‐responsive location at Rennell Sound in the Queen Charlotte Islands. All tsunami gauges also serve as tide gauges, recording the water level every 15 min. In the event of a tsunami, the recording interval can be altered to every 60 s. Suggestions have been made that Canada attempt deep‐sea recording of tsunamis off its Pacific Coast. Although this would be of great scientific value, no such program is contemplated at this time.  相似文献   

19.
The tsunami hypothesis proposes that prehistoric tsunamis may have been larger than historic ones along coasts normally (historically) not associated with major tsunamis. The evidence for the hypothesis rests with the types of unusual sedimentary deposits and erosional forms along coasts where the largest historic and prehistoric storm waves do not appear capable of forming the features. This is especially the case at locations where boundary conditions, i.e. offshore water depth, coastal geomorphology and meteorological limitations, are not conducive to the propagation of sufficiently large storm waves at the shore. The tsunami hypothesis has been barely debated in the literature. This is despite the view of some, who suggest that storms have been overlooked, or underestimated, as a cause. Few comparisons have been made of the supposed tsunami generated features and the impacts on coasts of extreme intensity storms. Four of the most powerful tropical cyclones anywhere in the world in recent times struck the Western Australian coast between 1999 and 2002. The results of post-event surveys of these storms showed that none of them produced the enigmatic forms attributed elsewhere to tsunamis.  相似文献   

20.
Tsunamis associated with the 2011 off the Pacific Coast of Tohoku Earthquake seriously disrupted the shallow marine ecosystem along a 2000 km stretch of the Pacific coast of Japan. The effects of the 2011 tsunamis on the soft-bottom benthic community have been relatively well studied in the intertidal zone, whereas tsunami effects on the subtidal benthos remain poorly understood. Here, we investigated populations of the world’s largest spoon worm Ikeda taenioides (Annelida: Echiura: Ikedidae) in subtidal zone of Funakoshi Bay, Tohoku District, northeastern Japan. Subtidal scuba-diving surveys at two sites in the bay showed extremely long proboscises frequently extending from small holes in the sandy seafloor shortly before and soon after the tsunami disturbances. Based on morphological and molecular identification, the proboscises were revealed to be parts of I. taenioides. On 30 November 2011, 265 days after the tsunami event, many large-sized individuals with >1 m long proboscises were observed; these individuals were probably not derived from post-tsunami larval recruitment but more likely survived the tsunami disturbances. This is surprising because other sympatric megabenthos (e.g. spatangoid echinoids and venerid bivalves) and seagrass beds were almost completely destroyed (although they later recovered) by the tsunamis in this bay. The burrows of I. taenioides are known to be very deep (70–90 cm), which may have sheltered them from the impacts of the tsunamis. Our observations suggest that the effects of the 2011 tsunamis on benthos in soft sediments may differ depending on their burrowing depth.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号