首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Spring dominant copepods and their distribution pattern in the yellow sea   总被引:4,自引:0,他引:4  
We investigated the relationship between mesoscale spatial distribution of environmental parameters (temperature, salinity, and sigma-t), chlorophyll-a concentration and mesozooplankton in the Yellow Sea during May 1996, 1997, and 1998, with special reference to Yellow Sea Bottom Cold Water (YSBCW). Adult calanoid copepods,Calanus sinicus, Paracalanus parvus s.l.,Acartia omorii, andCentropages abdominalis were isolated by BVSTEP analysis based on the consistent explainable percentage (-32.3%) of the total mesozooplankton distributional pattern. The copepods, which accounted for 60 to 87% of the total abundances, occupied 73-78% of the copepod community. The YSBCW consistently remained in the northern part of the study area and influenced the spatial distribution of the calanoid copepods during the study periods. Abundances of C.sinicus andP. parvus s.l., which were high outside the YSBCW, were positively correlated with the whole water average temperature (p<0.01). In contrast, the abundances of C.abdominalis andA. omorii, which were relatively high in the YSBCW, were associated with the integrated chl-a concentration based on factor analysis. These results indicate that the YSBCW influenced the mesoscale spatial heterogeneity of average temperature and integrated chl-a concentration through the water column. This consequently affected the spatial distribution pattern of the dominant copepods in association with their respective preferences for environmental and biological parameters in the Yellow Sea during spring.  相似文献   

2.
To improve our understanding of the trophic link between micro-zooplankton and copepods in Gyeonggi Bay, Yellow Sea, the diet composition, ingestion rates, and prey selectivity of Acartia hongi, known as the most abundant and widespread copepod species, was estimated by conducting in situ bottle incubation throughout the different seasons. The results showed that A. hongi preferentially grazed on ciliate and heterotrophic dinoflagellate of a size ranging from 20 to 100 μm rather than phytoplankton. Although micro-zooplankton comprised only an average 13.7% of the total carbon available in the natural prey pool, micro-zooplankton accounted for >70% of the total carbon ration ingested by A. hongi throughout the year, except for winter diatom blooming periods when A. hongi obtained about 60% of its carbon ration from phytoplankton. Our results demonstrated that A. hongi modified their diet composition and feeding rates in response to change in composition and size of prey available to them, and that A. hongi preferentially ingested micro-zooplankton over phytoplankton. Feeding activity of A. hongi could therefore affect the species composition and size structure of natural plankton communities in this study area, particularly the micro-zooplankton. Strongly selective feeding and high grazing pressure by A. hongi on micro-zooplankton shows the role of trophic coupling between copepods and the microbial food web in the pelagic ecosystem of Gyeonggi Bay.  相似文献   

3.
Abundant planktonic copepods which have been attributed toAcartia clausi in Japanese coastal and inlet waters were revised by examining specimens from various localities. It is concluded that they consist of two species,A. omorii andA. hudsonica, and no other closely related species occur in Japanese waters.A. omorii is widespread in coastal waters and bays, whileA. hudsonica is strictly confined to brackish waters and closed embayments, in which the two species usually co-occur. The two species are readily distinguished by the shape of the inner lobe of the 3rd segment of the right 5th leg in the male. But the relative lengths of the 2nd and 3rd segments of the male left 5th leg, which separate the two species in Bradford's key to the subgenusAcartiura, did not differ clearly between the specimens of the two species examined here. The body size is also an important distinctive character of the two species especially when water temperature is low.1985 11 29, 1986 2 10, 1986  相似文献   

4.
The influence ofNoctiluca's predation on theAcartia population in Ise Bay was examined by taking samples at 27 stations once a month from May to December, 1974.The copepod eggs were found inNoctiluca mainly in May and June. Considering from various spawning types of copepods, the eggs were presumed to beAcartia, the most numerous species of all copepods in the bay.Noctiluca was dominant plankton in May and June whenAcartia was abundantly distributed.Acartia eggs were found in 33.2–39.3% of individuals ofNoctiluca in May and June.Noctiluca was more frequently observed to contain one egg ofAcartia per individual. It was suggested that 55.0 eggs perAcartia female per day were eaten by theNoctiluca population in May wherease 3.5 eggs in June. It was deduced that 74% of the eggs produced byAcartia was preyed on byNoctiluca (about 5% in June). The predation byNoctiluca as well as that by the sand-eel must influence greatly to the production ofAcartia in the bay.  相似文献   

5.
This study examined monthly feeding rates and grazing impact on phytoplankton biomass, as well as diel feeding rhythms of four key copepod species in a tidally well mixed estuary (Asan Bay, Korean Peninsula). Monthly ingestion rates estimated based on gut pigment analysis were closely associated with their peak densities, but not with phytoplankton biomass, implying high ingestion may be related to reproductive output for population growth. The three smaller copepods, Acartia hongi, Acartia pacifica and Paracalanus parvus, showed feeding preference for smaller phytoplankton (<20 μm) with higher clearance rates, whereas the larger Calanus sinicus preferred larger phytoplankton. Acartia pacifica and P. parvus showed distinct increased nocturnal feeding rates as measured with gut fluorescence, whereas A. hongi showed no significant day–night differences. Copepod diel feeding patterns were not associated with food quantity, and endogenous physiological rhythm might be hypothesized as responsible for the observed diel feeding patterns. Grazing impact on phytoplankton biomass by the four copepods in the estuary was on average 8% (range 0.2–29.8%) of the phytoplankton standing stock, similar to values reported in other coastal waters. Very high copepod abundances but low daily carbon ration (<20% for all copepods) provided by feeding on phytoplankton indicate that copepods also grazed on other non‐phytoplankton foods in Asan Bay.  相似文献   

6.
根据2017年10月和2018年1、5、7月对雷州半岛沿岸海域浮游动物四个季度的调查数据,分析了浮游桡足类群落组成的季节变化及其影响因素.结果共鉴定出浮游桡足类80种,其中哲水蚤目55种,占总种类数的68.7%;剑水蚤目21种,占总种类数的26.2%;猛水蚤目3种,占总种类数的3.8%;鱼虱目1种,占总种类数的1.3%...  相似文献   

7.
Laboratory experiments were conducted to determine the feeding performances of Uca zoeae and the estuarine copepods Acartia tonsa and Tortanus setacaudatus when these zooplankton preyed upon the co-occurring tintinnids Favella panamensis (length 265 μm) and Tintinnopsis tubulosa (length 148 μm). Predation by Favella on Tintinnopsis was also studied. Over the range of experimental prey densities used, Acartia ingested Tintinopsis at rates linearly related to prey density. Favella was ingested by Aractia at higher rates than was Tintinnopsis. Tortamus ingested Favella more readily than did Acartia, but Tortanus did not ingest Tintinnopsis. Uca ingested both Tintinnopsis and Favella while Tintinnopsis was also ingested by the larger tintinnid Favella. Comparisons of Acartia predation on tintinnids with published data on ingestion of nauplii and phytoplankton showed that when the phytoplankton are dominated by small (diameters < 10 μm) species, tintinnids in concentrations exceeding 103 organisms 1?1 can be important items in the diets of Acartia. At lower tintinnid concentrations or when algal species with diameters > 10 μm are present in significant concentrations, tintinnids merely supplement algae in the diet of Acartia. Generally, tintinnids are more important food items for Acartia than are comparably sized nauplii. Only at concentrations exceeding 104 cop. m?3 can Acartia depress tintinid population growth.  相似文献   

8.
汪金涛  陈新军  高峰  雷林 《海洋与湖沼》2014,45(6):1185-1191
东南太平洋茎柔鱼(Dosidicus gigas)是短生命周期种类,其资源量极易受到海洋环境变化的影响。根据2003—2012年我国鱿钓船在东南太平洋的生产统计数据,以及茎柔鱼栖息地的海表温度(SST)、海面高度(SSH)、叶绿素a浓度(chl a)数据,利用相关性分析法分析茎柔鱼资源丰度和补充量(以单位捕捞努力量渔获量为指标,t/d)与栖息海域20°S—20°N、110°W—70°W的SST、SSH、chl a浓度的相关性,获取相关系数大的关键海区位置,同时加入茎柔鱼产卵场、索饵场最适表层水温范围占总面积的比例(分别用PS、PF表示)两个参数,建立三种基于主要环境因子的误差反向传播(EBP)神经网络资源补充量预报模型,进行了比较。结果表明:茎柔鱼资源丰度与SST、SSH、chl a浓度的相关系数最大值海域为7月份的Point1(13°N,102°W)海区、9月份的Point3(11°N,102°W)海区和3月份的Point5(8°S,107°W)海区;资源补充量与SST、SSH、chl a浓度的相关系数最大值海域为6月份的Point2(8°N,103.5°W)海区、2月份的Point4(12°N,97.5°W)海区和10月份的Point6(10°S,93.5°W)海区。EBP神经网络预报模型结果认为:基于产卵环境关键影响因子的方案2(以Point2的SST、Point4的SSH、Point6的chl a浓度、PS作为模型输入因子)和基于全部环境关键影响因子的方案3(以Point1与Point2的SST、Point3与Point4的SSH、Point5与Point6的chl a浓度、PS、PF作为模型输入因子)的两种神经网络预报模型均方误差较小,其准确率可达90%左右。  相似文献   

9.
Brood sizes of 1259 adult female Euphausia pacifica and Thysanoessa spinifera were measured during 48 h incubations (10 °C, ±0.5 °C) on 27 oceanographic cruises between July 1999 and September 2004. The data set includes measurements from several stations off Newport, Oregon (Newport Hydrographic line, 44°39′N) made over a 5-year period and measurements from 14 more extensive cruises at stations representative of continental shelf, slope, and oceanic waters off Oregon and California, USA. E. pacifica had similar brood sizes at inshore (<200 m) and offshore (>200 m) stations with an average of 151 and 139 eggs brood−1 fem−1, respectively. T. spinifera brood sizes were considerably higher at inshore stations—particularly at Heceta Bank (44°N) and south of Cape Blanco (42°50′N)—than at offshore stations, 155 and 107 eggs brood−1 fem−1, respectively. Average brood sizes of E. pacifica increased during the study period, from 125 (in 2000) to 171 eggs brood−1 fem−1 (in 2003). Average percentage of carbon weight invested in spawning (reproductive effort) was higher in E. pacifica (14%) than in T. spinifera (6%), because both species have similar brood size but T. spinifera females are larger than E. pacifica females and produce smaller eggs. Reproductive effort for both species was higher during summer 2002, probably associated with anomalous cool subarctic waters and high chl-a concentration observed during that summer. Brood sizes and chl-a values remained relatively high in 2003–2004 compared to the 1999–2001 period. Geographical and temporal variability in brood sizes for both species were significantly correlated with in situ measurements of chl-a concentration but not with sea surface temperature. No gravid females were collected during late autumn and winter cruises, thus the spawning season along the Oregon coast appears to extend from March through September for both species. However, T. spinifera usually starts reproductive activity earlier in the spring (March) than E. pacifica. Both species had their highest brood sizes in summer during the period of most intense upwelling, which is associated with an increase in regional phytoplankton standing stock.  相似文献   

10.
Chlorophyll-a (chl-a) concentration has an important economic effect in coastal and marine environments on fisheries resources and marine aquaculture development. Monthly climatologies the Sea-viewing Wide Field-of-view Sensor (SeaWiFS) derived chl-a from February 1998 to August 2004 around Funka Bay were used to investigate the spatial and temporal variability of chl-a concentrations. SeaWiFS-derived suspended sediment, MODIS derived sea surface temperature (SST), solar radiation and wind data were also analyzed. Results showed two distinct chlorophyll blooms in spring and autumn. Chl-a concentrations were relatively low (<0.3 mg m3) in the bay during summer, with high concentrations occurring along the coast, particularly near Yakumo and Shiraoi. In spring, chl-a concentrations increased, and a large (>2 mg m3) phytoplankton bloom occurred. The spatial and temporal patterns were further confirmed by empirical orthogonal function (EOF) analysis. About 83.94% of the variability could be explained by the first three modes. The first chl-a mode (77.93% of the total variance) explained the general seasonal cycle and quantified interannual variability in the bay. The spring condition was explained by the second mode (3.89% of the total variance), while the third mode (2.12% of the total variance) was associated with autumn condition. Local forcing such as the timing of intrusion of Oyashio water, wind condition and surface heating are the mechanisms that controlled the spatial and temporal variations of chlorophyll concentrations. Moreover, the variation of chlorophyll concentration along the coast seemed to be influenced by suspended sediment caused by resuspension or river discharge.  相似文献   

11.
Zooplankton sampling has been carried out by the Continuous Plankton Recorder (CPR) survey since the 1930s enabling the study of long-term changes in plankton populations, the elucidation of seasonal patterns of abundance, and more recently providing zooplankton biomass estimates for ecosystem models. Data for zooplankton abundance collected by CPR tows in the Western English Channel (between 1988 and 1998) were compared to vertically integrated samples collected from station L4 off Plymouth, UK. Comparisons were made for locally abundant copepods (including Acartia, Calanus, Para/Pseudocalanus, Centropages, Oithona and Temora) collected by CPR and WP-2 nets. All dominant species recorded at L4 were also common to the CPR data. However, the position of the taxa in the two datasets was not equivalent. Seasonal cycles revealed by CPR data were significantly similar to those recorded throughout the water column at L4 for most taxa. However, absolute levels of abundance differed for the two datasets: abundances were underestimated by CPR samples when compared to those of vertically integrated samples by a factor of between 2 and 35, with the exception of Centropages. The differing mesh sizes (200 and 270 μm) of the WP-2 net and CPR mesh could only partially explain these differences in abundance, implying that the behaviour of individual taxa and their depth in the water column also influenced the abundance recorded.  相似文献   

12.
We have determined chlorophyll a (Chla) concentration, primary productivity, cell density and species composition of diatoms, and the number of microzooplankton at the surface in the subarctic North Pacific in January 1996. The wet weight of copepods obtained by vertical tows from 150 m to the surface was also measured during the cruise. Chla concentration and primary productivity tended to be higher in the region west of 180°, the western subarctic North Pacific (WSNP), than east of 180°, the eastern subarctic North Pacific (ESNP). The same results were observed for the total diatom cell densities and for the genera Thalassiosira and Denticulopsis. Significant linear relationships were observed between the Thalassiosira cell density and Chla concentration and primary productivity, indicating that Thalassiosira contributes to the high-WSNP and low-ESNP distribution patterns of Chla concentration and primary productivity. Moreover, naked ciliate abundance tended to be lower in the WSNP than in the ESNP, whereas copepod biomass showed an inverse trend. Significantly negative Spearman rank correlations were found between the Thalassiosira cell density and the number of naked ciliates and between the number of naked ciliates and the wet weight of copepods. These results indicate that copepod grazing indirectly controls Thalassiosira cell density via predation on the naked ciliates. We conclude that the high copepod biomass in the WSNP is a factor controlling the high-WSNP and low-ESNP Thalassiosira abundance and hence Chla concentration and primary productivity patterns.  相似文献   

13.
Cross-shelf distribution and abundance of copepod nauplii and copepodids were measured during three summer upwelling seasons (2000–2002) in a coastal upwelling zone off northern California. These 3 years varied considerably in the intensity of winds, abundance of chlorophyll, and water temperature. The cruises in 2000 were characterized by relaxation conditions, with generally high levels of chlorophyll and high water temperature. The cruises in 2001 and 2002 were dominated by strong and persistent upwelling events, leading to lower chlorophyll and water temperatures. The copepod assemblage was dominated by Oithona spp., Acartia spp. and Pseudocalanus spp., with Metridia pacifica (lucens), Microsetella rosea, Oncaea spp. and Tortanus discaudatus also common during all 3 years. The cross-shelf distribution of copepods was generally shifted offshore during upwelling and onshore during relaxation events, although some variability between species occurred. Abundance of all life stages generally exhibited a negative correlation with cross-shelf transport averaged over at least 1–4 days and lagged by 0–3 days, indicating lower abundances during and immediately after active upwelling. However, copepod nauplii seemed to respond positively to wind events lasting 1–5 days followed by a period of relaxation lasting 6 or 7 days. These rapid rates of change in abundance are probably too great to be due to in situ growth and reproduction alone; physical processes must also play a role. These results suggest a highly dynamic relationship between copepods and upwelling events off northern California, with species-specific responses to upwelling to be expected.  相似文献   

14.
The species composition, density, biomass, and distribution of zooplankton of the northeastern Sakhalin shelf, Sea of Okhotsk (Chaivo, Pil’tunskii, and Morskoi regions) were studied in October 2014. Zooplankton was represented by 15 taxonomic groups, which were dominated by Copepoda (13 species). The average density and biomass was highest in the Chaivo region (14112 ± 4322 ind./m3, 395 ± 107 mg/m3) and in the Pil’tunskii region (16692 ± 10707 ind./m3, 346 ± 233 mg/m3); the abundance of detected taxonomic groups was minimal (8–12). The average density and biomass of zooplankton was up to 4304 ± 2441 ind./m3, 133 ± 77 mg/m3 in the Morskoi region and increased with depth; the abundance of taxa was maximum (15). Four species of copepods made up the majority of the density and biomass of zooplankton: Acartia hudsonica, Eurytemora herdmani, Pseudocalanus newmani, and Oithona similis. In the Chaivo region, species of the genera Acartia, Eurytemora, and Oithona dominated and subdominated; in Pil’tunskii region, species of the genera Acartia and Oithona dominated and subdominated; and in the Morskoi region, species of the genera Oithona, Pseudocalanus, and Acartia dominated and subdominated.  相似文献   

15.
《Oceanologica Acta》2002,25(1):13-22
This paper is the first to describe the spatio-temporal changes of mesozooplankton in the Seine estuary. Monthly samples were collected along the estuary in 1996 in order to analyse the seasonal changes of the mesozooplankton community and to identify the major environmental parameters that may influence the spatial distribution of zooplankton in this megatidal estuary. Statistical analysis (canonical correspondence analysis) showed that salinity was the main factor correlated with the longitudinal distribution of zooplankton. Marine species (Temora longicornis, barnacle larvae…) were located in the outer part of the estuary, while more oligohaline species (Eurytemora affinis) were recorded in the inner part of the estuary. A mixed zone was characterised by the presence of the neritic copepods Acartia spp. and Eurytemora affinis. The marine species (e.g. T. longicornis, Oikopleura dioica, Barnacle larvae) showed maximum abundance at the end of spring (June) while the most abundant estuarine species, E. affinis, peaked in late winter-spring and declined with the onset of summer. This copepod dominated the estuarine zooplankton throughout the year, and found in the Seine estuary very high favourable conditions to exhibit ultimate abundances (> 190 000 ind m–3) which is one order of magnitude higher than those found in other European estuaries. It represented the main prey for major planktonivorous species such as suprabenthic and fish species located living in the upstream zone of the Seine estuary.  相似文献   

16.
Laboratory experiments were performed on the food ecology of four congeneric species of free-living plathelminths, Promesostoma caligulatum, P. marmoratum, P. rostratum, and P. meixneri, all inhabiting an intertidal sandflat near the island of Sylt (North Sea). Their prey spectrum is within the microcrustaceans: P. caligulatum preferred ostracods, while the other three species favoured copepods, with species-specific differences for copepod species and size classes. Daily consumption of prey species varied with the size of both the predator and the prey. On average, P. marmoratum consumed 0.76 Harpacticus flexus per day while this rate decreased to 0.06 in P. meixneri, the smallest predator. When these Promesostoma species were fed with Tachidius discipes, a smaller prey species, their predation rates were about 25% higher. While the larger predators preferred the larger harpacticoids as prey, the small P. meixneri preferred small cyclopoids over larger harpacticoids. In terms of biomass, P. marmoratum's mean consumption of T. discipes per day was about half the predator's own weight. This average varied with prey density and temperature. A comparison of these consumption rates with the field densities of the predators and their prey shows that the plathelminth predators may consume as much as 10% per day of their copepod prey populations, thus strongly influencing these prey populations on these sandflats. The predation pressure of P. caligulatum on ostracods was about 1% per day of the prey population. Since ostracods usually have fewer generations per year, the total effect on the population dynamics may be similar to that on copepods. Therefore, nocturnal swimming of copepods in the water column may be interpreted as an attempt to escape plathelminth predators.  相似文献   

17.
The influence of the phytoplankton size composition in mediating the trophic interactions between the bacteria, phytoplankton, microheterotrophs (<200 μm) and mesozooplankton (>200 μm) was investigated on three occasions in a warm temperate, temporarily open/closed estuary situated along the southern African coastline. Results of the investigation indicated that the microheterotrophs represented the most important consumers of bacteria and chlorophyll (chl)-a <5.0 μm. The low impact of the mesozooplankton on the bacteria and chl-a <5.0 μm during the study appeared to be related to the inability of the larger zooplankton to feed efficiently on small particles. During those periods when total chl-a concentration was dominated by picophytoplankton (<2.0 μm) and microphytoplankton (>20 μm), mesozooplankton were unable to feed efficiently on the chl-a due to feeding constraints. In response to the unfavorable size structure of the phytoplankton assemblages, mesozooplankton appeared to consume the microheterotrophs. The negative impact of the mesozooplankton on the microheterotrophs resulted in a decrease in the impact of these organisms on the bacteria and the chl-a <5.0 μm. This result is consistent with the predator-prey cascades. On the other hand, when the total chl-a was dominated by nanophytoplankton (2–20 μm), mesozooplankton were able to feed directly on the phytoplankton. Results of the study indicate that size structure of the phytoplankton assemblages within estuaries plays an important role in mediating the trophic interactions between the various components of the plankton food web.  相似文献   

18.
The hydrographically different conditions characterising the Western Iberian Margin (NE Atlantic) and the Gulf of Lions (Mediterranean) may play an important role in determining the biogeochemical characteristics of the sediments. To investigate this, we compared the Nazaré and Cap de Creus canyons, and their respective adjacent open slopes in terms of the organic carbon (Corg) contents, chlorophyll-a (chl-a) concentrations, C:N and chl-a:phaeopigment ratios, and also in terms of modelled mixing intensities, chl-a and 210Pb deposition and background concentrations in sediments. Chlorophyll-a and 210Pb profiles were fitted simultaneously with a reactive transport model to estimate mixing intensity, deposition and background concentrations. Further, to account for the possibility that the decay of chl-a may be lower in the deep sea than in shallow areas, we estimated the model parameters with two models. In one approach (model 1), the temperature dependent decay rate of chl-a as given by Sun et al. [Sun, M.Y., Lee, C., Aller, R.C. (1993) Laboratory Studies of Oxic and Anoxic Degradation of chlorophyll-a in Long-Island sound sediments. Geochimica et Cosmochimica Acta, 57, 147-157] for estuaries was used. In the other approach (model 2), an extra parameter was estimated to derive the chlorophyll-a degradation rate. An F-test, taking into account the different number of parameters in the models, was used to single out the model that significantly fitted the data best. In most cases, the model parameters were best-explained with model 1, indicating the empirical relationship by Sun et al. (1993) is a valid means to estimate the chlorophyll-a degradation rate in deep sea sediments. To assess the robustness with which the model parameters were estimated we provide a first application of Bayesian analysis in the modelling of tracers in sediments. Bayesian analysis allows calculating the mean and standard deviation for each model parameter and correlations among parameters. The model parameters for stations for which 210Pb and chlorophyll-a profiles were available were robustly fitted as evidenced by an average coefficient of variation of 0.22. Corg contents, chl-a concentrations, chl-a:phaeo ratios, mixing intensities, depositions and background concentrations of chl-a and 210Pb indicated that the Cap de Creus canyon and adjacent slope were less active in terms of organic matter accumulation and burial than the Nazaré canyon and respective open slope.  相似文献   

19.
The relationship between island-induced cyclonic eddies and chlorophyll a (chl-a) was investigated using field data and satellite images in the eastern channel of the Tsushima Straits. The maximum chl-a concentration around the leeward eddy of the Tsushima Islands was two or three times greater than that of outside the eddy. Two different mechanisms of chl-a enhancement associated with island-induced cyclonic eddies were found in the post-bloom periods. In summer, when nutrients were depleted in the surface layer, eddy pumping increased the nutrient supply in the euphotic zone, resulting in enhanced chl-a around the shallow thermocline near the eddy core. In late autumn, when the mixed layer deepened over the euphotic zone, the mixed layer depth became shallow due to the doming effect of the cyclonic eddy, therefore, the improved irradiance condition led to an increase in the chl-a concentration in the surface mixed layer. Nighttime satellite visible images showed a number of fishing vessels in the lee region of the Tsushima Islands, implying that the enhanced phytoplankton biomass may have resulted in good feeding conditions for fishes and squids in the Tsushima Straits.  相似文献   

20.
Densities of major meiofaunal taxa were investigated at 34 sampling stations during six cruises by R/V Beidou to the southern Yellow Sea, China from 2000 to 2004, and the community structure of free-living marine nematodes was studied during one of the cruises in 2003. Meiofauna abundance ranged from 487.4 to 1655.3 individuals per 10 cm2. Nematodes and harpacticoid copepods were the two most dominant groups, contributing 73.8–92.8% and 3.5–18.7%, respectively, to the total meiofauna abundance. One-way ANOVA showed no significant annual fluctuation of meiofauna and nematode abundances from 2000 to 2004 in the southern Yellow Sea. However, two-way ANOVA based on six stations sampled in 4 years (2001–2004) showed that there were significant differences among the six stations and the 4 sampling years for meiofauna, nematode and copepod abundance. Correlation analysis demonstrated that meiofauna abundance was mainly linked to chloroplastic pigments. Other environmental factors could not be ruled out, however. A total of 232 free-living marine nematode species, belonging to 149 genera, 35 families and 4 orders, were identified. The dominant species in the sampling area were the following: Dorylaimopsis rabalaisi, Microlaimus sp.1, Prochromadorella sp., Promonohystera sp., Cobbia sp.1, Daptonema sp.1, Leptolaimus sp.1, Halalaimus sp.2, Aegialoalaimus sp., Chromadorita sp., Parodontophora marina, Parasphaerolaimus paradoxus, Quadricoma sp.1, Campylaimus sp.1, Halalaimus gracilis, Paramesacanthion sp.1, Paramonohystera sp.1, and Metalinhomoeus longiseta. CLUSTER and SIMPROF analyses revealed three main types of nematode community (or station groups) in the sampling area, including I: coastal community, II: transitory community between coastal and YSCWM (Yellow Sea Cold Water Mass), and III: YSCWM community. Each community was indicated by a number of dominant nematode species. Bio-Env correlation analysis between the nematode community and environmental variables showed that water depth, sediment water content, organic matter, chlorophyll a (Chl-a) and phaeophorbide a (Pha-a) were the most important factors to determine the community structure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号