首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
为减轻海上风电单桩基础周围局部冲刷对其结构安全的影响,提出了一种新型旋转减冲装置。在波流水槽中开展物理模型试验,改变波流条件、装置安装高度、安装距离,记录桩周冲刷发展历时,运用激光地形仪扫描冲刷坑形态,分析各工况下冲刷坑形态差异,验证装置不同安装距离、安装高度下的冲刷防护效果,提出了不同安装位置下的防护效率公式。结果表明:新型旋转减冲装置具有较好的冲刷防护效果,本试验工况下,桩周最大冲刷深度可减小44%左右。装置安装距离对冲刷防护效果影响较小,波流作用下的冲刷防护效果受装置安装高度影响显著,冲刷防护效果随装置安装高度的增加而减弱。  相似文献   

2.
模型变率对潮流波浪作用下局部冲刷深度的影响   总被引:3,自引:0,他引:3  
根据窦国仁波浪潮流共同作用下的全沙模型相似理论,设计5个变率分别为2.5、4、6、8.33和12.8的长江口深水航道北槽概化物理模型,进行潮流和潮流波浪共同作用下的丁坝坝头清水和浑水冲刷试验,研究不同动力条件和不同工程布置下变率对冲刷坑发展过程及冲刷深度的影响,给出了变态模型与正态模型冲刷坑稳定冲刷深度的关系式。  相似文献   

3.
基于海底管线周围流场复杂,管线运行过程中易于出现冲刷悬空破坏等诸多特征。本文根据导流板作用下海底管线的冲刷防护机理,提出了一种透空导流板与海底管线结合的防冲刷措施。通过量纲分析得到了影响海底管线冲刷深度的无量纲公式,并通过物理模型试验,研究了单向流作用时,不同流速、不同管孔比、不同透水比的工况下透空导流板对海底管线的冲刷防护的影响。研究发现,由于透空导流板的存在,泥沙受到的推移力减小,导致泥沙淤积,海底管线的冲坑深度小于无导流板防护的冲坑深度,透空导流板防护的管线最大冲刷深度在管轴线前0.3 D处,且在管线下方冲刷坑深度明显减小。基于试验资料分析,拟合得到了平衡冲刷深度的计算公式,其公式与实测资料拟合较好,说明该公式具有较好的适用性。  相似文献   

4.
河口海岸凸体冲刷坑最大深度及形态   总被引:1,自引:0,他引:1  
河口海岸山体凸体的冲刷坑最大深度及其形态,可以近似看作是在潮流作用下非溢流丁坝的坝头冲刷坑。已有丁坝坝头冲刷坑最大深度的计算公式未考虑往复潮流及含沙水流的作用,首次提出考虑悬沙含沙量的影响,同时对其冲刷坑形态提出了计算方法,经过对6个浙江省河口、海岸和海湾内凸体形成的冲刷坑最大深度及形态的验证,结果计算与实测值十分吻合。应用本文公式定量地解释了丁坝长度减少、含沙量年内变化和其他各因素变化对冲刷坑最大深度、形态等变化的定量影响。  相似文献   

5.
采用双向稳定水流、清水定床、局部动床的试验方法,用正态模型研究长江口深水航道整治一期工程南导堤丁坝群坝头局部冲刷问题。结果表明,航道开挖和双本坝的存在使得下游流速有所增加,影响程度落潮大于涨潮。坝头局部冲刷主要受落潮流控制,在沿深度为单一砂粉底质情况下,坝头冲刷坑深度分别达到27m和29m;考虑到原状底质下部为极难起动的粘土,实际冲刷坑底界到达粘土层后就不再刷深,此时冲刷坑深度为7.4m和4.7m,冲刷坑的平面范围有所加大。工程设计提出的护坦尺度能较好地保护坝头前沿滩地,适当缩小护坦尺度也能起到保护作用,但冲刷范围明显增大。  相似文献   

6.
针对水下桩墩的局部冲刷问题,提出一种适用范围广、防冲促淤效果显著的防护措施。该防护措施把一种相对密度略大于水、几何特征特殊的中性网格结构完全覆盖在冲刷坑或可能出现冲刷坑的床面上,以减弱冲刷坑内水动力,促进泥沙落淤,达到减轻局部冲刷的目的。通过数值模拟和水槽试验探讨了中性网格结构对圆桩周围冲刷坑内水动力及床面形态的影响,并研究了网孔尺寸对防冲促淤效果的影响规律。结果表明:该中性网格结构能显著减小局部冲刷坑内的流速,有效抑制局部冲刷,且对桩前来流来沙的影响微弱。孔径比7.7的网格防护结构可以使无黏性沙床上圆桩的局部冲刷深度减少92%,已存在的冲刷坑则可被修复73%。这些研究成果为桩墩局部冲刷防护提供一种新的思路。  相似文献   

7.
针对我国南海某岛礁珊瑚砂地基上的圆形桩基础,采用N-S方程K-s模型、双向耦合方式跟踪流场中颗粒运动轨 迹的方法,对桩周珊瑚砂的冲刷规律进行了求解,分析了桩体周围流体的速度场以及桩体表面剪应力场的分布规律,同时对桩周珊瑚砂冲刷坑的形成过程进行了模拟。计算结果表明,在桩体周围形成的马蹄形漩涡和桩柱后方的尾涡作用下,桩周土体出现了较为明显的冲刷现象,涡旋的释放显著地影响着珊瑚砂地基上桩基的冲刷坑形状;而且,由于珊瑚砂颗粒密度较石英砂小,水动力作用下桩周冲刷坑更容易形成,所以实际工程中需要考虑有效的防护措施。  相似文献   

8.
潘冬冬  李健华  周川  王俊 《海岸工程》2020,39(4):271-278
海上风电场桩基局部冲刷是工程设计与运行阶段的重要参数之一。基于湛江某海上风电场桩基3次现场局部冲刷实测数据,进行冲刷坑最大深度、冲刷坑半径和冲淤变化特征的分析与研究;根据桩基局部冲刷经验公式,采用工程海域实测海洋水文动力学数据进行最大冲刷深度与冲刷半径的计算,并进行公式计算值的对比与分 析。结果表明:桩基础在防冲刷设施的保护下,3次实测最大冲刷深度基本稳定为4.0 m,最大冲刷深度与桩径之比为0.57。而经验公式的最大冲刷深度与桩径之比均超过了1.1,说明桩基防冲刷设施取得了一定的效果,冲刷坑半径的计算值与现场实测值吻合较好。建议海上风电场在运行阶段进一步加强桩基冲刷坑监测与防护。  相似文献   

9.
为减轻桩基局部冲刷对近海结构物稳定性造成的影响,采用套筒作为冲刷防护措施。在波流水槽中开展局部冲刷物理模型试验,改变波流条件、套筒相对高度和直径,记录套筒内外冲刷过程及冲刷深度发展历时,利用地形扫描仪测量冲刷后的床面形态,分析各工况下冲刷坑形态的差异,讨论影响套筒冲刷防护效果的主要因素。试验结果表明:套筒结构具有较好的防冲效果,本试验工况下,筒内冲刷深度最高可减小70%,筒内外最大冲刷深度可减小40%左右。套筒高度对筒内冲刷的影响比套筒直径更为显著,筒内最大冲刷深度随套筒高度的增大而减小。套筒直径主要影响筒外冲刷,套筒埋置于初始床面以上时,筒外最大冲刷深度随直径的增大而减小;随着套筒高度逐渐减小,直径对筒外冲刷的影响越来越小。  相似文献   

10.
郭健  汪涛  王金权  吴继熠 《海洋工程》2020,38(6):96-106
综合国内外现有研究成果,分析了桩周流场结构及局部冲刷坑的分布形态,通过三维数值模拟,验证了局部冲刷最大值点出现在桩前,且冲坑坡度近似等于泥沙水下休止角的结论。从国内外规范内局部冲深计算公式中筛选出跨海桥梁钢管桩局部冲刷深度的主要影响因素。基于能量平衡理论,通过来流水流搬运冲刷坑内泥沙过程中的能量守恒,推导了概念清晰、形式简单的局部冲刷深度预测公式。区别于现有多数公式主体结构,该公式为关于局部冲深的一元三次方程,通过水下泥沙休止角来考虑泥沙对冲刷的影响以及冲刷过程中冲刷坑自身深度及范围变化对冲刷产生的影响。利用最小二乘法,结合环杭州湾区域三座跨海大桥的试验及实测数据拟合确定了公式相关参数,并与国内外规范内的公式对比验证,结果表明,该公式精度较高,可为实际工程计算分析提供参考。  相似文献   

11.
崇明岛南岸发育有六滧涨潮槽,研究其演变过程对于崇明世界级生态岛港口建设、通航安全和岸滩稳定具有重要意义。为此,在长江口北港中上段2000、2004、2008、2012和2018年海图水深数据的基础上,分别于2018年7月利用SeaBat 7125、2019年7月利用M80无人艇搭载的SeaBat T50-P多波束测深系统以及ADCP对六滧涨潮槽开展了水下地形和流速的测量工作,分析工程影响下六滧涨潮槽的演变特征。结果表明:六滧涨潮槽淤浅,外侧沙脊冲刷剧烈,槽内落潮优势明显。其原因为流域来沙减少、以青草沙水库为主体工程的南北港分流口整治及长江大桥的修建导致了北港中上段主槽冲刷、主流北移。同时,六滧涨潮槽局部水动力条件增强,槽内的丁坝坝头局部冲刷加剧,并且奚家港东侧岸滩出现侵蚀,需引起重视。  相似文献   

12.
在航道治理工程中,往往通过丁坝群来实现其稳定航槽等目的,而坝田作为缓流区,其与主槽的水沙交换主要取决于横向的紊动交换。基于长江口北槽丁坝群实测资料分析和物理模型水槽试验研究发现不同长宽比坝田内的流态、淤积形态、坝田与相邻河段水沙交换的机理均不同,在长江口北槽丁坝群坝田建成后的淤积初期阶段,长宽比为0.30~0.40的坝田内的平均淤积强度最大。水槽试验研究表明,长宽比为0.50的坝田内淤积的主要部位即为主环流所在位置(坝田外侧),而在副环流位置,则出现微淤或冲刷的趋势;而长宽比为0.33的坝田内的淤积分布相对比较均匀。长宽比为0.33的坝田内淤积速率明显大于长宽比为0.50的坝田,长宽比为0.33的坝田达到冲淤平衡的时间较长。坝田淤积强度与随坝田回流强度、坝田与主槽水沙交换系数的增加而增加。  相似文献   

13.
受流域来水来沙条件变化及河口大型工程建设的综合影响,长江口呈现新的冲淤格局,为预测未来演变趋势,本研究基于前期研究中建立的长江口年代际冲淤演变预测模型(Delft3D),未来情景考虑不同来沙量条件和相对海平面上升速率。预测结果表明,到2035年长江口整体以冲刷为主,口内河段主槽和浅滩边缘冲刷较明显,仅高滩局部淤积;到2050年口内河段保持净冲刷状态,拦门沙地区在现状来沙量条件下略有淤积,但在极端低来沙量条件下转变为净冲刷状态,海平面上升对拦门沙地区冲刷具有一定抵消作用,但不会使冲淤状态产生本质改变。本研究分析认为,长江口局部区域未来冲淤趋势可能对河口综合治理与保护产生不利影响,针对新格局条件下的滩槽河势稳定、重要洲滩保护、重大工程安全评估、冲刷致灾研判以及海堤防护标准再评估等方面提出了对策建议,可为新时期长江口综合治理与可持续发展提供参考。  相似文献   

14.
The south-western shoreline along the entrance channel inside the Port of Richards Bay has experienced continued erosion. Four groynes were constructed to stabilise the shoreline. Monitoring of shoreline evolution provided valuable data on the accretion adjacent to two of the groynes and on the sediment transport rates at these groynes. Tides, beach slopes, winds, wave climate, current regime, and sand grain sizes were documented. The one site is “moderately protected” from wave action while the other is “protected” according to the Wiegel [Wiegel, R. L. (1964). Oceanographical engineering. Prentice Hall, Inc., Englewood Cliffs, NJ.] classification. The shoreline accreted progressively at the two groynes at 0.065 m/day and 0.021 m/day respectively. The shorelines accreted right up to the most seaward extremity of the groynes. Equilibrium shorelines were reached within about 3.5 years to 4 years, which compare well with other sites around the world. The mean wave incidence angle is large and was found to be about 22°. The median sand grain sizes were 0.33 mm and 0.37 mm. The groynes acted as total traps, the beach surveys were extended to an adequate depth, and cross-shore sediment transport did not cause appreciable net sand losses into the entrance channel. The net longshore transport rate along the study area, which is north-westbound, is only slightly lower than the gross longshore transport. The actual net longshore transport rates are 18 000 m3/year and 4 600 m3/year respectively at the two groynes. A rocky area limits the availability of sand at one groyne. There is fair agreement between the predicted and measured longshore transport rates at the other groyne.  相似文献   

15.
海床冲淤变化对港口与航道工程建设非常重要。由于泥沙供给、人类活动和其他等因素的影响,海床冲淤变化非常复杂。洋山深水港是一个新兴的深水港口,是上海国际航运中心重要的组成部分,它的建设引起了各方的广泛关注。目前,洋山水深港一、二、三期港区在潮流运动和定期疏浚下保持着良好的水深。四期港区工程是世界上最大的全自动化深水码头,2017年12月以开港运行。本论文基于大量的地形资料、水文泥沙资料,分析了整个洋山深水港多年来的海床冲淤变化和近期四期工程海域海床冲淤变化。结果显示:1998-2010年整个洋山港区海床冲淤变化表现为较大幅度的冲淤,在洋山主通道内呈现为"南淤北冲"的格局,但是颗珠山汊道一直以来均表现冲刷的趋势;四期港区水域近一些年来也表现为一个冲刷的趋势,多年年均冲刷幅度0.7m左右;讨论了外界泥沙供给、港口工程陆域边界封堵、港池疏浚和由此带来的水流的变化以及泥沙水力特性等因素的对洋山港海域海床冲淤变化的影响,在众多因素中,颗珠山汊道的存在(或保留)对洋山西部水域或四期港区水域冲刷有着积极的作用,它的存在所产生的落潮作用对四期港区的水深维护起到重要的正面影响。  相似文献   

16.
苏涛  石进  陈琳 《海洋工程》2020,38(4):46-53,60
长江口南北港分汊口河段新浏河沙护滩潜堤及南沙头通道潜堤工程是典型的航道整治工程,经调查发现限流潜堤冲刷坑在两侧余排外对称分布,12 m以深等深线呈不连续坑状,南侧个别区段冲刷坑已侵入排内。基于工程地形监测和地质资料分析,通过现场水深测量、旁扫声纳扫测、潜水探摸、水文观测和三维潮流数学模型计算等手段,对限流潜堤排外局部冲刷情况和发生原因进行研究。研究结果表明潜堤排外冲刷是越顶水流长期作用所致,冲刷发展变化具有代表性,冲刷最大深度与地质条件有一定相关性。潜堤南侧护底余排边缘局部余排受外力损毁,引起排内冲刷,如进一步发展会影响堤身及结构安全,需对护底损坏部位进行修复以保证整治建筑物护底功能正常发挥。  相似文献   

17.
基于水槽实验,研究植物对孤立波作用下直立堤局部冲刷的影响。通过改变实验入射波高、植物带的宽度和密度,分析各要素对直立堤局部冲刷的影响。实验对波高沿程变化、孤立波越堤、回落过程以及地形演变进行全程的测量和记录,并进行有无植物带保护的直立堤局部冲刷对比分析。结果表明,植物带的存在,使得堤后相对最大冲刷深度显著减小,堤前冲刷形态由单峰式"L"型变为双峰式淤积沙坝形态,且冲刷位置由原堤脚前移至植物带所在位置,冲刷范围大幅增加。减小植物带密度或者植物带宽度会使近岸侧或是离岸侧的相对最大冲刷深度和相对最大淤积高度有增大的趋势,但是当入射波高增大时,二者的影响不显著。该研究对实际工程中植物带的合理布置提出了具有参考性的建议,对减少堤防工程的冲刷和损失有一定现实意义。  相似文献   

18.
根据2018年多波束测深系统、双频ADCP获得的横沙岛北侧岸坡水下地形与水动力实测数据,并结合历史地形资料分析该区域冲刷特征与发展趋势。结果表明:横沙北侧岸坡存在近岸冲刷坑,最大冲深约7 m;2002—2018年期间,冲刷坑附近河床经历冲-淤-冲的演变模式,整体呈冲刷状态;2007年后冲刷坑开始形成,并向下游延伸。这主要是因为青草沙水库工程的建设导致北港上段束窄,下段主流南移贴岸,使得近岸河床冲刷加剧。另外,横沙东滩促淤圈围工程抑制了北港与北槽间的水量交换,横沙岛近岸水域水动力进一步增强,也是岸坡冲刷的原因之一。分析表明大潮期间水流处于次饱和状态,岸坡表层泥沙起动流速略小于落急时刻水流流速,横沙北侧岸坡的冲刷可能会继续发展。  相似文献   

19.
基于GIS的长江口南支下段河势演变及稳定性分析   总被引:2,自引:0,他引:2  
借助GIS技术,对1980年—2005年间的6幅海图进行数字化,建立DEM,并以0,-2,-5,-10 m等深线进行叠加,同时选取4个典型断面,从平面上和断面上对长江口南支下段河势变化及稳定性进行分析。结果表明:1)南支下段1980年—2005年间沙洲迁移、汊道消亡、汊道再生、冲淤交替,具体表现为:分流沙洲冲刷下移,通道淤废;分流口上游沙体新的通道产生,分流口上提。2)典型断面显示出下段河槽为复式河槽,尤其是位于中部的河槽断面变化最为剧烈,其上游和下游断面河槽多年来形态相对较为稳定。3)较大幅度的冲刷和淤积大都发生在滩槽交替变化且河床坡度较陡区段。4)径流输沙、特大洪水、潮流作用与科氏力一起,是影响南支下段河势变迁的主要因素。  相似文献   

20.
三峡截流以来长江洪季潮区界变动河段冲刷地貌   总被引:4,自引:0,他引:4  
潮区界河段河势演变对三峡工程的响应是长江经济带建设中的重要问题。然而受观测手段所限,对三峡截流以来潮区界变动范围及其地貌演变的客观认识亟待探讨。对大通站洪季水位资料进行频谱分析,初步判断了近期长江洪季潮区界位置;对比1998年和2013年水下地形资料,分析了三峡大坝截流以来该河段河槽的冲淤演变特征;利用多波束测深系统对冲刷明显河段的微地貌进行了高分辨率观测。结果显示:(1)1998-2013年潮区界变动河段河槽整体冲刷5 649.7万m3。其中,上段全面冲刷,太白、太阳两洲并岸,铜陵沙被冲开,主槽刷深达5.6 m;中段主泓摆动,天然洲南冲北淤,黑沙洲中水道淤死,南水道左岸最大冲深达8.9 m;下段近岸冲刷强烈,北岸最大冲深达15.4 m;(2)该河段近期处于剧烈的冲刷环境,左岸冲刷尤为显著;(3)冲刷深槽分布在顺直河段,深达5.4~12.6 m;冲刷坑分布在分汊河段平面形态突变处,最大冲深达28.1~30.5 m;水下侵蚀陡坡分布在近岸侵蚀严重的顺直河段,坡度为0.59~0.62。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号