首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Sendai Bay in northern Japan suffered serious damage from massive tsunamis generated by the 2011 off the Pacific coast of Tohoku earthquake. The physical disturbance caused by a tsunami may affect the coastal ecosystem, including the planktonic diatom community. We investigated seasonal changes in the diatom community structure at a coastal and an offshore station in Sendai Bay, from June 2011 (3 months after the tsunami) to April 2014. Diatom abundance increased at both stations during the spring. Sporadic increases were also recorded at the coastal station during the summer because of silicate input from river discharge. Seasonal succession of the diatom communities was similar at both the coastal and offshore stations. The onset of the spring bloom consisted mainly of Chaetoceros spp. when water temperatures were low. Subsequently, species such as Skeletonema costatum s.l. became dominant as salinity and nutrient concentrations decreased. Cell density decreased from summer into early winter. Leptocylindrus danicus became dominant in the summer, but was replaced by Thalassiosira cf. mala from autumn into winter. Redundancy analysis (RDA) showed that most of the variation in the diatom community could be explained by temperature, salinity, NO3 ?, NO2 ?, PO4 3?, and SiO2. In addition, the occurrence of diatom species before the tsunami showed a similar pattern to that after the tsunami, suggesting that the tsunami did not have a serious impact on the diatom community in Sendai Bay.  相似文献   

2.
Major earthquakes occurred in the region of the Central Kuril Islands on November 15, 2006 (M w = 8.3) and January 13, 2007 (M w = 8.1). These earthquakes generated strong tsunamis recorded throughout the entire Pacific Ocean. The first was the strongest trans-Pacific tsunami of the past 42 years (since the Alaska tsunami in 1964). The high probability of a strong earthquake (M w ≥ 8.5) and associated destructive tsunami occurring in this region was predicted earlier. The most probable earthquake source region was investigated and possible scenarios for the tsunami generation were modeled. Investigations of the events that occurred on November 15, 2006, and January 13, 2007, enabled us to estimate the validity of the forecast and compare the parameters of the forecasted and observed earthquakes and tsunamis. In this paper, we discuss the concept of “seismic gaps,” which formed the basis for the forecast of these events, and put forward further assumptions about the expected seismic activity in the region. We investigate the efficiency of the tsunami warning services and estimate the statistical parameters for the observed tsunami waves that struck the Far Eastern coast of Russia and Northern Japan. The propagation and transformation of the 2006 and 2007 tsunamis are studied using numerical hydrodynamic modeling. The spatial characteristics of the two events are compared.  相似文献   

3.
The tsunami caused by the 2011 off the Pacific coast of Tohoku Earthquake seriously damaged the Pacific coast of northeastern Japan. In addition to its direct disturbance, a tsunami can indirectly affect coastal pelagic ecosystems via topographical and environmental changes. We investigated seasonal changes in the phytoplankton community structure in Otsuchi Bay, northeastern Japan, from May 2011, which was 2 months after the tsunami, to May 2013. The phytoplankton species composition in May 2011 was similar to that observed in May 2012 and 2013. The present results are consistent with the dominant species and water-mass indicator species of phytoplankton in past records. These results suggest that there was no serious effect of the tsunami on the phytoplankton community in Otsuchi Bay. Community analysis revealed that two distinct seasonal communities appeared in each year of the study period. The spring–summer community was characterized by warm-water Chaetoceros species, and dinoflagellates appeared from May to September. The fall–winter community was characterized by cold neritic diatoms, which appeared from November to March. The succession from the spring–summer community to the fall–winter community took place within a particular water mass, and the fall–winter community appeared in both the surface water and the Oyashio water mass, suggesting that water-mass exchange is not the only factor that determines the phytoplankton community structure in Otsuchi Bay.  相似文献   

4.
Sendai Bay is located on the Pacific coast of northern Japan and suffered serious damage following the 2011 off the Pacific coast of Tohoku earthquake and tsunami in March 2011. To assess the impact on the marine ecosystem, information was needed on the phytoplankton communities and their seasonal variation. However, such information was limited. Therefore, an intensive monitoring of the phytoplankton was carried out from March 2012 to April 2014. Seasonal variation of the phytoplankton community was similar at coastal and offshore stations. Total phytoplankton biomass, based on Chl a concentration, peaked in spring and then decreased to a minimum in summer, before gradually increasing during early winter and peaking again in the following spring. This seasonal pattern was consistent with previous studies conducted before the earthquake and tsunami. Also, size structure of the phytoplankton community and its four main groups was estimated from the size-fractioned samples of Chl a. Our results also showed that the spring bloom consisted of large diatoms, with their growth ceasing due to nitrogen depletion. The bloom was followed by a summer period where cyanobacteria and picoeukaryote became dominant, with high cell densities in spite of low nutrient concentrations. In addition, sporadic environmental changes, such as those following typhoons, were observed. These resulted in large increases/decreases in individual phytoplankton groups.  相似文献   

5.
At present, the problem of predicting tsunamis with source earthquakes near the shoreline remains practically unresolved. It is shown that, in the Pacific region, 87% of tsunamigenous earthquake epicenters are located closer than 100 km to the shoreline and 67% are closer than 50 km. For a more detailed analysis, the area of the Pacific Ocean was divided into ten subregions: Kamchatka, the Kuril Islands, Japan, Indonesia, Australia and Oceania, South and Central America, Alaska, and the Aleutian Islands. Each subregion was analyzed individually. All the earthquakes from 1950 to 2003 with Ms >= 6.0 causing tsunamis with intensities I > 0 were processed. The ITDB/PAC 2004 database was used as the data source. For each subregion, mean and minimal travel times were calculated. The minimal travel times for all the regions except for a single one are less than 10 min. It is shown that, in the near earthquake zone, no tsunami alert based sea-level gauge data is possible. One probable solution could be based on detecting hydroacoustic signals that precede strong earthquakes in the near-shore zone.  相似文献   

6.
D. D. Gabaev 《Oceanology》2009,49(2):218-227
The abundance dynamics of several species of bivalve mollusks spats were studied on scallop collectors situated in Minonosok bay of Pos’eta Gulf for 27 years and for 4 years in Kit bay of the Sea of Japan (Russia). A significant positive relation was found between the species having similar thermopathy: the Japanese scallop Mizuhopecten yessoensis and Swift’s scallop Swiftopecten swifti, as well as between the wrinkled rock borer Hiatella arctica and Swift’s scallop Swiftopecten swifti. A significant reverse relation was found between the bay mussel Mytilus trossulus and the Northern Pacific seastar Asterias amurensis. Some of the studied mollusks of Minonosok bay and the remote Kit bay display a significant reversed interrelation in their abundance dynamics caused by the precipitation regime. The one-way dispersion analysis a revealed significant influence of the water temperature in June and the precipitation abundance in the summer on Swift’s scallop’s dynamic abundance. The two-way dispersion analysis showed a significant influence of the ice period duration and the solar activity expressed in Wolf’s numbers on the Japanese scallop abundance dynamics. The uneven years in the period from 1977 to 1984 were usually productive for M. yessoensis and S. swifti spat. After 1985, the even years became more productive (there was asynchronicity in the abundance dynamics compared with 1977–1984). Such asynchronicity appeared with the advent of the new 22-year solar cycle, which caused a change in the magnet polarity in 1986.  相似文献   

7.
Pen shell is one of the largest marine bivalves inhabiting shallow subtidal soft bottoms in the west Pacific and Indian Oceans. In Korea, the comb pen shell Atrina pectinata fisheries has been established on the south and west coasts. Recently, a pen shell population has been discovered from a subtidal sand flat (25–30 m depth) in Ulleungdo Island located in the East Sea of Korea, suggesting a potential shellfish resource in this area. In the present study, we first surveyed the population density and size of the unique pen shell using SCUBA, and identified the pen shell to species level using mitochondrial cytochrome oxidase I gene (COI) sequence. An underwater survey carried out from July to September 2013 revealed that populations of pen shell patched on subtidal sand flat at a depth of 20–25 m. Grain size analysis indicated that sand particles accounted for 99% of the 600 × 700 m sand flat. The underwater survey also indicated that density of the pen shell ranged between 6–19 ind/m2, with a mean of 11 ind/m2. Shell height (i.e. longest axis of the shell) of the pen shell on the sand flat varied between 17.2 cm to 28.8 cm, with a mean of 25.1 cm, and the age was estimated to range between 1.5–7.5 yrs, with a mean of 5 yr. COI DNA sequence obtained from the pen shell in this study showed 98.9–99.2% similarity to Atrina pectinata (Linnaeus 1767) reported from Japan. In the cluster analysis, the COI DNA sequence of the pen shells from Ulleungdo Island was grouped with A. pectinata reported from Japan and China, indicating that the pen shell discovered in this study was A. pectinata, commonly distributed on the west and south coasts of Korea.  相似文献   

8.
Ofunato Bay was a semi-closed area because of the breakwater effect at the entrance; however, the breakwater was destroyed by a massive tsunami generated by the 2011 off the Pacific coast of Tohoku Earthquake. Consequently, the physical environment of Ofunato Bay has been changed significantly, i.e., the modification of the stratified structure of seawater inside the bay and the intermittent intrusion of seawater outside the bay. These alterations of physical environment are considered to have an influence on the chemical and biological environment in Ofunato Bay. To elucidate the influence of the tsunami on the aquatic environment, we measured dissolved nutrients, chlorophyll a and dissolved oxygen concentrations, and heterotrophic bacteria abundance inside and outside of Ofunato Bay from 2012 to 2014, and compared these data with those obtained before the earthquake. As compared with before the earthquake, significant changes after the earthquake were (1) decrease of ammonium and phosphate concentrations, (2) increase of chlorophyll a concentration, (3) increase of dissolved oxygen concentration in the bottom, and (4) decrease of heterotrophic bacteria abundance. The collapse of the breakwater and consequential enhanced water exchange were considered to have brought the decrease of nutrient concentration inside the bay. Furthermore, washout of shellfish mariculture rafts by the tsunami decreased the shellfish biodeposits along with the elution of nutrients by heterotrophic bacteria. Decrease of cultivated shellfish further caused a decline in feeding pressure on phytoplankton and, subsequently, increased the phytoplankton biomass that contributed to the decrease of nutrients inside the bay.  相似文献   

9.
Determining the taxonomic status of the red algal genus Chondracanthus based on morphological characters is challenging due to the similarity and high degree of plasticity of the thallus. Since the taxonomic history of several Chondracanthus species remains unclear, we analyzed the plastid rbcL and mitochondrial COI genes of the specimens from Korea and Japan, in combination with morphological observations, to examine their phylogenetic relationships. Our results confirmed the distinction of C. okamurae, which is separated from C. intermedius, and identified a novel species, C. cincinnus sp. nov. Three species (C. okamurae, C. intermedius and C. cincinnus) formed a monophyletic clade with C. tenellus. C. okamurae is distinguished by linear, narrow, cylindrical to compressed, slightly recurved axes, and a high-intertidal to subtidal distribution. It was collected from Korea and Japan, while C. intermedius was identified from Japan only. A new species, Chondracanthus cincinnus sp. nov., is characterized by linear, compressed, strongly recurved axes, and a low-intertidal to subtidal distiribution. Based on the molecular phylogeny using rbcL and COI data, we herein resurrect C. okamurae as a distinct species and identify C. cincinnus as a new species.  相似文献   

10.
The combination of a high-frequency ocean surface radar and a tsunami detection method should be assessed as the onshore-offshore distribution of tsunami detection probability, because the probability will vary in accordance with the signal-to-noise ratio (SNR) and the tsunami magnitude in addition to the radar system specifications. Here, we statistically examine the tsunami detection distance based on virtual tsunami observation experiments by using signals received by a high-frequency radar in February 2014 installed on the southern coast of Japan and numerically simulated velocities induced by a Nankai Trough earthquake. In the experiments, the Doppler frequencies associated with the simulated velocities were superimposed on the receiving signals of the radar, and the radial velocities were calculated from the synthesized signals by the fast Fourier transform. Tsunami arrival was then detected based on the temporal change in the cross-correlation of the velocities, before and after tsunami arrival, between two points 3 km apart along a radar beam. We found that the possibility of tsunami detection primarily depends on the kinetic energy ratio between tsunami current and background current velocities. The monthly average detection probability is over 90% when the energy ratio exceeds 5 (offshore distance: 9 km ≤ L ≤ 36 km) and reduces to 50% when the energy ratio is approximately 1 (L = 42 km) over the shelf slope. The ratio varied with the background current physics and SNR, which was mainly affected by ocean surface wave heights and ionospheric electron density.  相似文献   

11.
The tsunami caused by the Great East Japan Earthquake on 11 March 2011 greatly influenced the coastal benthic environment on the northern Pacific coast of Japan. We used the direct count method to investigate changes in the abundance and distribution of Alexandrium (Alexandrium tamarense and Alexandrium catenella) cysts before and after the tsunami in Sendai Bay. Densities of Alexandrium cysts in sediments collected in summer 2011 ranged from 0 to 8,190 cysts cm?3. In the western part of the bay, the density increased greatly after the tsunami, the highest density being approximately 10 times the density recorded in 2005. Molecular identification of single cysts with multiplex polymerase chain reaction (PCR) showed that Alexandrium tamarense dominated the cyst population in the southwestern part of the bay in 2011. Furthermore, accumulation of cysts on the surface sediment after disturbance of the sediment was confirmed by a laboratory experiment. The main factor causing the drastic changes in abundance and distribution of Alexandrium cysts after the earthquake was considered to be vertical and horizontal redistribution of the cysts in sediments after the tsunami.  相似文献   

12.
Based on the optimum P-wave model, the S-wave velocity structure of a wide angle seismic profile (OBS2006-1), across the northwestern sub-basin (NWSB) and the Macclesfield, is simulated by a 2-D ray-tracing method. The results indicate the S-wave velocities in the upper and lower crust of the NWSB are 3.2–3.6 km/s and 3.6–4.0 km/s, with Vp/Vs ratios of 1.82–1.88 and 1.74–1.82, respectively, which reflect typical oceanic crust characteristics. The S-wave velocity in the upper crust of the NWSB is a little higher in the NNW segment than that in the SSE segment, while the lateral variation of Vp/Vs ratio is in the opposite. We suggest that the NWSB might have experienced asymmetrical magma flows during sea floor spreading, which may have blurred the magnetic anomaly lineation. The comparison of S-wave velocities along the northern margin of the SCS shows that the west section is different from the east section, and the northwestern margin has a non-volcanic crust structure. The S-wave structures and P-wave velocity models along the northern margin, Macclesfield and Reed Bank show that the Macclesfield might have a conjugate relationship with the Reed Bank.  相似文献   

13.
Fast repetition rate fluorometry (FRRf) provides a potential means to examine marine primary productivity; however, FRRf-based productivity estimations require knowledge of the electron requirement (K) for carbon (C) uptake (K C) to scale an electron transfer rate (ETR) to the CO2 uptake rate. Most previous studies have derived K C from parallel measurements of ETR and CO2 uptake over relatively short incubations, with few from longer-term daily-integrated periods. Here we determined K C by comparing depth-specific, daily ETRs and CO2-uptake rates obtained from 24-h on-deck incubation experiments undertaken on seven cruises in Ariake Bay, Japan, from 2008 to 2010. The purpose of this study was to determine the extent of variability of K C and to what extent this variability could be reconciled with the prevailing environmental conditions and ultimately to develop a method for determining net primary productivity (NPP) based on FRRf measurements. Both daily ETR and K C of the upper layer varied considerably, from 0.5 to 115.7 mmol e? mg Chl-a ?1 day?1 and 4.1–26.6 mol e? (mol C)?1, respectively, throughout the entire data set. Multivariate analysis revealed a strong correlation between daily photosynthetically active radiation (PAR) and K C (r 2 = 0.94). A simple PAR-dependent relationship derived from the data set was used for generating K C, and this relationship was validated by comparing the FRRf-predicted NPP with the 13C uptake measured in 2007. These new observations demonstrate the potential application of FRRf for estimating regional NPP from ETR.  相似文献   

14.
A continuous survey examined short-term variations in the zooplankton community and physical ocean environment from the northeastern Izu Islands to Boso Peninsula in Japan. High copepod abundance and small upwellings in the surface layer and salinity minimum layer in the subsurface were observed on the north side of coastal fronts in the westernmost transect, moving southward as the Kuroshio Current left the Boso Peninsula. Thus, the salinity minimum layer might be a key factor forming upwelling and the fronts, leading to large abundance of coastal copepods off the northeastern Izu Islands. A community structure analysis of calanoid copepods revealed an intermediate belt assemblage between coastal and offshore (Kuroshio) assemblages. Copepod abundance was remarkably low and Ctenocalanus vanus dominated (nearly 37%) in the intermediate belt zone, indicating that C. vanus has a relatively high tolerance to adverse environments for calanoid copepods. As the Kuroshio Current left the Boso Peninsula, the coastal assemblage expanded in the same direction, and the intermediate belt assemblage off the northeastern Izu Islands disappeared. The largest population of Calanus sinicus was found along the two western transects off the northeastern Izu Islands (>1000 m depth), which was assumed to be transported from Sagami Bay and advanced southwestward while growing from copepodite stages CIII to CV. Larvae of C. sinicus would be an important food for fish larvae in addition to Paracalanus parvus s.l., the numerically dominant species in the coastal assemblage, and C. vanus under the adverse conditions for coastal copepods.  相似文献   

15.
The species composition and seasonal dynamics of the population density and biomass of the prasinophycean algae of the genus Pyramimonas were investigated in the Russian waters of the East/Japan Sea. According to literature data and the results of our observations, eight species of the prasinophycean algae were identified, and some of them were new for the Russian waters of the East/Japan Sea as follows: P. aff. amylifera Ñonrad, P. aff. cordata McFadden, Hill et Wetherbee, and P. nansenii Braarud. An analysis of their seasonal dynamics showed that the most conspicuous winter peak of the population density of Pyramimonas species in the Amurskii Bay was clearly distinguishable in February. In winter and early spring, the prasinophycean algae made a considerable contribution of 28 to 60% into the total population density on the background of a relatively low biomass, 1.1–14.4% of the total phytoplankton biomass in the Amurskii Bay. In the Golden Horn Bay, the summer peak of the population density of Pyramimonas species was most intensive in June. In summer, during the period of mass development of the algae of the genus Pyramimonas in the Golden Horn Bay, the prasinophycean algae contributed up to 71% of the total population density and up to 84% of the total microalgal biomass. An increase was noted in the density and biomass of the Pyramimonas species in the polluted waters near the sewage water outlets in the Amurskii and Golden Horn bays.  相似文献   

16.
To identify water with an excess nitrate concentration to phosphate ratio and its potential source, the nutrient concentrations in the Tsushima Strait (TSS) were investigated over ten cruises in August and September 2007–2014, excluding 2010. On the basis of the Redfield ratio, water with an excess nitrate concentration of >1 μM (positive ExNOx water) was identified below the surface mixed layer during four cruises in 2011–2013. Positive ExNOx water was present mainly in less-saline (<34) waters with a density of 22–25 σ θ , and 25–75 m depth. However, in August 2012, positive ExNOx was detected in dense (25–25.5 σ θ ) and deep (50–110 m depth) waters near the salinity maximum, although the salinity during this period was significantly lower than that in other years. The horizontal length of positive ExNOx water was >100 km across the TSS during two cruises in August 2012 and September 2013, respectively. According to multi-regression analysis conducted on the silicate concentration, temperature, and salinity, the silicate concentration was increased in the less-saline subsurface water. The required amount of original freshwater was 108–9 m3 day?1 based on the excess nitrate concentration. This evidence indicates that the positive ExNOx water originated from large river waters such as the Changjiang. Thus, discharged water from the rivers of the East Asia is contributing to the increased N:P ratio in the Tsushima Warm Current, southern Japan Sea.  相似文献   

17.
The species composition, phytoplankton abundance, and relative yield of the variable fluorescence (F v /F m ) were determined in the mesotrophic Nhatrang Bay in October–November of 2004. The species diversity (250 taxonomic units) and heterogeneity of the phytoplankton structure were high. With respect to the number of species and their abundance, diatoms prevailed. In selected parts of the bay, dinoflagellates dominated. The mean biomass in the water column under 1 m2 (B t ) varied from 2.3 to 64.4 mg C/m3 being 31.0 mg C/m3 on average. The values of B t were the lowest at the stations nearest to the river mouth. Seaward, B t increased. The values of B t increased with depth at some stations and decreased at others. In the surface sea layers, the biomass was lower than that in the underlying waters. The values of F v /F m ranged from 0.10 to 0.64 (at a mean value of 0.49). The lowest values of F v /F m were observed in the area close to the seaport. Over the greater part of the bay, the values of F v /F m were higher than 0.47. Such values are indicative of the relatively high potential photosynthetic activity of the phytoplankton. The abundance and species diversity were higher than those in the dry season (March–April).  相似文献   

18.
Outbreaks of paralytic shellfish poisoning (PSP) and dense blooms caused by Alexandrium species in Jinhae-Masan Bay, Korea have been nearly annual events for many years. However, excluding some Alexandrium species responsible for PSP, there are no critical reports on the morphology of Alexandrium species in this bay. To identify the Alexandrium species based on detailed morphological features, vegetative cells collected water samples and established by the incubation of resting cysts isolated from sediment trap samples were analyzed. Four species of Alexandrium were identified: Alexandrium affine, A. fundyense, A. catenella, and A. insuetum. Morphological features of these species were basically consistent with those outlined in previous studies. However, the ventral pore and the connecting pore on the sulcal plate, which have been accepted as diagnostic characteristics for the identification of A. fundyense and A. catenella, need to be reevaluated, indicating that useful morphological features for identifying these two species should be recommended to avoid confusion in the classification of species in genus Alexandrium.  相似文献   

19.
Vestimentiferan tubeworms acquire their symbionts through horizontal transmission from the surrounding environment. In the present study, we constructed a 16S rRNA gene clone library to investigate the phylogenetic relationship between diverse microbes in the sediment and symbiotic bacteria in the trophosome of the tubeworm, Lamellibrachia satsuma, from Kagoshima Bay, Japan. Two symbiotic bacterial phylotypes belonging to the classes γ- and ε-Proteobacteria were found from this tubeworm trophosome. They were very closely related to the symbionts of several other marine invertebrates. The most predominant bacteria in the sediment were ε-Proteobacteria. A broad diversity of bacteria belonged to non-proteobacterial phyla such as Planctomycetes, Acidobacteria, and Chloroflexi was observed. The presence of sulfur oxidizers (i.e., ε-Proteobacteria and γ-Proteobacteria) and sulfur reducers (i.e., δ-Proteobacteria) may play a significant role in the sulfur cycle in these habitats and provide multiple sources of nutrition to the cold-seep communities. Closely related clones of ε-Proteobacteria symbiont in the species level and of γ-Proteobacteria symbiont in the genus level were found in the surrounding sediment. The similarity of symbiont clones of L. satsuma with other symbionts and free-living bacteria suggests the possibility of opportunistic symbiosis in ε-Proteobacteria and the co-evolution of γ-Proteobacteria having occurred after symbiosis with the tubeworms.  相似文献   

20.
To explore the effects of temperature changes on dinoflagellate bloom succession in the coastal waters of the East China Sea, changes in the growth, photophysiology, and Rubisco gene expression of Prorocentrum donghaiense and Karenia mikimotoi, two harmful algal species, were investigated at different temperatures (16 to 28°C). The maximal specific growth rate and the maximal mRNA expression of Rubisco gene in P. donghaiense and K. mikimotoi occurred at 20 and 24°C, respectively. The photosynthetic activity of P. donghaiense was generally stable, but K. mikimotoi photosynthesis increased when temperatures rose from 16 to 28°C. The effective photochemical efficiency (F q /F m ) and the maximal relative electron transfer rate (rETRmax) of K. mikimotoi increased significantly with increasing temperature, and the lowest and highest values occurred at 16 and 28°C, respectively. It seems that P. donghaiense has higher photosynthetic capacity than K. mikimotoi due to its higher F q /F m , rETRmax, and photosynthetic efficiency (α). However, K. mikimotoi has a higher growth rate than P. donghaiense. These results suggest that the photosynthetic activity and genetic responses of dinoflagellates are species-dependent. It is likely that temperature changes affect species composition during blooms, leading to the observed patterns of bloom succession.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号