首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 796 毫秒
1.
We have constructed a model of the solar nebula that allows for the temperature and pressure distributions at various stages of its evolution to be calculated. The mass flux from the accretion envelope to the disk and from the disk to the Sun, the turbulent viscosity parameter α, the opacity of the disk material, and the initial angular momentum of the protosun are the input model parameters that are varied. We also take into account the changes in the luminosity and radius of the young Sun. The input model parameters are based mostly on data obtained from observations of young solar-type stars with disks. To correct the input parameters, we use the mass and chemical composition of Jupiter, as well as models of its internal structure and formation that allow constraints to be imposed on the temperature and surface density of the protoplanetary disk in Jupiter’s formation zone. Given the derived constraints on the input parameters, we have calculated models of the solar nebula at successive stages of its evolution: the formation inside the accretion envelope, the evolution around the young Sun going through the T Tauri stage, and the formation and compaction of a thin dust layer (subdisk) in the disk midplane. We have found the following evolutionary trend: an increase in the temperature of the disk at the stage of its formation, cooling at the T Tauri stage, and the subsequent internal heating of the dust subdisk by turbulence dissipation that causes a temperature rise in the formation zone of the terrestrial planets at the high subdisk density and the opacity in this zone. We have obtained the probable ranges of temperatures in the disk midplane, i.e., the temperatures of the protoplanetary material in the formation region of the terrestrial planets at the initial stage of their formation.  相似文献   

2.
In this paper, perturbations of an accretion disk by a star orbiting around a black hole are studied. We report on a numerical experiment, which has been carried out by using a parallel-machine code originally developed by Dönmez (2004). An initially steady state accretion disk near a non-rotating (Schwarzschild) black hole interacts with a “star”, modeled as an initially circular region of increased density. Part of the disk is affected by the interaction. In some cases, a gap develops and shock wave propagates through the disk. We follow the evolution for order of one dynamical period and we show how the non-axisymetric density perturbation further evolves and moves downwards where the material of the disk and the star become eventually accreted onto the central body. When the star perturbs the steady state accretion disk, the disk around the black hole is destroyed by the effect of perturbation. The perturbed accretion disk creates a shock wave during the evolution and it loses angular momentum when the gas hits on the shock waves. Colliding gas with the shock wave is the one of the basic mechanism of emitting the X-rays in the accretion disk. The series of supernovae occurring in the inner disk could entirely destroy the disk in that region which leaves a more massive black hole behind, at the center of galaxies.  相似文献   

3.
We follow the premise that most intermediate luminosity optical transients(ILOTs) are powered by rapid mass accretion onto a main sequence star,and study the effects of jets launched by an accretion disk.The disk is formed due to large specific angular momentum of the accreted mass.The two opposite jets might expel some of the mass from the reservoir of gas that feeds the disk,and therefore reduce and shorten the mass accretion process.We argue that by this process ILOTs limit their luminosity and might even shut themselves off in this negative jet feedback mechanism(JFM).The group of ILOTs is a new member of a large family of astrophysical objects whose activity is regulated by the operation of the JFM.  相似文献   

4.
Patrick Cassen  Ann Moosman 《Icarus》1981,48(3):353-376
An analysis is presented of the hydrodynamic aspects of the growth of protostellar disks from the accretion (or collapse) of a rotating gas cloud. The size, mass, and radiative properties of protostellar disks are determined by the distribution of mass and angular momentum in the clouds from which they are formed, as well as from the dissipative processes within the disks themselves. The angular momentum of the infalling cloud is redistributed by the action of turbulent viscosity on a shear layer near the surface of the disk (downstream of the accretion shock) and on the radial shear across cylindrical surfaces parallel to the rotation axis. The fraction of gas that is fed into a central core (protostar) during accretion depends on the ratio of the rate of viscous diffusion of angular momentum to the accretion rate; rapid viscous diffusion (or a low accretion rate) promotes a large core-to-disk mass ratio. The continuum radiation spectrum of a highly viscous disk is similar to that of a steady-state accretion disk without mass addition. It is possible to construct models of the primitive solar nebula as an accretion disk, formed by the collapse of a slowly rotating protostellar cloud, and containing the minimum mass required to account for the planets. Other models with more massive disks are also possible.  相似文献   

5.
For accretion on to neutron stars possessing weak surface magnetic fields and substantial rotation rates (corresponding to the secular instability limit), we calculate the disk and surface layer luminosities general relativistically using the Hartle & Thorne formalism, and illustrate these quantities for a set of representative neutron star equations of state. We also discuss the related problem of the angular momentum evolution of such neutron stars and give a quantitative estimate for this accretion driven change in angular momentum. Rotation always increases the disk luminosity and reduces the rate of angular momentum evolution. These effects have relevance for observations of low-mass X-ray binaries.  相似文献   

6.
7.
刘尧  王红池 《天文学进展》2011,29(2):148-167
原行星盘是环绕在年轻星天体(如T Tauri型星,HAe/Be星)周围的气体尘埃盘,是具有初始角动量的分子云核在塌缩形成恒星过程中的自然结果,是行星系统的起源地。原行星盘研究不仅是恒星形成理论的重要组成部分,而且是行星形成理论的基础。首先介绍了盘的形成与演化规律;然后介绍了年轻星天体的能谱分布,盘的模型和参数(质量吸积率、质量、尺度、温度、寿命);随后讨论了尘埃颗粒在盘中生长的观测证据以及行星在盘中形成的大致过程;最后对原行星盘研究的现状和未来做了总结与展望。  相似文献   

8.
The jets observed to emanate from many compact accreting objects may arise from the twisting of a magnetic field threading a differentially rotating accretion disk which acts to magnetically extract angular momentum and energy from the disk. Two main regimes have been discussed, hydromagnetic jets, which have a significant mass flux and have energy and angular momentum carried by both matter and electromagnetic field and, Poynting jets, where the mass flux is small and energy and angular momentum are carried predominantly by the electromagnetic field. Here, we describe recent theoretical work on the formation of relativistic Poynting jets from magnetized accretion disks. Further, we describe new relativistic, fully electromagnetic, particle-in-cell (PIC) simulations of the formation of jets from accretion disks. Analog Z-pinch experiments may help to understand the origin of astrophysical jets.  相似文献   

9.
Most main sequence stars are binaries or higher multiplicity Systems and it appears that at birth most stars have circumstellar disks. It is commonly accepted that planetary systems arise from the material of these disks; consequently, binary and multiple systems may have a main role in planet formation. In this paper, we study the stage of planetary formation during which the particulate material is still dispersed as centimetre-to-metre sized primordial aggregates. We investigate the response of the particles, in a protoplanetary disk with radius RD = 100 AU around a solar-like star, to the gravitational field of bound perturbing companions in a moderately wide (300–1600 AU) orbit. For this purpose, we have carried out a series of simulations of coplanar hierarchical configurations using a direct integration code that models gravitational and viscous forces. The massive protoplanetary disk is around one of the components of the binary. The evolution in time of the dust sub-disk depends mainly on the nature (prograde or retrograde) of the relative revolution of the stellar companion, and on the temperature and mass of the circumstellar disk. Our results show that for binary companions near the limit of tidal truncation of the disk, the perturbation leads to an enhanced accretion rate onto the primary, decreasing the lifetime of the particles in the protoplanetary disk with respect to the case of a single star. As a consequence of an enhanced accretion rate the mass of the disk decreases faster, which leads to a longer resultant lifetime for particles in the disk. On the other hand, binary companions may induce tidal arms in the dust phase of protoplanetary disks. Spiral perturbations with m = 1 may increase in a factor 10 or more the dust surface density in the neighbourhood of the arm, facilitating the growth of the particles. Moreover, in a massive disk (0.01M⊙) the survival time of particles is significantly shorter than in a less massive nebula (0.001M⊙) and the temperature of the disk severely influences the spiral-in time of particles. The rapid evolution of the dust component found in post T Tauri stars can be explained as a result of their binary nature. Binarity may also influence the evolution of circumpulsar disks. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

10.
F.J. Ciesla 《Icarus》2009,200(2):655-671
Large-scale radial transport of solids appears to be a fundamental consequence of protoplanetary disk evolution based on the presence of high temperature minerals in comets and the outer regions of protoplanetary disks around other stars. Further, inward transport of solids from the outer regions of the solar nebula has been postulated to be the manner in which short-lived radionuclides were introduced to the terrestrial planet region and the cause of the variations in oxygen isotope ratios in the primitive materials. Here, both outward and inward transport of solids are investigated in the context of a two-dimensional, viscously evolving protoplanetary disk. The dynamics of solids are investigated to determine how they depend on particle size and the particular stage of protoplanetary disk evolution, corresponding to different rates of mass transport. It is found that the outward flows that arise around the disk midplane of a protoplanetary disk aid in the outward transport of solids up to the size of CAIs s and can increase the crystallinity fraction of silicate dust at 10 AU around a solar mass star to as much as ∼40% in the case of rapidly evolving disks, decreasing as the accretion rate onto the star slows. High velocity, inward flows along the disk surface aid in the rapid transport of solids from the outer disk to the inner disk, particularly for small dust. Despite the diffusion that occurs throughout the disk, the large-scale, meridonal flows associated with mass transport prevent complete homogenization of the disk, allowing compositional gradients to develop that vary in intensity for a timescale of one million of years. The variations in the rates and the preferred direction of radial transport with height above the disk midplane thus have important implications for the dynamics and chemical evolution of primitive materials.  相似文献   

11.
本文详细讨论了在Blandford-Znajek过程中吸积盘中心黑洞的角动量和质量的总变化率与质量吸积率和能量提取率之比的关系,在此基础上讨论了BlandfordZnajek过程对黑洞吸积盘内边缘半径r_(ms)演化的影响,并证明在此过程中中心黑洞的熵总是增大的。  相似文献   

12.
Having compared images of a jet of the young star RWAurA obtained with an interval of 21.3 yr, we have found that the outermost knots of the jet have emerged approximately 350 years ago. We come up with arguments that the jet itself has appeared at the same time, and intensive accretion onto the star has begun due to rearrangement of its protoplanetary disk structure caused by the tidal effect of the companion RWAur B. More precisely suppose that intensification of accretion is a response to changing conditions in the outer-disk regions which has followed after the sound wave, generated by these changes, has passed the disk in the radial direction. In our opinion difference in the parameters of blue and red lobes of the RWAurA jet is a result of the asymmetric distribution of the circumstellar matter above and below the disk due to companion’s passage. It was found from the analysis of the RWAur historical light curve that deep and long-term (Δt > 150 days) light attenuations of RWAurA observed after 2010 had no precedents in the previous 110 years.We also associate the change in the character of photometric variability of the star with the rearrangement of the structure of inner (r < 1 AU) regions of its protoplanetary disk, and discuss why these changes have begun only 350 years after the beginning of the active accretion phase.  相似文献   

13.
An accretion disk is an inevitable part of the star forming process. Recent years have witnessed dramatic progress in our understanding of how turbulence arises and transports angular momentum in astrophysical accretion disks. The key conceptual point is that the combination of a subthermal magnetic field and outwardly decreasing differential rotation is subject to the magnetorotational instability. This rapidly generates magnetohydrodynamical (MHD) turbulence, leading to greatly enhanced angular momentum transport. Purely hydrodynamic disks, on the other hand, are stable. Disks that are too cool to couple effectively to the magnetic field will not be turbulent. Fully global three dimensional MHD simulations are now beginning to probe the properties of accretion disks from first principles.  相似文献   

14.
Stellar magnetic fields govern key aspects of the evolution of a young star, from controlling accretion to regulating the angular momentum evolution of the system. Spectro‐polarimetric studies of T Tauri stars have revealed a surprising range of magnetic field topologies. Meanwhile multi‐wavelength campaigns have probed T Tauri star systems from stellar photosphere to inner disk, allowing us to study magnetospheric accretion in unprecedented detail. We review recent results and discuss their implications for understanding the evolution of young stars (© 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

15.
Nearly all of the initial angular momentum of the matter that goes into each forming star must somehow be removed or redistributed during the formation process. The possible transport mechanisms and the possible fates of the excess angular momentum are discussed, and it is argued that transport processes in discs are probably not sufficient by themselves to solve the angular momentum problem, while tidal interactions with other stars in forming binary or multiple systems are likely to be of very general importance in redistributing angular momentum during the star formation process. Most, if not all, stars probably form in binary or multiple systems, and tidal torques in these systems can transfer much of the angular momentum from the gas around each forming star to the orbital motions of the companion stars. Tidally generated waves in circumstellar discs may contribute to the overall redistribution of angular momentum. Stars may gain much of their mass by tidally triggered bursts of rapid accretion, and these bursts could account for some of the most energetic phenomena of the earliest stages of stellar evolution, such as jet-like outflows. If tidal interactions are indeed of general importance, planet-forming discs may often have a more chaotic and violent early evolution than in standard models, and shock heating events may be common. Interactions in a hierarchy of subgroups may play a role in building up massive stars in clusters and in determining the form of the upper initial mass function (IMF) . Many of the processes discussed here have analogues on galactic scales, and there may be similarities between the formation of massive stars by interaction-driven accretion processes in clusters and the buildup of massive black holes in galactic nuclei.  相似文献   

16.
We briefly review recent developments in black hole accretion disk theory, emphasizing the vital role played by magnetohydrodynamic (MHD) stresses in transporting angular momentum. The apparent universality of accretion-related outflow phenomena is a strong indicator that large-scale MHD torques facilitate vertical transport of angular momentum. This leads to an enhanced overall rate of angular momentum transport and allows accretion of matter to proceed at an interesting rate. Furthermore, we argue that when vertical transport is important, the radial structure of the accretion disk is modified at small radii and this affects the disk emission spectrum. We present a simple model demonstrating how energetic, magnetically-driven outflows modify the emergent disk emission spectrum with respect to that predicted by standard accretion disk theory. A comparison of the predicted spectra against observations of quasar spectral energy distributions suggests that mass accretion rates inferred using the standard disk model may be severely underestimated.  相似文献   

17.
The evolution of protoplanetary disks is regulated by its interaction with the central forming star. This interaction happens through accretion of matter from the disk onto the star, and its most significant signatures are the continuum excess in the UV part of the spectrum and the presence of various emission lines. With the VLT/X-Shooter spectrograph, the excess emission in the UV due to accretion can being studied simultaneously with the signatures in the visible and in the near-infrared, giving a simultaneous and complete view of this phenomenon. Here we present some results we obtained using observation and modeling of the UV-excess in young forming stars, which are: (1) the determination of stellar and accretion properties in candidate older accreting young stellar objects and (2) the study of the star-disk interaction in the early stages of planetary system evolution in transitional disk systems.  相似文献   

18.
The total energy E of a star as a function of its angular momentum J and mass M in the Newtonian theory, E=E(J, M) [in general relativity, the gravitational mass of a star as a function of its angular momentum J and rest mass m, M=M(J, m)], is used to determine the remaining parameters (angular velocity, chemical potential, etc.) in the case of rigid rotation. Expressions are derived for the energy release during accretion onto a cool (with constant entropy), rapidly rotating neutron star (NS) in the Newtonian theory and in general relativity. A separate analysis is performed for the cases where the NS equatorial radius is larger and smaller than the radius of the marginally stable orbit in the disk plane. An approximate formula is proposed for the NS equatorial radius for an arbitrary equation of state, which matches the exact equation of state at J=0.  相似文献   

19.
Chi Yuan  Patrick Cassen 《Icarus》1985,64(3):435-447
The gravitational collapse of molecular clouds or cloud cores is expected to lead to the formation of stars that begin their lives in a state of rapid rotation. It is known that, in at least some specific cases, rapidly rotating, slf-gravitating bodies are subject to instabilities that cause them to assume ellipsoidal shapes. In this paper we investigate the consequences of such instabilities on the angular momentum evolution of a star in the process of formation from a collapsing cloud, and surrounded by a protostellar disk, with a view toward applications to the formation of the Solar System. We use a specific model of star formation to demonstrate the possibility that such a star would become unstable, that the resulting distortion of the star would generate spiral density waves in the circumstellar disk, and that the torque associated with these waves would regulate the angular momentum of the star as it feeds angular momentum to the disk. We conclude that the angular momentum so transported to the disk would not spread the disk to, say, Solar System dimensions, by the action of the spiral density waves alone. However, a viscous disk could effectively extract stellar angular momentum and attain Solar System size. Our results also indicate that viscous disks could feed mass and angular momentum to a growing protostar in such a manner that distortions of the star would occur before gravitational torques could balance the influx of angular momentum. In other situations (in which the viscosity was small), a gap could be cleared between the disk and star.  相似文献   

20.
In wind-fed X-ray binaries the accreting matter is Compton-cooled and falls freely on to the compact object. The matter has a modest angular momentum l and accretion is quasi-spherical at large distances from the compact object. Initially small non-radial velocities grow in the converging supersonic flow and become substantial in the vicinity of the accretor. The streamlines with l >( GMR ∗)1/2 (where M and R ∗ are the mass and radius of the compact object) intersect outside R ∗ and form a two-dimensional caustic which emits X-rays. The streamlines with low angular momentum, l <( GMR ∗)1/2, run into the accretor. If the accretor is a neutron star, a large X-ray luminosity results. We show that the distribution of accretion rate/luminosity over the star surface is sensitive to the angular momentum distribution of the accreting matter. The apparent luminosity depends on the side from which the star is observed and can change periodically with the orbital phase of the binary. The accretor then appears as a 'Moon-like' X-ray source.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号