首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 640 毫秒
1.
Equatorial high mountain lakes are a special type of lake occurring mainly in the South American Andes as well as in Central Africa and Asia. They occur at altitudes of a few thousand meters above sea level and are cold-water lakes (<20 °C). Relatively little is known about them. A long-term limnological study was therefore undertaken at Lake Lago San Pablo, Ecuador to analyze the basic limnological processes of this lake, which has a tendency for eutrophication. Lago San Pablo is spread over an area of 668 hectares, has a maximum depth of 35 m, and is located 2660 m above sea level. Its thermal stratification is a monomictic one, with only 1–2 °C difference between the epi- and hypolimnion; overturn is achieved by strong winds during the dry summer period. The stratification phase is characterized by an oxygen deficit in the lower part of the hypolimnion. Besides, strong convective currents occur due to nocturnal cooling, and partial lake mixing was observed during the nocturnal period. This type of lake mixing is called atelomixis, which is characterized by the partial mixing of isolated layers (difference in temperature or ionic content) during stratification. The nutrient level of the lake is quite high: mean Ptotal concentration = 0.22 mg/l, mean Ntotal = 1.05 mg/l, soluble reactive phosphorus (SRP) > 0.01 mg/l, and soluble inorganic nitrogen > 0.2 mg/l. Nitrogen and phosphorus are available in the epilimnion all year round (Nsol. inorg·. = 0.3 to 1.7 mg/l N, SRP = 0.04 to 0.63 mg/l P). The N/P ratio is sometimes > 14, sometimes < 10, indicating a variability of the limiting nutrient factor. Considering the nutrient level, the phytoplankton biomass is quite low (about 4,000 cells per ml on average; maximum cell number: 13,000 in 1998 and 10,000 in 1999). The mean epilimnic chlorophyll content (Chl a was 10 mg/l in 1998 and 11 g/l in 1999, and the maximum Chl a content was 16 and 22 g/l in 1998 and 1999, respectively.Phytoplankton production can be limited by nutrients, mainly nitrogen, but convective currents can also cause a significant loss of biomass. The lake's euphotic zone is smaller than its epilimnic zone, indicating that light radiation is limiting in the deeper water body, this is caused by a weak thermocline due to destratification by nocturnal cooling, the atelomixis.  相似文献   

2.
Potential future changes in lake physical processes (e.g. stratification and freezing) can be assessed through exploring their sensitivity to climate change, and assessing the current vulnerability of different lake types to plausible changes in meteorological drivers. This study quantifies the impacts of climate change and sensitivity of lake physical processes within a large (5100 km2) Precambrian Shield catchment in south‐central Ontario. Historic regional relationships are established between climate drivers, lake morphology, and lake physical changes through generalized linear modelling (GLM), and are used to quantify likely changes in timing of ice phenology and lake stratification across 72 lakes under a range of future climate models and scenarios. In response to projections of increased temperature (ensemble mean of +3.3 °C), both earlier ice‐off and onset of summer stratification were projected, with later ice‐on and fall turnover compared to the baseline. Process sensitivity to climate change varied by lake type; shallower lakes with a smaller volume (less than 15 m deep and less than 0.05 km3) were more sensitive to processes associated with lake heating (stratification onset and ice‐off), and deeper lakes with a larger surface area (greater than 30 m deep and greater than 1000 ha) were more sensitive to processes associated with lake cooling (fall turnover and ice‐on). These results indicate that whereas small lakes are vulnerable to climate warming because of changes that occur in spring and summer, larger lakes are particularly sensitive during the fall. The findings suggest that lake morphology and associated sensitivity should be considered in the development of sustainable lake management strategies. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

3.
Vertical distributions of chlorophyll in deep, warm monomictic lakes   总被引:1,自引:0,他引:1  
The factors affecting vertical distributions of chlorophyll fluorescence were examined in four temperate, warm monomictic lakes. Each of the lakes (maximum depth >80 m) was sampled over 2 years at intervals from monthly to seasonal. Profiles were taken of chlorophyll fluorescence (as a proxy for algal biomass), temperature and irradiance, as well as integrated samples from the surface mixed layer for chlorophyll a (chl a) and nutrient concentrations in each lake. Depth profiles of chlorophyll fluorescence were also made along transects of the longest axis of each lake. Chlorophyll fluorescence maxima occurred at depths closely correlated with euphotic depth (r 2 = 0.67, P < 0.01), which varied with nutrient status of the lakes. While seasonal thermal density stratification is a prerequisite for the existence of a deep chlorophyll maximum (DCM), our study provides evidence that the depth of light penetration largely dictates the DCM depth during stratification. Reduction in water clarity through eutrophication can cause a shift in phytoplankton distributions from a DCM in spring or summer to a surface chlorophyll maximum within the surface mixed layer when the depth of the euphotic zone (z eu) is consistently shallower than the depth of the surface mixed layer (z SML). Trophic status has a key role in determining vertical distributions of chlorophyll in the four lakes, but does not appear to disrupt the annual cycle of maximum chlorophyll in winter.  相似文献   

4.
Recent climate change represents one of the most serious anthropogenic threats to lake ecosystems in Canada. As meteorological and hydrological conditions are altered by climate change, so too are physical, chemical and biological properties of lakes. The ability to quantify the impact of climate change on the physical properties of lakes represents an integral step in estimating future chemical and biological change. To that end, we have used the dynamic reservoir simulation model, a one‐dimensional vertical heat transfer and mixing model, to hindcast and compare lake temperature‐depth profiles against 30 years of long‐term monitoring data in Harp Lake, Ontario. These temperature profiles were used to calculate annual (June–September) thermal stability values from 1979 to 2009. Comparisons between measured and modelled lake water temperature and thermal stability over three decades showed strong correlation (r2 > 0.9). However, despite significant increases in modelled thermal stability over the 30 year record, we found no significant change in the timing of the onset, breakdown or the duration of thermal stratification. Our data suggest that increased air temperature and decreased wind are the primary drivers of enhanced stability in Harp Lake since 1979. The high‐predictive ability of the Harp Lake dynamic reservoir simulation model suggests that its use as a tool in future lake management projects is appropriate. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

5.
6.
Glacial lakes are most often located in remote places making it difficult to carry out detailed bathymetric surveys. Consequently, lake depths and volumes for unmeasured lakes are often estimated using empirical relationships developed mainly from small bathymetric datasets. In this study, we use the bathymetry dataset of the Cordillera Blanca, Peru comprising 121 detailed lake bathymetries, the most extensive dataset in the world. We assess the performance of the most commonly applied empirical relationships for lake mean depth and volume estimation, but also investigate relationships between different geometric lake variables. We find that lake volume estimation performs better when derived from lake mean depth, which in turn is estimated from lake width. The findings also reveal the extreme variability of lake geometry, which depends on glacio-geomorphological processes that empirical–statistical relationships cannot adequately represent. Such relationships involve characteristic uncertainty ranges of roughly ±50%. We also estimate potential peak discharges of outburst floods from these lakes by applying empirical relationships from the literature, which results in discharges varying by up to one-order of magnitude. Finally, the results are applied to the 860 lakes without bathymetric measurements from the inventory dataset of the Cordillera Blanca to estimate lake mean depth, volume and possible peak discharge for all unmeasured lakes. Estimations show that ca. 70% (610) of the lakes have a mean depth lower than 10 m and very few longer than 40 m. Lake volume of unmeasured lakes represent ca. 32% (5.18 × 108 m3) of the total lake volume (1.15 × 109 m3) in the Cordillera Blanca. Approximately, 50% of the lakes have potential peak discharges > 1000 m3/s in case of lake outburst floods, implying a need for additional studies for risk assessment. © 2020 John Wiley & Sons, Ltd.  相似文献   

7.
Interannual variability in the thermal structure of lakes is driven by interannual differences in meteorological conditions. Dynamic or mechanistic models and empirical or statistical methods have been used to integrate the physical processes in lakes enabling the response of the thermal structure to changes in air temperature to be determined. Water temperature records for Lake Mendota, WI., are possibly the most extensive for any dimictic lake in the world and allowed both approaches to be used. Results from both techniques suggest the mixed layer temperature increases with increasing air temperature. Results from the empirical approach suggested epilimnion temperatures increase 0.5 to 1.0°C per 1.0°C increase in air temperature compared to 0.4 to 0.85°C estimated from a dynamical model (DYRESM). Increased air temperatures are related to significant warming in deep water temperatures in the absence of stratification; however, mid summer hypolimnion temperatures are expected to change very little or increase only slightly in response to climatic warming. Both approaches suggest increases in air temperatures increase the length of summer stratification; results from the dynamic model suggest an increase of approximately 5 days per 1°C increase in air temperature. Longer stratification is reflected in shallower late summer thermocline depths. With these quantitative relationships and forecast increases in air temperature for the 2 × CO2 climatic scenario (Greenhouse Effect) from three General Circulation Models, projections are made describing the changes in the future mean thermal structure of moderate to large sized lakes.  相似文献   

8.
Gogorza  C.S.G.  Di Tommaso  I.  Sinito  A.M.  Jackson  B.  Nuñez  H.  Creer  K.  Vilas  J.F. 《Studia Geophysica et Geodaetica》1998,42(1):12-29
The preliminary results of paleomagnetic and radiocarbon dating of late pleistocene-holocene sediments from two lakes of south-western Argentina (41°S, 71.5°W) are presented. The magnetic susceptibility, intensity and direction of the natural remanent magnetisation were measured. The stability of the natural remanent magnetisation was investigated by alternating field demagnetisation. The magnetic parameters allowed the cores within each lake to be correlated. 13 C analysis, total organic content measurements and C 14 dating were carried out. A model of sedimentation is suggested. Using this model and the correlation, curves of variations of magnetic inclination and declination in time are shown.  相似文献   

9.
10.
To prevent the recurrence of a disastrous eruption of carbon dioxide (CO2) from Lake Nyos, a degassing plan has been set up for the lake. Since there are concerns that the degassing of the lake may reduce the stability of the density stratification, there is an urgent need for a simulation tool to predict the evolution of the lake stratification in different scenarios. This paper describes the development of a numerical model to predict the CO2 and dissolved solids concentrations, and the temperature structure as well as the stability of the water column of Lake Nyos. The model is tested with profiles of CO2 concentrations and temperature taken in the years 1986 to 1996. It reproduces well the general mixing patterns observed in the lake. However, the intensity of the mixing tends to be overestimated in the epilimnion and underestimated in the monimolimnion. The overestimation of the mixing depth in the epilimnion is caused either by the parameterization of the k-epsilon model, or by the uncertainty in the calculation of the surface heat fluxes. The simulated mixing depth is highly sensitive to the surface heat fluxes, and errors in the mixing depth propagate from one year to the following. A precise simulation of the mixolimnion deepening therefore requires high accuracy in the meteorological forcing and the parameterization of the heat fluxes. Neither the meteorological data nor the formulae for the calculation of the heat fluxes are available with the necessary precision. Consequently, it will be indispensable to consider different forcing scenarios in the safety analysis in order to obtain robust boundary conditions for safe degassing. The input of temperature and CO2 to the lake bottom can be adequately simulated for the years 1986 to 1996 with a constant sublacustrine source of 18 l s–1 with a CO2 concentration of 0.395 mol l–1 and a temperature of 26 °C. The results of this study indicate that the model needs to be calibrated with more detailed field data before using it for its final purpose: the prediction of the stability and the safety of Lake Nyos during the degassing process.Responsible Editor: Hans Burchard  相似文献   

11.
Monthly collections of phytoplankton were supported by physical–chemical data and measures of chlorophyll a concentrations in the search for particular environmental factors that could explain the constant presence of desmids in a Mexican tropical lake, a characteristic not common among the phytoplanktic communities of Mexican lakes. Samplings were taken from the water column in the deepest part of the lake (40 m) and intensified in the metalimnetic zone, whose establishment was monitored by observations of temperature and oxygen profiles. The general behavior of Lake Zirahuén was typical of warm monomictic tropical lakes at high elevation: a short mixing phase during the hemispheric winter. The depth of ZMIX and Zeu revealed a well-illuminated epilimnion, suggesting that phytoplankton communities are not likely to be light-limited. The oligotrophic nature of the lake is indicated by discrete concentrations of inorganic nutrients, PTOT in the interval of 0.01–0.03 mg l−1 and chlorophyll a between 0.23 and 3.98 μg l−1. These characteristics together with a low concentration of calcium, define a lacustrine environment different from other Mexican lakes, and one that could be suitable for desmids communities.  相似文献   

12.
The June 1991 eruption of Mount Pinatubo, Philippines breached a significant, pre-eruptive magmatic-hydrothermal system consisting of a hot (>300 °C) core at two-phase conditions and surrounding, cooler (<260 °C) liquid outflows to the N and S. The eruption created a large, closed crater that accumulated hydrothermal upwellings, near-surface aquifer and meteoric inflows. A shallow lake formed by early September 1991, and showed a long-term increase in level of ~1 m/month until an artificial drainage was created in September 2001. Comparison of the temporal trends in lake chemistry to pre- and post-eruptive springs distinguishes processes important in lake evolution. The lake was initially near-neutral pH and dominated by meteoric influx and Cl–SO4 and Cl–HCO3 hydrothermal waters, with peaks in SO4 and Ca concentrations resulting from leaching of anhydrite and aerosol-laden tephra. Magmatic discharge, acidity (pH~2) and rock dissolution peaked in late 1992, during and immediately after eruption of a lava dome on the crater floor. Since cessation of dome growth, trends in lake pH (increase from 3 to 5.5), temperature (decline from 40 to 26 °C), and chemical and isotopic composition indicate that magmatic degassing and rock dissolution have declined significantly relative to the input of meteoric water and immature hydrothermal brine. Higher concentrations of Cl, Na, K, Li and B, and lower concentrations of Mg, Ca, Fe, SO4 and F up to 1999 highlight the importance of a dilute hydrothermal contribution, as do stable-isotope and tritium compositions of the various fluids. However, samples taken since that time indicate further dilution and steeper trends of increasing pH and declining temperature. Present gas and brine compositions from crater fumaroles and hot springs indicate boiling of an immature Cl–SO4 geothermal fluid of near-neutral pH at approximately 200 °C, rather than direct discharge from magma. It appears that remnants of the pre-eruptive hydrothermal system invaded the magma conduit shortly after the end of dome emplacement, blocking the direct degassing path. This, along with the large catchment area (~5 km2) and the high precipitation rate of the area, led to a rapid transition from a small and hot acid lake to a large lake with near-ambient temperature and pH. This behavior contrasts with that of peak-activity lakes that have more sustained volcanic gas influx (e.g., Kawah Ijen, Indonesia; Poas and Rincón de la Vieja, Costa Rica).Editorial responsibility: H. Shinohara  相似文献   

13.
The medium shallow lake Grimnitzsee (maximum depth: 9.9 m; mean depth: 4.6 m; area: 7.7 · 106 m2) which is situated in the biosphere reserve “Schorfheide-Chorin” in northern Brandenburg (Germany) was studied in 1994 and 1995. A bathymetric map of Grimnitzsee is given for the first time. The lake is usually polymictic although in 1994 and 1995 relatively long summer stratification was observed due to very high global radiation input. Nutrient concentration, light climate, oxygen status, phytoplankton biomass and the species composition of littoral diatoms characterize the lake as eutrophic. Special features deducible from the lake's polymictic character were the multiple development of aerobic or anaerobic strata above the sediment, the fast recovery of silicon concentration in the water column after diatom sedimentation, the importance of resuspension for the success of planktonic diatom populations, and an only moderate correlation between chlorophyll a concentration and light attenuation as well as seston dry weight probably due to the influence of suspended particles.  相似文献   

14.
Stable isotope compositions (δD, δ18O and δ34S) of volcanic lake waters, gas condensates and spring waters from Indonesia, Italy, Japan, and Russia were measured. The spring fluids and gas samples plot in a broad array between meteoric waters and local high-temperature volcanic gas compositions. The δD and δ18O data from volcanic lakes in East Indonesia plot in a concave band ranging from local meteoric waters to evaporated fluids to waters heavier than local high-temperature volcanic gases. We investigated isotopic fractionation processes in volcanic lakes at elevated temperatures with simultaneous mixing of meteoric waters and volcanic gases. An elevated lake water temperature gives enhanced kinetic isotope fractionation and changes in equilibrium fractionation factors, providing relatively flat isotope evolution curves in δ18O–δD diagrams. A numerical simulation model is used to derive the timescales of isotopic evolution of crater lakes as a function of atmospheric parameters, lake water temperature and fluxes of meteoric water, volcanic gas input, evaporation, and seepage losses. The same model is used to derive the flux magnitude of the Keli Mutu lakes in Indonesia. The calculated volcanic gas fluxes are of the same order as those derived from energy budget models or direct gas flux measurements in open craters (several 100 m3 volcanic water/day) and indicate a water residence time of 1–2 decades. The δ34S data from the Keli Mutu lakes show a much wider range than those from gases and springs, which is probably related to the precipitation of sulfur in these acid brine lakes. The isotopic mass balance and S/Cl values suggest that about half of the sulfur input in the hottest Keli Mutu lake is converted into native sulfur.  相似文献   

15.
高山湖泊远离人类活动直接影响,通常具有面积小、寡营养、食物网单一等特点,对气候变化和营养输入具有较高的敏感性。我国青藏高原东南缘地区氮沉降通量较高、增温幅度显著,已有研究显示该地区可能受湖泊类型、流域特征等影响存在差异性的湖泊响应模式。本研究选择该区域位于树线以下、具有不同水深的3个小型湖泊(盖公错纳、沃迪错、碧沽天池)开展沉积物调查和对比研究,通过钻孔样品测年、理化特征和藻类(硅藻群落、藻类色素)等多指标分析,结合区域气候定量重建和氮沉降等数据收集,评价了过去300年来藻类演替模式的异同特征及湖泊水深的调节作用。结果显示,3个湖泊中硅藻的优势物种与群落组成差异明显。深水型湖泊盖公错纳(最大水深39.4 m)的硅藻群落以浮游种为主(占比达82%),优势种为眼斑小环藻(Pantocsekiolla ocellata)、科曼小环藻(Pantocsekiella comensis);深水型湖泊沃迪错(最大水深20.7 m)的硅藻群落中浮游种和底栖种约各占50%,优势种为眼斑小环藻(Pantocsekiella ocellata)、连结脆杆藻(Saurosira construens);浅水湖...  相似文献   

16.
The fate of inflows into lakes has been extensively studied during summer stratification but has seen relatively little focus during the weak winter stratification, with or without ice-cover. Field observations are presented of groundwater inflow into a shallow bay of a subarctic lake. Atmospheric forcing of the bay during the study period was extremely variable and coincided with spring ice-cover break-up. Two dominant wind regimes were identified; (1) weak wind-forcing (wind speed <5 m s−1 or land-fast ice-cover), and (2) strong wind-forcing (wind speed >5 m s−1 and open water). At a relatively constant temperature of ~3.3°C, the groundwater inflow was closer to the temperature of maximum density than the water in the main body of the lake, which during the observed winter stratification is ~1.2°C. During weak wind-forcing, the stratification within Silfra Bay approximated two-layers as this denser groundwater formed a negatively buoyant underflow. A calculated underflow entrainment rate of 2.8 × 10−3 agrees well with other underflow studies. During strong wind-forcing, the water column out to the mouth of the bay became weakly stratified as the underflow was entrained vertically by wind-stirring. Observed periods of mixing can be predicted to occur when turbulent kinetic energy (TKE) production by wind stirring integrated over the underflow hydraulic residence time in the bay exceeds the potential energy associated with the stratification. A decrease of ice cover, as observed in the studied subarctic lake over the last decade, will result in the underflow being more frequently exposed to the strong wind-forcing regime during winter, thereby altering the winter distribution of groundwater inflow within the lake.  相似文献   

17.
Proglacial lakes are becoming ubiquitous at the termini of many glaciers worldwide due to continued climate warming and glacier retreat, and such lakes have important consequences for the dynamics and future stability of these glaciers. In light of this, we quantified decadal changes in glacier velocity since 1991 using satellite remote sensing for Breiðamerkurjökull, a large lake-terminating glacier in Iceland. We investigated its frontal retreat, lake area change and ice surface elevation change, combined with bed topography data, to understand its recent rapid retreat and future stability. We observed highly spatially variable velocity change from 1991 to 2015, with a substantial increase in peak velocity observed at the terminus of the lake-terminating eastern arm from ~1.00 ± 0.36 m day−1 in 1991 to 3.50 ± 0.25 m day−1 in 2015, with mean velocities remaining elevated from 2008 onwards. This is in stark comparison to the predominately land-terminating arms, which saw no discernible change in their velocity over the same period. We also observed a substantial increase in the area of the main proglacial lake (Jökulsárlón) since 1982 of ~20 km2, equating to an annual growth rate of 0.55 km2 year−1. Over the same period, the eastern arm retreated by ~3.50 km, which is significantly greater than the other arms. Such discrepancies between the different arms are due to the growth and, importantly, depth increase of Jökulsárlón, as the eastern arm has retreated into its ~300 m-deep reverse-sloping subglacial trough. We suggest that this growth in lake area, forced initially by rising air temperatures, combined with the increase in lake depth, triggered an increase in flow acceleration, leading to further rapid retreat and the initiation of a positive feedback mechanism. These findings may have important implications for how increased melt and calving forced by climate change will affect the future stability of large soft-bedded, reverse-sloped, subaqueous-terminating glaciers elsewhere. © 2020 The Authors. Earth Surface Processes and Landforms published by John Wiley & Sons Ltd  相似文献   

18.
Geothermal aspects of the hypothesis, relating the earthquake swarms in the West Bohemia/Vogtland seismoactive region to magmatic activity, are addressed. A simple 1-D geothermal model of the crust was used to assess the upper limit of the subsurface heating caused by magma intrusion at the assumed focal depth of 9 km. We simulated the process by solving the transient heat conduction equation numerically, considering the heat of magma crystallization to be gradually released in the temperature interval 1100°C to 900°C. The temperature field prior to the intrusion was in steady-state with a surface temperature of 10°C and heat flow of 80 mWm –2 , the temperature at the 9 km depth was 270°C. The results suggest that the temperature and heat flow in the uppermost 1 km of the crust begin to grow 100 ka after the intrusion emplacement only, and that the amplitudes of the changes for the realistic lateral extent (a few kilometres) of the intrusion are very small. It was also found that the rate of magma solidification depends strongly on the thickness of the intrusion. It takes about 100 years for a 50 m thick sill to cool down from 1100°C to 600°C, which value represents the lower limit of the solidus temperature. The same cooling takes only 60 days if the sill is 2 m thick. If the nature of the strongly reflected boundaries, interpreted from the January 1997 Nový Kostel seismograms, is connected with the fresh emplacement of magma, the calculated cooling rates have a predictive potential for the temporal changes of the waveforms.  相似文献   

19.
This study was motivated by an interest in understanding the potential effects of climate change and glacier retreat on late summer water temperatures in alpine areas. Fieldwork was carried out between July and September 2007 at Place Lake, located below Place Glacier in the southern Coast Mountains of British Columbia. Place Lake has an area of 72 000 m2, a single inlet and outlet channel, and an approximate residence time of 4 days. Warming between the inlet and outlet of the lake ranged up to 3 °C and averaged 1.8 °C, which exceeds the amount of warming that occurred over the 1 km reach of Place Creek between the lake outlet and tree line. Over a 23‐day period, net radiation totalled about 210 MJ·m–2, with sensible heat flux adding another 56 MJ m‐2. The latent heat flux consumed about 8% of the surface heat input. The dominant heat sink was the net horizontal advection associated with lake inflow and outflow. Early in the study period, temperatures between the surface and 6‐m depth were dominantly at or above 4 °C and were generally neutral to thermally stable, whereas temperatures decreased with depth below 6 m and exhibited irregular sub‐diurnal variations. The maximum outflow temperature of almost 7 °C occurred in this period. We hypothesize that turbidity currents associated with cold, sediment‐laden glacier discharge formed an underflow and influenced temperatures in the deeper portion of the lake but did not mix with the upper layers. Later in the study period, the lake was dominantly well mixed with some near‐surface stability associated with nocturnal cooling. Further research is required to examine the combined effects of sediment concentrations and thermal processes on mixing in small proglacial lakes to make projections of the consequences of glacier retreat on alpine lake and stream temperatures. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

20.
The Badain Jaran Desert is the second largest desert of China with a total area of 49 200 km2. At least 72 perennial lakes are scattered throughout the desert, sustaining a unique desert–lake ecosystem. Groundwater of various origins was believed to play an essential role in maintaining those desert lakes, but hydrological measurements are lacking due to difficult field conditions. This study applied the distributed temperature sensing technique to continuously measure temperature variations in one of the desert lakes – the Badain Lake – to identify groundwater discharge to the lake based on the temperature differences between groundwater and lake water. Because temperature may be influenced by various unforeseen and temporary factors, it is critical to discern those factors that may affect the temperature such as solar radiation and vertical temperature stratification and to ensure that the temperature variations of the lake water as detected by the distributed temperature sensing are mainly caused by groundwater discharge. A time window was identified during which the groundwater discharge is the dominant factor that determines the temperature pattern of the lake water. The results show that the temperature near the eastern and southeastern lakeshore of the eastern Badain Lake is colder than the average, indicating that this area is the main groundwater discharge zone. Near the northwestern lakeshore adjacent to a sand dune, a weak cold abnormal area was identified, indicating that the sand dune is another recharge source to the lake through channelling the local precipitation toward the lake. The contribution from the sand dune, however, appeared to be less than that from the regional groundwater flow. This study provides the first identification of the temperature abnormal areas, which imply groundwater discharges into desert lakes and contributes to a better understanding of the unique desert–lake ecosystem. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号