首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
地震激励对高速车辆-简支箱梁桥系统动力响应的影响关系到高速铁路运营安全。基于车辆-轨道耦合动力学和列车-轨道-桥梁动力相互作用理论,运用有限元和多体动力学方法,建立高速铁路桥梁区段车辆-轨道-桥梁耦合系统动力学模型,分析在人工地震波作用下高速铁路车-线-桥耦合系统动力响应。结果表明:地震激励对轨道板、支撑层和桥梁的横向振动特性的影响大于对垂向振动特性的影响,桥梁结构对地震激励的敏感程度大于轨道结构;车辆运行速度对系统垂向振动特性的影响大于对横向振动特性的影响。研究结论可为地震荷载作用下高速铁路安全运营提供理论依据。  相似文献   

2.
Model testing in laboratory, as an effective alternative to field measurement, provides valuable data to understand railway׳s dynamic behaviors under train moving loads. This paper presents comprehensive experimental results on track vibration and soil response of a ballastless high-speed railway from a full-scale model testing with simulated train moving loads at various speeds. A portion of a realistic ballastless railway comprising slab track, roadbed, subgrade, and subsoil was constructed in a larger steel box. A computer-controlled sequential loading system was developed to generate equivalent vertical loadings at the track structure for simulating the dynamic excitations due to train׳s movements. Comparisons with the field measurements show that the proposed model testing can accurately reproduce dynamic behaviors of the track structure and underlying soils under train moving loads. The attenuation characteristics of dynamic soil stresses in a ballastless slab track is found to have distinct differences from that in a ballasted track. The model testing results provide better understanding of the influence of dynamic soil–structure interaction and train speed on the response of track structure and soils.  相似文献   

3.
基于轨道结构-路基-地基动力相互作用理论,建立考虑地震-列车移动荷载耦合输入的轨道结构-路基-地基动力学模型,研究高速铁路路基及轨道在耦合荷载作用下的振动响应问题。通过编制DLOAD子程序并与ABAQUS有限元计算程序联立,实现地震荷载与列车移动荷载耦合作用的施加,以高速铁路桩承式路基及自由式路基为研究对象,对地震-列车移动荷载耦合作用下两种路基系统的动力响应进行数值计算并比较两者的振动响应差异。结果表明,耦合荷载对桩承式路基动力响应影响显著,该荷载作用下桩承式路基会发生共振现象,使得桩承式路基中轨道和路基振动位移幅值均大于自由式路基的振动位移幅值;桩承式路基不会影响路基系统的振动频率,但会改变路基系统的振动大小,桩承式路基中轨道X方向加速度、路肩边及路基坡脚处的竖向加速度分别减小6.2%、50%、28.6%。  相似文献   

4.
发展高速铁路是解决城市间交通问题的有效途径,但其所产生的振动和噪声引起的环境问题,对铁路沿线居民及周围建筑等造成不利影响。在对高速铁路引起的振动问题进行的研究中,关于高速列车引起的地基土振动随深度变化的相对较少。因此,本文针对Ⅱ、Ⅲ和Ⅳ类场地条件下的路堤式和高架桥式高速铁路,对0—5m不同深度处地基土的振动加速度响应进行了现场测试,并以测试数据为基础,分析了不同场地条件下高速列车引起的地基土振动加速度响应随深度的变化规律。结果表明,不同场地条件下,高速列车引起的振动加速度响应随深度的变化规律具有显著差异;Ⅱ类和Ⅲ类场地条件下,高速列车引起的地基土振动加速度响应总体随深度的增加而逐渐减小,并呈先快后慢的衰减趋势;而Ⅳ类场地条件下,高速列车引起的地基土振动加速度响应随深度的增加呈现先减小后放大的趋势,在深3m处加速度达到最大值。高速列车运行引起的振动频带随深度的变化特征与场地相关。  相似文献   

5.
The dynamic response of a tunnel buried in a two-dimensional poroelastic soil layer subjected to a moving point load was investigated theoretically. The tunnel was simplified as an infinite long Euler–Bernoulli beam, which was placed parallel to the traction-free ground surface. The saturated layer was governed by Biot’s theory. Combined with the specified boundary conditions along the beam and saturated poroelastic layer, the coupled equations of the system were solved analytically in the frequency–wavenumber domain based on Fourier transform. The time domain responses were obtained by the fast inverse Fourier transform. The critical velocity of the considered structure was determined from the dispersion curves. The different dynamic characteristics of the elastic soil medium and the saturated poroelastic medium subjected to the underground moving load were investigated. It is concluded that, for coarse materials or fine materials subjected to the high-velocity loading, models ignoring the coupling effects between the pore fluid and the soil skeleton may cause errors. The shear modulus and the permeability coefficients of the saturated soil as well as the load moving velocity had significant influence on the displacement and pore pressure responses.  相似文献   

6.
铁路大跨度简支钢桁梁桥车-桥耦合振动研究   总被引:3,自引:0,他引:3       下载免费PDF全文
陈敦  王根会  穆彦虎  彭惠 《地震工程学报》2017,39(5):820-828,852
桥梁作为线路工程中不可或缺的重要枢纽,对列车通过桥梁时,桥梁和车辆之间相互作用的问题迫切需要做出解答,特别是针对铁路钢桁梁,并考虑大跨度简支特性的车-桥耦合振动问题研究更具有一定的理论与实际意义。以黄韩侯铁路新黄河特大桥156 m简支钢桁梁桥作为工程背景,建立车辆动力模型、桥梁有限元模型并考虑轮轨关系,以蛇形运动和轨道不平顺作为系统的自激激励源,利用大型有限元软件ANSYS以及UM(Universal Mechanism)动力学分析软件联合进行仿真分析,实现单个机车、编组客车和编组货车以设计时速通过桥梁时对大跨度简支钢桁梁桥车-桥耦合振动的研究。经过计算分析得出:大跨度钢桁梁桥的横向刚度相对较小;不同编组情况以设计时速通过桥梁时,车辆和桥梁的各项动力响应参数均在规范允许的范围之内;编组货车通过桥梁时,桥梁跨中横向、竖向加速度较之其他编组情况要大。  相似文献   

7.
高速铁路新型路堑基床结构动力响应分析   总被引:3,自引:2,他引:1       下载免费PDF全文
研制出一种新的防排水结构层用以控制膨胀土路基的含水率变化,从而达到对新建云—桂高速铁路膨胀土地段整治的目的。本文采用FLAC~(3D)有限差分软件研究该新型路堑基床结构(基床中设置新型防排水结构层)在列车荷载作用下动力响应规律,并利用现场试验结果对数值研究结果进行验证。研究表明:新型基床中道砟和新型防排水结构层对动应力衰减贡献较大;新型防排水结构层对竖向动应力、剪应力衰减作用明显,增强了基床结构的动力稳定性;新型基床结构能够更有效地控制基床的动位移;新型基床中振动速度和加速度随深度的增加而减小,道砟对振动速度和加速度的衰减作用明显。新型路堑基床结构振动速度和动应力的现场实测与数值分析规律基本一致,且实测值与计算值大小相近。研究成果可为特殊土地区高速铁路基床的设计、施工及其动力响应研究提供参考。  相似文献   

8.
This paper explores dynamic soil–bridge interaction in high speed railway lines. The analysis was conducted using a general and fully three-dimensional multi-body finite element–boundary element model formulated in the time domain to predict vibrations caused by trains passing over the bridge. The vehicle was modelled as a multi-body system, the track and the bridge were modelled using finite elements and the soil was considered as a half-space by the boundary element method. The dynamic response of bridges to vehicle passage is usually studied using moving force and moving mass models. However, the multi-body system allows to consider the quasi-static and dynamic excitation mechanisms. Soil–structure interaction was taken into account by coupling finite elements and boundary elements. The paper presents the results obtained for a simply supported short span bridge in a resonant regime under different soil stiffness conditions.  相似文献   

9.
研究Kerr地基上的均质Euler-Bernoulli梁在移动集中荷载作用下的稳态响应,分析有无阻尼存在时列车速度、地基压缩刚度、剪切刚度对Kerr地基梁挠度曲线的影响。计算结果表明,地基阻尼的存在能明显减少移动荷载引起的地基梁挠度,地基梁的挠度受地基压缩刚度的影响比剪切刚度更为明显。  相似文献   

10.
为研究T形刚构桥桥墩参数对车-桥动力响应的影响,以某高速铁路(77m+144m+77m)T形双薄壁连续刚构桥为研究对象,基于刚柔耦合理论,采用多体动力学和有限元联合仿真技术,建立考虑桩土效应的列车-桥梁动力相互作用模型,计算分析T形刚构桥墩宽度、厚度及混凝土强度等级变化对车-桥耦合系统的动力响应影响。结果表明:T形刚构桥墩宽度、厚度及混凝土强度等级的改变,对桥上车辆系统的安全性指标、舒适性指标影响较小;T形刚构桥墩参数改变,对桥梁系统横向位移、垂向加速度、横向加速度影响较小,而对垂向位移影响较大,但变化幅值均在高速铁路设计规范要求的范围内;在其他条件参数不变的情况下,可通过将桥墩宽度降低到设计宽度的75%—80%,或厚度降低到设计厚度的80%—85%,或桥墩混凝土强度等级降低为C35—C40对该高速铁路T形双薄壁连续刚构桥进行优化设计。  相似文献   

11.
In geotechnical engineering, defect detection for concrete structure can be simplified as a multi-layered media problem in most cases. The types of defects are mainly identified as cracks inside the concrete, interlaminar peeling, and loose bedding voids. The study of the wave propagation phenomenon in multi-scale layered media and the effects on defects merits investigation. The present research focuses first on the analysis of this phenomenon using numerical methods. The wave propagation characteristics of the multi-layered model with defects are assessed with dynamic FEM analyses under three-dimensional conditions. The analysis is obtained in the time domain and allows the consideration of multiple wave reflections between layers. Based on this analysis, a full-wavefield imaging detection method is developed and then applied to reveal the defects in the under-track structure of a high-speed railway. This testing system integrates the point-source/point-receiver scheme with the multi-directional imaging technique to achieve an effect analogous to that achieved with scanning. It is equipped with an impacting hammer, a series of three-component velocity transducers and a signal capturing unit. To evaluate the feasibility of this system for detecting defects in the under-track structure of the high-speed railway, a full-scaled high-speed railway model test with pre-setting defection is conducted. The data are analyzed according to characteristics of waveform and wave energy. The average amplitude is used to evaluate the defect area. It is concluded that the full-wavefield imaging detection method exhibits high potential for inspecting the defects of the under-track structure of high-speed railways by imaging.  相似文献   

12.
A field measurement of ground vibration was performed on the Beijing−Shanghai high-speed railway in China. In this paper, the experimental results of vertical ground vibration accelerations induced by very high speed trains running over a non-ballasted track on embankment with speeds from 300 to 410 km/h are reported and analyzed in detail for the first time. Characteristics of ground vibration accelerations in both time and frequency domains are analyzed based on the test data. It is shown that the periodic exciting action of high-speed train bogies can be identified in time histories of vertical accelerations of the ground within the range of 50 m from the track centerline. The first dominant sensitive frequency of the ground vibration acceleration results from the wheelbase of the bogie, and the center distance of two neighboring cars plays an important role in the significant frequencies of the ground vibration acceleration. Variations of time–response peak value and frequency-weighted vertical acceleration level of ground vibration in relation with train speed as well as the distance from the track centerline are also investigated. Results show that the time-domain peak value of ground vibration acceleration exhibits an approximately linear upward tendency with the increase of train speed. With the increasing distance from the track centerline, the frequency-weighted vertical acceleration level of the ground vibration attenuates more slowly than the time-domain peak value of the ground vibration acceleration does. Severe impact of high-speed railway ground vibration on human body comfort on the ground occurs at the speed of 380–400 km/h. The results given in the paper are also valuable for validating the numerical prediction of train induced ground vibrations.  相似文献   

13.
利用有限单元法,基于力学原理和几何协调条件,导出了非对称箱型截面梁单元的弯扭耦合刚度矩阵,建立了斜拉桥在车辆荷载作用下的横向动力分析模型。由于考虑了箱梁的约束扭转,该模型能够分析复线或多线铁路桥在偏载作用下的横向振动问题。以桥梁轨道随机不平顺作为激振源,进行了机车过桥的实例分析。计算结果表明,桥梁的车激横向动力响应随车速及轨道不平顺样本的不同而变化,并随桥跨的增加而快速变得显著,车辆偏载对箱梁扭转振动有显著影响,所建立的力学模型是斜拉桥车桥耦合振动分析的实用模型。  相似文献   

14.
A three-dimensional (3D) model for the soil–railway track system is proposed. It is based on a geometrical periodic hypothesis. The dynamic soil–structure interaction is taken into account. This representation is used for the case of a ballasted railway track subjected to high-speed moving loads and a new formulation of dynamic responses of the system is proposed. Moreover, recent in situ measurements performed in a high-speed line of the North of France are presented. Lateral and vertical accelerations in several locations of the railway track have been measured and the periodic model is confronted with these records.  相似文献   

15.
The soil-structure system is modelled as a uniform vertical beam, which terminates in a base or foundation mass; this mass is attached to the surface of an elastic half-space. Using known force-displacement relations for the coupled vibrations of a rigid disc on an elastic half-space, the natural frequencies and response to a transverse harmonic force, applied at the tip of the beam, are determined through a continuum approach. Effectively the problem reduces to a beam with frequency-dependent boundary conditions. A parametric study shows that changes in the three ratios, Young's modulus for the beam to that for the half-space, the radius of the base mass to the length of the beam, L, and the second moment of area of the beam cross-section/L4, cause large variations in the maximum response, which due to interaction can be considerably smaller or larger than that for a comparable fixed-base cantilever beam. This dynamic behaviour can be explained by considering the variation of natural frequencies, mode shapes and modal damping factors with these ratios. A brief study of the response of the structure to a free-field harmonic acceleration, applied at the soil-structure interface, suggests that interaction depends upon material and geometric properties of the system, rather than on the nature of the excitation.  相似文献   

16.
薛富春  张建民 《地震工程学报》2015,37(2):310-316,323
高速铁路中的桥梁常采用灌注桩基础以控制沉降,地震作用是桩基础的设计工况之一。建立桥梁-桥墩-桩基础-地基为一体的耦合系统非线性三维数值分析模型,以典型地震波为输入,考虑上部结构和基础的共同工作、土-结构动力相互作用、材料非线性和土层对桩的侧阻及端阻作用,开展三向地震作用下的动力有限元计算,并对地基主要土层压缩模量、桩体材料弹性模量、桩径和桩长进行参数敏感性分析。计算结果表明:现行的桩基础设计方案能有效控制地震荷载作用下桥梁的变形;地震过程中的不同时刻,桩侧阻发挥程度不同且不可忽略,以单纯的梁单元模拟桩的动力学行为的适用性值得商榷;桩长和地基主要土层压缩模量对桥梁地震反应影响最大,桩体材料弹性模量的影响次之,桩径的影响最小。  相似文献   

17.
为研究高速铁路路堤中WIB(波阻板)的减隔振效果,构建了简易的铁路路堤原理性试验模型,获得了在WIB底面与路堤顶面垂直间距不同时、在路堤面上的简谐荷载作用下引起的振动波在模型表面的传播衰减规律,分析了铁路路基中WIB底面与路堤顶面垂直间距不同时的减隔振效果;构建了高速铁路路基三维动力数值仿真分析模型,并进行对比分析,验证了模型试验的合理性。结果表明:在高速铁路路堤的基床底层中设置WIB,越靠近路堤顶面,减隔振效果越好;在基床底层的顶面设置WIB的减隔振效果优于在基床表层设置WIB。  相似文献   

18.
Using a thin-layer method enhanced by continued-fraction absorbing boundary conditions, dynamic responses of a layered half-space subjected to a series of constant and time-harmonic line loads moving at a constant speed are studied. The thin-layer method for moving line loads is formulated for plane-strain as well as antiplane-shear conditions and is verified by comparison of computed responses of a homogeneous half-space subjected to a single constant load on its surface against available analytical solutions. Next, time-harmonic loads on a homogeneous half-space are examined. The study continues with both constant and time-harmonic loads on a layered half-space. Finally, multiple constant and time-harmonic loads are considered. The formulation and results demonstrate the effectiveness and versatility of the method in problems of dynamic response of layered media to moving loads.  相似文献   

19.
Dynamic effects of moving loads on road pavements: A review   总被引:3,自引:0,他引:3  
This review paper deals with the dynamic response of road pavements to moving loads on their surface. The road pavement can be modeled as a beam, a plate, or the top layer of a layered soil medium. The foundation soil can be modeled as a system of elastic springs and dashpots or a homogeneous or layered half-space. The material behavior of the pavement can be elastic or viscoelastic, while that of the foundation layers elastic, viscoelastic, water-saturated poroelastic or even inelastic. The loads are concentrated or distributed of finite extent, may vary with time and move with constant or variable speed. The analysis is done by analytical, analytical/numerical and purely numerical methods, such as finite element and boundary element methods, under conditions of plane strain or full three-dimensionality. A number of representative examples is presented in order to illustrate the problem and the methods of analysis, demonstrate the dynamic effects of moving loads on the layered soil medium and indicate the implications of the results on road and airport pavement design.  相似文献   

20.
The paper reviews some important published papers on the effects of railway track imperfections on track dynamic behavior, and investigates the effect of unsupported sleepers on the normal load of wheel/rail in detail through a numerical simulation. The numerical simulation is based on a coupling dynamic model of vehicle–track. In the model, the vehicle is modeled as a multi-body system, and the track is considered as a 3-layer model with rails, sleepers, and ballast masses. Each rail of the track is modeled with a Timoshenko beam resting on discrete sleepers. The lateral, vertical, and torsional deformations of the beam are taken into account. The sleepers are assumed to move backward at a constant speed to simulate the vehicle running along the track at the same speed, and therefore such a track model can consider the effect of the discrete support by sleepers on the coupling dynamic behavior of the vehicle and track in the simulation. In calculating the coupled vehicle and track dynamics, Hertzian contact theory and the theory by Shen et al. are, respectively, used to calculate the normal forces and the creep forces between the wheels and the rails. The motion equations of the vehicle–track are solved by means of an explicit integration method. A nonlinear spring and a nonlinear damper are used to simulate a gap between the unsupported sleeper and the ballast mass. The numerical results obtained indicate that the gaps between the unsupported sleepers and ballast masses have a great influence on the normal load of the wheel and the rail.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号