首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The tsunami caused by the 2011 off the Pacific coast of Tohoku Earthquake seriously damaged the Pacific coast of northeastern Japan. In addition to its direct disturbance, a tsunami can indirectly affect coastal pelagic ecosystems via topographical and environmental changes. We investigated seasonal changes in the phytoplankton community structure in Otsuchi Bay, northeastern Japan, from May 2011, which was 2 months after the tsunami, to May 2013. The phytoplankton species composition in May 2011 was similar to that observed in May 2012 and 2013. The present results are consistent with the dominant species and water-mass indicator species of phytoplankton in past records. These results suggest that there was no serious effect of the tsunami on the phytoplankton community in Otsuchi Bay. Community analysis revealed that two distinct seasonal communities appeared in each year of the study period. The spring–summer community was characterized by warm-water Chaetoceros species, and dinoflagellates appeared from May to September. The fall–winter community was characterized by cold neritic diatoms, which appeared from November to March. The succession from the spring–summer community to the fall–winter community took place within a particular water mass, and the fall–winter community appeared in both the surface water and the Oyashio water mass, suggesting that water-mass exchange is not the only factor that determines the phytoplankton community structure in Otsuchi Bay.  相似文献   

2.
Sendai Bay in northern Japan suffered serious damage from massive tsunamis generated by the 2011 off the Pacific coast of Tohoku earthquake. The physical disturbance caused by a tsunami may affect the coastal ecosystem, including the planktonic diatom community. We investigated seasonal changes in the diatom community structure at a coastal and an offshore station in Sendai Bay, from June 2011 (3 months after the tsunami) to April 2014. Diatom abundance increased at both stations during the spring. Sporadic increases were also recorded at the coastal station during the summer because of silicate input from river discharge. Seasonal succession of the diatom communities was similar at both the coastal and offshore stations. The onset of the spring bloom consisted mainly of Chaetoceros spp. when water temperatures were low. Subsequently, species such as Skeletonema costatum s.l. became dominant as salinity and nutrient concentrations decreased. Cell density decreased from summer into early winter. Leptocylindrus danicus became dominant in the summer, but was replaced by Thalassiosira cf. mala from autumn into winter. Redundancy analysis (RDA) showed that most of the variation in the diatom community could be explained by temperature, salinity, NO3 ?, NO2 ?, PO4 3?, and SiO2. In addition, the occurrence of diatom species before the tsunami showed a similar pattern to that after the tsunami, suggesting that the tsunami did not have a serious impact on the diatom community in Sendai Bay.  相似文献   

3.
The phytoplankton community in the western subarctic Pacific (WSP) is composed mostly of pico- and nanophytoplankton. Chlorophyll a (Chl a) in the <2 μm size fraction accounted for more than half of the total Chl a in all seasons, with higher contributions of up to 75% of the total Chl a in summer and fall. The exception is the western boundary along the Kamchatka Peninsula and Kuril Islands and the Oyashio region where diatoms make up the majority of total Chl a during the spring bloom. Among the picophytoplankton, picoeukaryotes and Synechococcus are approximately equally abundant, but the former is more important in term of carbon biomass. Despite the lack of a clear seasonal variation in Chl a concentration, primary productivity showed a large seasonal variation, and was lowest in winter and highest in spring. Seasonal succession in the phytoplankton community is also evident with the abundance of diatoms peaking in May, followed by picoeukaryotes and Synechococcus in summer. The growth of phytoplankton (especially >10 μm cell size) in the western subarctic Pacific is often limited by iron bioavailability, and microzooplankton grazing keeps the standing stock of pico- and nano-phytoplankton low. Compared to the other HNLC regions (the eastern equatorial Pacific, the Southern Ocean, and the eastern subarctic Pacific), iron limitation in the Western Subarctic Gyre (WSG) may be less severe probably due to higher iron concentrations. The Oyashio region has similar physical condition, macronutrient supply and phytoplankton species compositions to the WSG, but much higher phytoplankton biomass and primary productivity. The difference between the Oyashio region and the WSG is also believed to be the results of difference in iron bioavailability in both regions. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

4.
Phytoplankton is a key component in the functioning of marine ecosystems, phytoplankton community structures are very sensitive to their environment. This study was conducted in the central Bohai Sea in the spring and early summer of 2015. Spatial variations in phytoplankton functional groups were examined through high-performance liquid chromatography pigment–CHEMTAX analysis. Results suggested that the phytoplankton biomass (chlorophyll a [Chl a]) in spring was mainly derived from the diatom community and was 3.5-fold higher than that in the summer. Meanwhile, the phytoplankton in the early summer sustained more diverse marker pigments than that in the spring. Despite the overwhelming predominance of microsized phytoplankton in the spring, some smaller phytoplankton (pico- or nanosized), including flagellates, such as prasinophytes, chlorophytes, and cryptophytes, highly contributed to the total Chl a in the summer. Various physico-chemical variables were recorded, and their correlations with phytoplankton density were established by redundancy analysis. Temperature, water stratification, nutrient availability, and even nutritive proportion influenced the succession of phytoplankton functional groups from diatom dominance in the spring to flagellate (mainly haptophytes and prasinophytes) dominance in the early summer. In conclusion, our work comprehensively evaluated the phytoplankton diversity and dynamics in the central Bohai Sea and suggests the need for long-term monitoring for further investigation.  相似文献   

5.
Ofunato Bay was a semi-closed area because of the breakwater effect at the entrance; however, the breakwater was destroyed by a massive tsunami generated by the 2011 off the Pacific coast of Tohoku Earthquake. Consequently, the physical environment of Ofunato Bay has been changed significantly, i.e., the modification of the stratified structure of seawater inside the bay and the intermittent intrusion of seawater outside the bay. These alterations of physical environment are considered to have an influence on the chemical and biological environment in Ofunato Bay. To elucidate the influence of the tsunami on the aquatic environment, we measured dissolved nutrients, chlorophyll a and dissolved oxygen concentrations, and heterotrophic bacteria abundance inside and outside of Ofunato Bay from 2012 to 2014, and compared these data with those obtained before the earthquake. As compared with before the earthquake, significant changes after the earthquake were (1) decrease of ammonium and phosphate concentrations, (2) increase of chlorophyll a concentration, (3) increase of dissolved oxygen concentration in the bottom, and (4) decrease of heterotrophic bacteria abundance. The collapse of the breakwater and consequential enhanced water exchange were considered to have brought the decrease of nutrient concentration inside the bay. Furthermore, washout of shellfish mariculture rafts by the tsunami decreased the shellfish biodeposits along with the elution of nutrients by heterotrophic bacteria. Decrease of cultivated shellfish further caused a decline in feeding pressure on phytoplankton and, subsequently, increased the phytoplankton biomass that contributed to the decrease of nutrients inside the bay.  相似文献   

6.
The study was carried out from April 30 until July 13 of 1997 in Adventfjorden (Spitsbergen). Formation of less saline and warmer surface water (~1 m thick) caused by melting of the fast ice was observed in the fjord during the first days of May. In summer a less saline surface layer was about 3 m thick. Euphotic depth measured under ice sheet reached 12 m, whereas load of mineral matter brought with riverine discharge in summer (the content of total particulate matter in the fjord reached 1.66 kg m?2) dramatically reduced euphotic zone depth to 0.35 m. By pigment measurement three phases of phytoplankton development in Adventfjorden were distinguished: (1) spring bloom that has started under fast ice and reached maximum in the mid of May, (2) stagnation period in June, (3) increase of pigment concentration in July, what could indicate a start of the next algae bloom. Analyses of chlorophylls and carotenoids revealed that diatoms (chl c, fucoxanthin), and green algae (chl b, lutein) dominated phytoplankton community in the fjord. Moreover, the presence of peridinin indicates the presence of Dinophyta and alloxanthin—the occurence of Cryptophyta. In May and June 1997 phytoplankton appeared mainly in the surface of water, while in July, as a result of inflow of turbulent riverine waters into Adventfjorden, algae cells were pushed down and the highest numbers were observed at the depth ~20 m. Great phaeopigments to chl a ratio (= 0.54) found in the fjord seston in June and July probably shows strong impact of zooplankton grazing on phytoplankton development. High contribution of chlorophyllide a in porphyrin a poll in samples collected under fast ice (chlorophyllide a/chl a ratio = 0.18) reflects the final stage of algal communitie succession in ice, just before spring ice melt and release of biota to oceanic water. Chloropyllide a content during summer was minor or not detectable, demonstrating that diatom cells were in good physiological condition. High chl a allomer/chl a ratio (average = 0.11 for the period investigated) confirms high oxygen concentration in environment of Adventfjorden.  相似文献   

7.
大亚湾生态监控区的浮游植物年际变化   总被引:2,自引:0,他引:2  
依据国家海洋局、国家海洋局第三海洋研究所等权威机构2004~2007年所获的数据和资料,对大亚湾生态监控区近4a长时间尺度的浮游植物群落年际变化进行分析,通过物种组成、丰度变化、优势类群演替、群落结构及赤潮灾害事件来反映生境的退化,探讨其变化的主要原因及趋势。结果表明,浮游植物群落由暖水种占绝对优势转变为广温广布种占主导地位。种类与丰度呈逐年下降的态势,浮游植物丰度的分布保持西高东低,近岸高于远岸的特征,浮游植物的高丰度与营养盐丰富及温排水有关。终年以硅藻为优势种群,优势种演替具有明显的季节与年际变化,细长翼根管藻(Rhizosolenia alataf.gracillima)是春季稳定的优势种,柔弱拟菱形藻(Pseudo-nitzschia delicatissma)是夏季稳定的优势种,春末甲藻的优势度增加明显。浮游植物群落多样性指数呈逐年下降趋势,均匀度呈逐年上升态势。浮游植物的异常增殖及过度集中导致多样性较低,种间比例不均匀,群落结构单一。赤潮季节性发生频繁,发生频率及引发种类呈上升趋势,海洋环境脆弱。  相似文献   

8.
In order to detect iron (Fe) stress in micro-sized (20–200 μm) diatoms in the Oyashio region, western subarctic Pacific during spring, immunological ferredoxin/flavodoxin assays were applied to samples collected from the surface layer in May 2005. Concomitantly, the community composition of the micro-sized phytoplankton and hydrographic conditions, including dissolved Fe and macronutrient concentrations, were also examined. Chlorophyll (Chl) a concentrations were <2 mg m−3 at all sampling stations, except at a station where the Chl a level was 9.0 mg m−3 and a micro-sized diatom bloom occurred. A high abundance of ferredoxin in micro-sized diatoms was detected only at a rather near-shore station where dissolved Fe and macronutrient concentrations were higher, indicating that the micro-sized diatoms did not suffer from iron deficiency. On the other hand, flavodoxin in micro-sized diatoms was often observed at the other stations, including the bloom station, where macronutrients were replete but dissolved Fe concentration was low (0.31 nM). A significant amount of chlorophyllide a, a degradation product of Chl a, was also observed at the bloom station, suggesting a decline of the diatom bloom. The micro-sized phytoplankton species at all the stations were mainly composed of the diatoms Thalassiosira, Chaetoceros, and Fragilariopsis spp. Our study indicates that micro-sized diatoms were stressed by Fe bioavailability during the spring season in the Oyashio region  相似文献   

9.
Macrobenthic fauna in an estuarine Gwangyang Bay, southern Korean coast, were investigated to uncover recent variations in their community structures. In the study area, macrobenthic faunal communities were mainly composed of polychaete worms which were the most abundant faunal group with the highest values in species number and density, while mollusks accounted for the highest proportion in total biomass. There was no clear seasonal difference in species richness during the two year period of the investigation, but the mean density and biomass increased every spring and summer due to the mass recruitment of Theora fragilis. The Shannon’s diversity index (H') was more than 2.0 during most sampling seasons and did not show any significant seasonal difference except for the data in August, 2011 when azoic conditions occurred. The community structures of macrobenthos in Gwangyang Bay did not show any remarkable change in the dominance of the two top dominant species, Scoletoma longifolia and Heteromastus filiformis, which abundantly occurred in all seasons, except for the abundance peaks associated with high occurrence of T. fragilis and Paraprionospio cordifolia, especially in spring and summer and in autumn, respectively. These fauna changes reflected the changes in the macrobenthic community health status in Gwangyang Bay, where stable conditions and a healthy status prevailed in winter, but a slightly disturbed status prevailed from spring to autumn.  相似文献   

10.
Grazing impacts of calanoid copepods on size-fractionated phytoplankton biomass [chlorophyll (Chl)-a] were measured in Jangmok Bay, Geoje Island, Korea, monthly from November 2004 to October 2005. The ingestion rate of calanoid copepods on total phytoplankton biomass ranged between 1 and 215 ng Chl-a copepod?1 day?1 during bottle incubations. Results indicated that microphytoplankton (> 20 μm) was the primary food source for calanoid copepods in grazing experiments on 3 phytoplankton size categories (< 3 μm, 3–20 μm, and > 20 μm). The ingestion rate on microphytoplankton showed a significant increase (r = 0.93, p < 0.01) with Chl-a concentration. Nanophytoplankton (3–20 μm) showed a negative ingestion rate from June 2005 to October 2005, but the reason is not completely understood. Calanoid copepods were unable to feed efficiently on picophytoplankton (< 3 μm) due to unfavorable size. Calanoid copepods removed between 0.1% and 27.7% (average, 3.6 ± 15.8%) of the phytoplankton biomass daily during grazing experiments. Grazing pressure was high in winter and early spring (January–March: 15.6–27.7%), while low in summer (June–August: ?33.1–0.0%) and autumn (September–November: ?1.4–5.1%). Results suggest that calanoid copepods play an important role in controlling the biomass and size structure of phytoplankton in winter and early spring.  相似文献   

11.
A spatial and temporal variation in physiochemical parameters in the southeastern Yellow Sea(YS) is investigated in the spring and summer of 2009 to 2011.Nutrient show a strong negative relationship with chlorophyll a(Chl a) concentration in spring,and the subsurface chlorophyll a maxima(SCM) layer was associated with the nitracline in summer.In summer,the SCM was usually found within or above the pycnocline and at the depths of shoals from the open sea to the coastal sea due to tidal and/or topographical fronts in the southernmost study area.High Chl a concentrations were found in the central southern YS,where the YS cold water layer expanded under the pycnocline and encountered water masses during spring and summer.After a typhoon in the summer of 2011,Chl a concentration increased,especially in the central southern YS,where cold waters occurred below the pycnocline.The results suggest that the development of thermohaline fronts may play an important role in the growth and accumulation of phytoplankton biomass in the upper layer of the southeastern YS during spring and summer.  相似文献   

12.
为剖析长江口邻近海域春季硅藻藻华后期藻类沉降与底层水体缺氧现象之间的关系,作者于2011年春季,在长江口南部赤潮区采集了表层沉积物样品,并通过高效液相色谱法(HPLC),对浮游植物色素进行了分析。结果表明,硅藻藻华发生后,表层沉积物中叶绿素a(Chl a)、岩藻黄素(Fuco)和19’-丁酰氧基岩藻黄素(But-Fuco)含量有显著增加,高值区主要分布在调查海域东南侧50 m等深线外侧,与底层低氧水体分布区基本吻合。因此,硅藻藻华后沉降的藻类对于该海域夏季缺氧区的形成应具有一定作用,其具体过程和机制仍有待于研究。  相似文献   

13.
The species composition and biomass of phytoplankton, concentrations of chlorophyll a (Chl a) and nutrients, and accompanying hydrophysical conditions have been studied in the White Sea on July 6–11, 2009. The temperature of the surface water layer was lower than the multiyear average in July. Dinoflagellates dominated in the entire studied area; this was not the typical event for July. We suggest that domination of dinoflagellates was caused by low water temperature, when the nutrient regeneration rate was insufficient to support diatom growth. The abundance of microalgae and the structure of the phytoplankton community depended on the water structure. Variations in the phytoplankton community structure were caused not by substitution of specific species but rather by variability of the abundance of a single species, Heterocapsa triquetra. The highest phytoplankton biomass has been recorded in weakly stratified waters, where tidal mixing supplied the income of inorganic nutrients. The income of nutrients to the photic layer was limited in the stratified waters of Dvina Bay during the summer low-water period, so the phytoplankton abundance was low. We suggest that the lens of surface desalinated water presumably originated from the outlet of the Dvina River was registered in the central part of the White Sea.  相似文献   

14.
We report results from two surveys of pCO2, biological O2 saturation (??O2/Ar) and dimethylsulfide (DMS) in surface waters of the Ross Sea polynya. Measurements were made during early spring (November 2006-December 2006) and mid-summer (December 2005-January 2006) using ship-board membrane inlet mass spectrometry (MIMS) for high spatial resolution (i.e. sub-km) analysis. During the early spring survey, the polynya was in the initial stages of development and exhibited a rapid increase in open water area and phytoplankton biomass over the course of our ∼3 week occupation. We observed a rapid transition from a net heterotrophic ice-covered system (supersaturated pCO2 and undersaturated O2) to a high productivity regime associated with a Phaeocystis-dominated phytoplankton bloom. The timing of the early spring phytoplankton bloom was closely tied to increasing sea surface temperature across the polynya, as well as reduced wind speeds and ice cover, leading to enhanced vertical stratification. There was a strong correlation between pCO2, ??O2/Ar, DMS and chlorophyll a (Chl a) during the spring phytoplankton bloom, indicating a strong biological imprint on gas distributions. Box model calculations suggest that pCO2 drawdown was largely attributable to net community production, while gas exchange and shoaling mixed layers also exerted a strong control on the re-equilibration of mixed layer ??2 with the overlying atmosphere. DMS concentrations were closely coupled to Phaeocystis biomass across the early spring polynya, with maximum concentrations exceeding 100 nM.During the summer cruise, we sampled a large net autotrophic polynya, shortly after the seasonal peak in phytoplankton productivity. Both diatoms and Phaeocystis were abundant in the phytoplankton assemblages during this time. Minimum pCO2 was less than 100 ppm, while ??O2/Ar exceeded 30% in some regions. Mean DMS concentrations were ∼2-fold lower than during the spring, although the range of concentrations was similar between the two surveys. There was a significant correlation between pCO2, ??O2/Ar and Chl a across the summer polynya, but the strength of these correlations and the slope of O2 vs. CO2 relationship were significantly lower than during the early spring. Summertime DMS concentrations were not significantly correlated to phytoplankton biomass (Chl a), pCO2 or ??O2/Ar. In contrast to the early spring time, there were no clear temporal trends in summertime gas concentrations. Rather, small-scale spatial variability, likely resulting from mixing and localized sea-ice melt, was clearly evident in surface gas distributions across the polynya. Analysis of length-scale dependent variability demonstrated that much of the spatial variance in surface water gases occurred at scales of <20 km, suggesting that high resolution analysis is needed to fully capture biogeochemical heterogeneity in this system.  相似文献   

15.
We characterized the community composition of phytoplankton in the western subarctic Pacific from the pre-bloom to the decline phase of the spring bloom with special reference to decreases in the silicic acid concentration in surface waters as an index for diatom bloom development. Furthermore, responses of heterotrophic bacteria and viruses to the spring bloom were also concomitantly investigated. Under pre-bloom conditions when nutrients were abundant but the surface mixed layer depth was relatively deep, chlorophyll (Chl) a concentrations were consistently low and green algae (chlorophytes and prasinophytes), cryptophytes, and diatoms were predominant in the phytoplankton assemblages as estimated by algal pigment signatures. Together with the shallowing of the mixed layer depth and the decrease in silicic acid concentration, diatoms bloomed remarkably in the Oyashio region, though the magnitude of the bloom in the Kuroshio-Oyashio transition (hereafter Transition) region was relatively small. A total of 77 diatom species were identified, with the bloom-forming diatoms mainly consisting of Thalassiosira, Chaetoceros, and Fragilariopsis species. It has become evident that the carotenoid fucoxanthin can serve as a strong indicator of the diatom carbon biomass during the spring diatom bloom. Differences in the species richness of diatoms among stations generally enabled us to separate the Oyashio bloom stations from the Transition and the Oyashio pre-bloom stations. Relatively high values of the Shannon-Wiener index for the diatom species were also maintained during the Oyashio bloom, indicating that a wide variety of species then shared dominance. In the decline phase of the Oyashio bloom when surface nutrient concentrations decreased, senescent diatom cells increased, as inferred from the levels of chlorophyllide a. Although the cell density of heterotrophic bacteria changed little with the development of the diatom bloom, viral abundance increased toward the end of the bloom, suggesting an increased likelihood of mortality among organisms including diatoms resulting from viral infection. This is the first report on the microbial trophodynamics, including viruses, during the spring diatom bloom in the western subarctic Pacific.  相似文献   

16.
We used 16 years of multiplatform-derived biophysical data to reveal the footprint of the Pacific Decadal Oscillation (PDO) on the phytoplankton biomass of the northwestern Pacific Ocean in terms of chlorophyll a concentration (Chl), and to discern the probable factors causing the observed footprint. There were meridional differences in the response of phytoplankton to changes of environmental conditions associated with deepening of the mixed layer during the positive phase of the PDO. In general, deepening of the mixed layer increased phytoplankton biomass at low latitudes (increase of Chl due to increase of nutrient supply), but lowered phytoplankton at high latitudes (decrease of Chl due to reduction of average irradiance and temperature in the mixed layer). The areas where Chl increased or decreased changed meridionally and seasonally in accord with regulation of nutrient and light/temperature limitation by changes of mixed layer depth. The observed PDO footprint on Chl in the northwestern Pacific is likely superimposed on the high-frequency component of the PDO excited by El Niño/Southern Oscillation interannual variability. On a decadal time scale, however, Chl in the northwestern Pacific were more strongly associated with the recently discovered North Pacific Gyre Oscillation.  相似文献   

17.
东亚边缘海区浮游植物春华的纬向与年际变化   总被引:1,自引:1,他引:0  
Combined studies of latitudinal and interannual variations of annual phytoplankton bloom peak in East Asian marginal seas(17°–58°N, including the northern South China Sea(SCS), Kuroshio waters, the Sea of Japan and the Okhotsk Sea) are rarely. Based on satellite-retrieved ten-year(2003–2012) median timing of the annual Chlorophyll a concentration(Chl a) climax, here we report that this annual spring bloom peak generally delays from the SCS in January to the Okhotsk Sea in June at a rate of(21.20±2.86) km/d(decadal median±SD). Spring bloom is dominant feature of the phytoplankton annual cycle over these regions, except for the SCS which features winter bloom. The fluctuation of the annual peak timing is mainly within ±48 d departured from the decadal median peak date, therefore this period(the decadal median peak date ±48 d) is defined as annual spring bloom period. As sea surface temperature rises, earlier spring bloom peak timing but decreasing averaged Chl a biomass in the spring bloom period due to insufficient light is evident in the Okhotsk Sea from 2003 to 2012. For the rest of three study domains, there are no significant interannual variance trend of the peak timing and the averaged Chl a biomass. Furthermore this change of spring phytoplankton bloom timing and magnitude in the Okhotsk Sea challenges previous prediction that ocean warming would enhance algal productivity at high latitudes.  相似文献   

18.
依据2008年春季(5月)、夏季(8月)、秋季(11月)和2009年冬季(2月)的现场调查结果,分析了东海区叶绿素a、初级生产力的平面分布、垂直分布和季节变化的特征,并探讨了其影响因素。结果表明,四个航次叶绿素a浓度分别为1.33、0.93、1.61和0.65 mg/m3,秋季春季夏季冬季。春季、夏季和秋季最大值均出现在0—10m水层,冬季最大值出现在底层。叶绿素a浓度远海年季变化较小,近岸区和垂直分布年季变化较大。四个航次初级生产力平均为375.03、414.37、245.45和102.60 mg/(m3 h),夏季秋季春季冬季。叶绿素a浓度和初级生产力水平均高于历史同期值。鱼外渔场的年平均初级生产力最大,海州湾渔场最小。通过分析叶绿素a和环境因子的相关性表明,叶绿素a与浮游植物显著正相关;春季和秋季的低温以及春季和夏季的低盐比较适合浮游植物的生长;活性磷酸盐可能是限制春季和秋季叶绿素a的重要因素。  相似文献   

19.
Tsunamis associated with the 2011 off the Pacific Coast of Tohoku Earthquake seriously disrupted the shallow marine ecosystem along a 2000 km stretch of the Pacific coast of Japan. The effects of the 2011 tsunamis on the soft-bottom benthic community have been relatively well studied in the intertidal zone, whereas tsunami effects on the subtidal benthos remain poorly understood. Here, we investigated populations of the world’s largest spoon worm Ikeda taenioides (Annelida: Echiura: Ikedidae) in subtidal zone of Funakoshi Bay, Tohoku District, northeastern Japan. Subtidal scuba-diving surveys at two sites in the bay showed extremely long proboscises frequently extending from small holes in the sandy seafloor shortly before and soon after the tsunami disturbances. Based on morphological and molecular identification, the proboscises were revealed to be parts of I. taenioides. On 30 November 2011, 265 days after the tsunami event, many large-sized individuals with >1 m long proboscises were observed; these individuals were probably not derived from post-tsunami larval recruitment but more likely survived the tsunami disturbances. This is surprising because other sympatric megabenthos (e.g. spatangoid echinoids and venerid bivalves) and seagrass beds were almost completely destroyed (although they later recovered) by the tsunamis in this bay. The burrows of I. taenioides are known to be very deep (70–90 cm), which may have sheltered them from the impacts of the tsunamis. Our observations suggest that the effects of the 2011 tsunamis on benthos in soft sediments may differ depending on their burrowing depth.  相似文献   

20.
Multidisciplinary oceanic investigation was undertaken in Aug–Sep. 2003 along a transect from Northwestern (Busan, Korea) to Southeastern Pacific (Talcahuano, Chile) to understand the physical, chemical and biological features in the surface water, and to depict their interaction with the atmosphere. Among the twenty parameters measured, we describe the physical, chemical and biological features. Physico-chemical data were analyzed in conjunction with the geographic position and yielded 7 peculiar surface water masses. The first water mass (28.4°N, 130.8°E to 21.5°N, 139.5°E) was warm and low in phosphate and nitrate content, and high in silicate. The concentration of phytoplankton pigment was one of the lowest. The second (20.4°N, 140.7°E to 2.2°S, 162.9°E) was the warmest and the least saline. Nitrate and phosphate concentration were one of the lowest. Chlorophyll a (Chl a) concentration was the lowest among the surface waters. The third (3.4°S, 164.0°E to 14.5°S, 173.3°E) was warm. Nitrate concentration was the lowest. CHL-a, peridinin (Perid), violaxanthin (Viola), zeaxanthin (Zea), chlorophyll-b (Chl b) and β-CAR were abundant. The fourth (18.6°S, 177.5°E to 31.8°S, 123.9°W) was saline and poor in nutrient concentration. The contributions of 19′-butanoyloxyfucoxanthin (But-fuco), 19′-hexanoyloxyfucoxanthin (Hex-fuco), and CHL b to CHL a were non-negligible. The fifth (32.4°S, 122.1°W to 33.8°S, 117.2°W) was relatively cold and well oxygenated. Concentration of Fuco, But-fuco, Hex-fuco and Chl b was high. The sixth (34.2°S, 115.4°W to 37.4°S, 92.1°W) was cold, well oxygenated and enriched with phosphate and nitrate. Concentration of phytoplankton pigment was, however, one of the lowest. The seventh, located off the Chilean coast, from 37.2°S, 87.2°W to 36.1°S, 74.1°W was well oxygenated and highly enriched with nitrate and phosphate. Phytoplankton pigments such as Fuco, Perid, But-fico, and Hex-fuco were rich. The 7 surface water masses are partially attributed to Kuroshio Current, North Equatorial Current and North Equatorial Countercurrent, South Equatorial current, South Pacific Subtropical Gyre, South Pacific Current, Subtropical Front and Chilean coastal water. The differences in physicochemical characteristics and the history of the surface water resulted in difference in quantity and composition of the phytoplankton pigment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号