首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Recently, the deterioration of water quality in the coastal zones of Lekki Peninsula area of Lagos due to saltwater infiltration into the freshwater aquifer has become a major concern. With the aim of providing valuable information on the hydrogeologic system of the aquifers, the subsurface lithology and delineating the groundwater salinity, vertical electrical resistivity (VES) sounding survey was carried out utilizing surface Schlumberger electrode arrays, and electrode spacing varying between 1 and 150 m. The DC resistivity surveys revealed significant variations in subsurface resistivity. Also, the VES resistivity curves showed a dominant trend of decreasing resistivity with depth (thus increasing salinity). In general, the presence of four distinct resistivity zones were delineated viz.: the unconsolidated dry sand (A) having resistivity values ranging between 125 and 1,028 Ωm represent the first layer; the fresh water-saturated soil (zone B) having resistivity values which correspond to 32–256 Ωm is the second layer; the third layer (zone C) is interpreted as the mixing (transition) zone of fresh with brackish groundwater. The resistivity of this layer ranges from 4 to 32 Ωm; while layer four (zone D) is characterized with resistivities values generally below 4 Ωm reflecting an aquifer possibly containing brine. The rock matrix, salinity and water saturation are the major factors controlling the resistivity of the formation. Moreover, this investigation shows that saline water intrusion into the aquifers can be accurately mapped using surface DC resistivity method.  相似文献   

2.
A geoelectrical resistivity survey using vertical electrical sounding (VES) was conducted at Chaj Doab (land between rivers Jhelum and Chenab, Pakistan) and Rachna Doab (land between rivers Chenab and Ravi, Pakistan), with the objective of investigating groundwater conditions. A total of 90 sites were selected with 43 sites in Chaj and 47 sites in Rachna Doabs. The resistivity meter (ABEM Terrameter SAS 4000, Sweden) was used to collect the VES data by employing a Schlumberger electrode configuration, with half current electrode spacings (AB/2) ranging from 2 to 180 m and the potential electrode (MN) from 1 to 40 m. The field data were interpreted using the Interpex IX1D computer software and the resistivity versus depth models for each location was estimated. The outputs of subsurface layers with resistivities and thickness presented in contour maps and 3-D views by using SURFER software were created. A total of 102 groundwater samples from nearby hydrowells at different depths were collected to develop a correlation between the aquifer resistivity of VES and the electrical conductivity (EC) of the groundwater and to confirm the resulted geophysical resistivity models. From the correlation developed, it was observed that the groundwater salinity in the aquifer may be considered low and so safe for irrigation if resistivity >45 Ω m, and marginally fit for irrigation having resistivity between 25 and 45 Ω m. The study area has resistivities from 3.9 to 2,222 Ω m at the top of the unsaturated layer, between 1.21 and 171 Ω m, in the shallow aquifers, and 0.14–152 Ω m in the deep aquifers of the study area. The results indicate that the quality of groundwater is better near the rivers and in the shallow layers compared to the deep layers.  相似文献   

3.
A large number of valleys and basin systems are present in the northwestern part of the Himalayas in Pakistan which form significant aquifers in the region. Hydrogeophysical investigations in the western part of Nowshera District, a part of the intermontane Peshawar basin, were undertaken to help to determine the availability of groundwater resources in the region. Thirty vertical electrical resistivity soundings (VES) were acquired using a Schlumberger expanding array configuration with a maximum current electrode spacing (AB/2) of 150 m in delineating the groundwater potential in the study area. The results of the interpreted VES data using a combination of curve matching technique and computer iterative modeling methods suggest that the area is underlain by 3 to 5 geo-electric layers. The interpretation results showed that the geo-electrical succession consists of alluvium comprising of alternating layers of clay, silty clay, fine to coarse sands, sand with gravels and gravels of variable thickness. High subsurface resistivity values are correlated with gravel–sand units and low resistivity values with the presence of clays and silts. The modeled VES results were correlated with the pumping tests results and lithological logs of the existing wells. The pumping test suggests the transmissivity of the aquifer sediments is variable corresponding to different sediments within the area. The gravel–sand intervals having high resistivity value show high transmissivity values, whereas clay–silt sediments show low transmissivities. It is concluded that majority of the high resistive gravel–sand sediments belong to an alluvial fan environment. These gravel–sand zones are promising zones for groundwater abstraction which are concentrated in the central part of the study area.  相似文献   

4.
The city of Burdur, which is built on an alluvium aquifer, is located in one of the most seismically active zones in southwestern Turkey. The soil properties in the study site are characterized by unconsolidated and water-saturated sediments including silty, clayey and sandy units, and shallow groundwater level is the other characteristic of the site. Thus, the city is under soil liquefaction risk during a large earthquake. A resistivity survey including 189 vertical electrical sounding (VES) measurements was carried out in 2000 as part of a multi-disciplinary project aiming to investigate settlement properties in Burdur city and its vicinity. In the present study, the VES data acquired by using a Schlumberger array were re-processed with 1D and 2D inversion techniques to determine liquefaction potential in the study site. The results of some 1D interpretations were compared to the data from several wells drilled during the project. Also, the groundwater level map that was previously obtained by hydrological studies was extended toward north by using the resistivity data. 2D least-squares inversions were performed along nine VES profiles. This provided very useful information on vertical and horizontal extends of geologic units and water content in the subsurface. The study area is characterized by low resistivity distribution (<150 Ωm) originating from high fluid content in the subsurface. Lower resistivity (3–30 Ωm) is associated with the Quaternary and the Tertiary lacustrine sediments while relatively high resistivity (40–150 Ωm) is related to the Quaternary alluvial cone deposits. This study has also shown that the resistivity measurements are useful in the estimation of liquefaction risk in a site by providing information on the groundwater level and the fluid content in the subsurface. Based on this, we obtained a liquefaction hazard map for the study area. The liquefaction potential was classified by considering the resistivity distributions from 2D inversion of the VES profiles, the types of the sediments and the extended groundwater level map. According to this map, the study area was characterized by high liquefaction hazard risk.  相似文献   

5.
A combined geophysical investigation consisting of vertical electrical sounding (VES) and multielectrode system was carried out to map the subsurface resistivity in all major lakes which are highly polluted by the discharge of sewage and other chemical effluents in greater Hyderabad, India. The structural features identified in the study area play a major role in groundwater flow and storage. The interpretation of geophysical data and lithologs indicates that a silt/clay zone (predominantly silt) has a thickness of 5–10 m all along the drainage from Patelcheruvu to the Musi River. The silt/clay zone inferred close to the lakes is a mixture of clay, silt and sand with more silt content as indicated from the lithologs during drilling. The low resistivity values obtained can be attributed to the pollutant accumulated in the silt which can reduce the resistivity values. Further, the TDS of the water samples in these wells are more than 1,000 mg/l which further confirms the above scenario. The pollution spread is less in the upstream areas whereas it is more in the downstream which can be attributed to the shallow water table conditions and also due to the interaction of surface water and groundwater.  相似文献   

6.
A combination of vertical electrical soundings (VES), 2D electrical resistivity imaging (ERI) surveys and borehole logs were conducted at Magodo, Government Reserve Area (GRA) Phase 1, Isheri, Southwestern Nigeria, with the aim of delineating the different aquifers present and assessing the groundwater safety in the area. The Schlumberger electrode array was adopted for the VES and dipole-dipole array was used for the 2D imaging. The maximum current electrode spread (AB) was 800 m and the 2D traverse range between 280 and 350 m in the east-west direction. The thickness of impermeable layer overlying the confined aquifer was used for the vulnerability ratings of the study area. Five lithological units were delineated: the topsoil, clayey sand, unconsolidated sand which is the first aquifer, a clay stratum and the sand layer that constitutes the confined aquifer horizon. The topsoil thickness varies from 0.6 to 2.6 m, while its resistivity values vary between 55.4 and 510.6 Ω/m. The clayey sand layers have resistivity values ranging from 104.2 to 143.9 Ω/m with thickness varying between 0.6 and 14.7 m. The resistivity values of the upper sandy layer range from 120.7 to 2195.2 Ω/m and thickness varies from 3.3 to 94.0 m. The resistivity of the clay layer varies from 11.3 to 96.1 Ω/m and the thickness ranges from 29.6 to 76.1 m. The resistivity value of the confined aquifer ranges between 223 and 1197.4 Ω/m. The longitudinal conductance (0.0017–0.02 mhos) assessment of the topsoil shows that the topsoil within the study area has poor overburden protective capacity, and the compacted impermeable clay layer shows that the underlying confined aquifer is well protected from contamination and can be utilized as a source of portable groundwater in the study area. This study therefore enabled the delineation of shallow aquifers, the variation of their thicknesses and presented a basis for safety assessment of groundwater potential zones in the study area.  相似文献   

7.
The use of wastewater for irrigation in sandy soil increases the pollution risk of the soil and may infiltrate to the shallow groundwater aquifer. In such environment, some important parameters need to be obtained for monitoring the wastewater in the unsaturated zone over the aquifer. These parameters include clay content, heterogeneities of the upper soils, depth to the aquifer and the variations of groundwater quality. In the present work, the efficiency of DC resistivity method in forms of 1-D and 2-D measurements was studied for wastewater monitoring in the Gabal el Asfar farm, northeast of Cairo, Egypt. Forty-one Schlumberger soundings (VES) were performed then followed by three pole-dipole 2-D profiles along some considered regions within the area. The resistivity measurements were integrated with the boreholes, hydrogeological and hydrochemical (surface and groundwater samples) information to draw a clear picture for the subsurface conditions. The obtained results were presented as cross sections and 3-D visualization to trace the clay intercalations within the unsaturated zone. In addition, a vulnerability map was created using the obtained results from 1-D Schlumberger survey and confirmed with the 2-D resistivity profiling. The obtained results have shown that the 2-D resistivity imaging technique is a powerful tool for mapping the small-scale variability within the unsaturated zone and the wastewater infiltration. However, limitations of resistivity techniques were observed in the area with limited resistivity contrast such as thin clay layers with brackish water background. Under that condition, the measured pattern of resistivity distributions depends on the applied electrode array, electrode spacing and using the available geological information during the inversion process.  相似文献   

8.
Electrical resistivity surveying for delineating seawater intrusion was performed in the Dibdibba aquifer in the area between the cities of Al-Zubair–Safwan and Al-Zubair–Umm Qasr in the vicinity of Khor AL-Zubair Channel, Basrah governorate, southern Iraq. Fourteen 2D resistivity profiles with a total length of 14 km were collected in the study area. The resistivity sections were compared with lithological data extracted from 11 boreholes. Thirty-nine groundwater samples were collected within the area and analyzed for chemical constituents; internal hydrogeological reports and unpublished studies were also evaluated. Results reveal the existence of three major resistivity layers, ranging from 0.1 to 130 Ωm at various depths and locations. The first layer has very low electrical resistivity (0.1–5 Ωm) representing a layer saturated with saltwater intruded from Khor AL-Zubair Channel. The second layer shows resistivity in the range of 5–130 Ωm, attributed to a transition zone and an unaffected zone saturated with brackish groundwater. The last resistivity layer (<?3 Ωm) represents coarse-grain sediments saturated with saline groundwater. Furthermore, a hard clay bed (Jojab) appears with a resistivity of 3–7 Ωm in all 2D imaging lines within a depth of 20–28 m. Electrical conductivity (EC) measurements from seven wells collected in 2014 and 2016 show a positive EC difference increasing landward with an average increase of 1927 µS/cm. In addition, six chemical relationships (Na/Cl, [Ca?+?Mg]/[HCO3?+?SO4], SO4/HCO3, SO4/Cl, Mg/Ca and Cl/[HCO3?+?CO3]) are used to detect the source of salinity in groundwater. This study proves that extensive use of high-resolution 2D imaging sections, alongside lithological and hydrogeological data, can serve as a useful tool to delineate the boundaries between aquifers, identify hydraulic boundaries between groundwater with different salinities and allocate hard clay layers between the upper and lower Dibdibba aquifer. In general, the combination of 2D imaging and hydrochemistry enables conceptualization of the hydrogeological situation in the subsurface and characterization of the salinity source, here seawater intrusion, in the study area. There have been no studies published so far on the characteristics of saltwater intrusion in the study area, and this study is considered to be important for monitoring and studying the intrusion and regression of seawater.  相似文献   

9.
El Bahariya Oasis is a part of the great groundwater reservoir of the Western Desert of Egypt. The different stratigraphic units, the water-bearing zones, aquifer potentiality conditions, and the favorable locations for drilling new wells were evaluated by carrying out 24 Schlumberger vertical electrical soundings (VESs), along with the data of some wells drilled in the near vicinity of the measuring sites. The results of the interpreted field data revealed the presence of ten distinctive subsurface geoelectric layers; a thin surface, dry loose sand and gravel, sandy clay and shale interclations, saturated coarse sand layer, shale and clay, and saturated fine sandstone and saturated coarse sandstone. The aquifer is a multilayer aquifer with different thicknesses represented by the fourth, sixth, eighth, and tenth geoelectric layers. Results also revealed that the thicknesses of the water-bearing horizons increase towards the east direction, consequently the aquifer potentiality increases. Therefore, the best production well locations are in that direction. Depth to water starts from 40 m at VES no. 14 and increases gradually toward the east to reach 66 m at VES no. 5. Hydrogeochemical analysis of two groundwater samples taken from Ein El Ezza and well no. 2 showed that groundwater in the study area is suitable for agricultural purposes but not for human consumption due to the high iron content. Recommendations concerning site selection for drilling new productive groundwater wells are given.  相似文献   

10.
The effect of the Ruseifa municipal landfill on the shallow groundwater aquifers in the area was investigated in two separate sites. The first one was not used since 1994, whereas the other is still being used for dumping. Fourteen electrical resistivity soundings were performed to detect the leachate and its effect on the quality of the groundwater. Results indicated that the solid waste thickness of the landfill was ranged from 3 to 20 m with resistivity value less than 10 Ω m. Based on the resistivity decreases of values less than 5 Ω m, the leachate was detected in the landfill sites at depths ranged from 10 to 50 m. However, the flow direction of the leachate at depth ranging 10–20 m in the terminated site was toward north, whereas the flow direction of the leachate in the site still used for dumping was toward east–northeast which causes the major source of groundwater pollution.  相似文献   

11.
Integrated hydrogeochemical and geophysical methods were used to study the salinity of groundwater aquifers along the coastal area of north Kelantan. For the hydrogeochemical investigation, analysis of major ion contents of the groundwater was conducted, and other chemical parameters such as pH and total dissolved solids were also determined. For the geophysical study, both geoelectrical resistivity soundings and reflection seismic surveys were conducted to determine the characteristics of the subsurface and groundwater contained within the aquifers. The pH values range from 6.2 to 6.8, indicating that the groundwater in the study area is slightly acidic. Low content of chloride suggests that the groundwater in the first aquifer is fresh, with an average concentration of about 15.8 mg/l and high geoelectrical resistivity (>45 ohm m). On the other hand, the groundwater in the second aquifer is brackish, with chloride concentration ranging from 500 mg/l to 3,600 mg/l and very low geoelectrical resistivity (<45 ohm m) as well as high concentration of total dissolved solids (>1,000 mg/l). The groundwater in the third aquifer is fresh, with chloride concentrations generally ranging from 2 mg/l to 210 mg/l and geoelectrical resistivity of greater than 45 ohm m. Fresh and saltwater interface in the first aquifer is generally located directly in the area of the coast, but, for the second aquifer, both hydrogeochemical and geoelectrical resistivity results indicate that the fresh water and saltwater interface is located as far as 6 km from the beach. The considerable chloride ion content initially suggests that the salinity of the groundwater in the second aquifer is probably caused by the intrusion of seawater. However, continuous monitoring of the chloride content of the second aquifer indicated no significant changes with time, from which it can be inferred that the salinity of the groundwater is not affected by seasonal seawater intrusion. Schoeller diagrams illustrate that sulphate concentrations of the groundwater of the second aquifer are relatively low compared to those of the recent seawater. Therefore, this result suggests that the brackish water in the second aquifer is probably from ancient seawater that was trapped within the sediments for a long period of time, rather than due to direct seawater intrusion.  相似文献   

12.
Nine vertical electrical soundings of Schlumberger configuration were measured with AB/2 = 1–500 m. Manual and computerized interpretation were done to detect the subsurface stratigraphy of the study area. The results show that the subsurface section consists of alternated units of limestone, clay, marly limestone and dolomitic limestone and the thickness of clay unit ranged from 10 to 40 m. Nine dipole–dipole sections have also been constructed to give a clearer picture of the subsurface at the study area. The length of each dipole–dipole section is 235 m, with a electrode spacing ranging between 5 and 25 m. The Res2Dinv software was used for processing and interpretation of field data. The dipole–dipole sections at the upper plateau display high resistivity values at most parts of the plateau. Twelve shallow seismic refraction profiles are measured at selected locations for the dipole sections to define the interface between the fractured limestone and the upper surface of the clay layer. Each profile consists of 24 geophones with a geophone spacing of 2–3 m. Interpretation of seismic data indicates that the surface layer of the upper plateau consists of fractured limestone with a velocity range of 1.16–1.56 km/s and another layer of compacted clay with a velocity range of 1.38–1.88 km/s. Furthermore, the surface layer of the middle plateau consists of marl and marly limestone with a velocity about 2.1 km/s and its underlying layer consists of massive limestone with a velocity of 4.94 km/s.  相似文献   

13.
Integrated geoelectrical resistivity, hydrochemical and soil property analysis methods were used to study the groundwater characteristics of sandy soils within a shallow aquifer in the agriculture area, Machang. A pilot test investigation was done prior to the main investigation. The area was divided into two sites. Test-Site 1 is non-fertilized; Test-Site 2 is the former regularly fertilized site. From the surface to depths of 75 cm, a lower average resistivity was obtained in Test-Site 2 (around 0.37 less than in Test-Site 1). The presence of nitrate and chloride contents in pore water reduced the resistivity values despite the low moisture content. The pH values for the whole area range from 4.11 to 6.88, indicating that the groundwater is moderately to slightly acidic. In the southern region, concentration of nitrate is considered to be high (>20 mg/l), while it is nearly zero in the northern region. In the south, the soil properties are similar. However, the geoelectrical model shows lower resistivity values (around 18 Ω m) at the sites with relatively high nitrate concentration in the groundwater (>20 mg/l). Conversely, the sites with low nitrate concentration reveal the resistivity values to be higher (>35 Ω m). Basement and groundwater potential maps are generated from the interpolation of an interpreted resistivity model. The areas that possibly have nitrate-contaminated groundwater have been mapped along with groundwater flow patterns. The northern part of the area has an east to west groundwater flow pattern, making it impossible for contaminated water from the southern region to enter, despite the northern area having a lower elevation.  相似文献   

14.
The semiarid Punata alluvial fan is located in the central part of Bolivia. The main activity of this region is the extensive agriculture, and groundwater is the main water supply. Local villagers who use groundwater reported that in some places groundwater has a salty taste. In order to investigate the origin of this problem, several TEM soundings were performed in the study area, and they were complemented with ERT surveys. The results show top layers with resistivity values ranging from 30 to 200 Ωm and a bottom layer with resistivity values ranging from 1 to 20 Ωm, which might be interpreted as the main aquifer and a layer with high clay content, respectively. Between the top and bottom layer, a transition zone with saline water has been identified, with resistivity values ranging from 0.1 to 1 Ωm. The origin of this closed-basin brine might be a product of the evaporation of paleolakes during the lower Pliocene, where saline clays were deposited. This study demonstrated the effectiveness of TEM sounding for mapping very low resistivity zones such as saline water.  相似文献   

15.
Groundwater is a treasured earth’s resource and plays an important role in addressing water and environmental sustainability. However, its overexploitation and wide spatial variability within a basin and/or across regions are posing a serious challenge for groundwater sustainability. Some parts of southern West Bengal of India are problematic for groundwater occurrence despite of high rainfall in this region. Characterization of an aquifer in this area is very important for sustainable development of water supply and artificial recharge. Electrical resistivity surveys using 1-D and 2-D arrays were performed at a regular interval from Subarnarekha River at Bhasraghat (south) to Kharagpur (north) to map the lithological variations in this area. Resistivity sounding surveys were carried out at an interval of 2–3 km. Subsurface resistivity variation has been interpreted using very fast simulated annealing (VFSA) global optimization technique. The analysis of the field data indicated that the resistivity variation with depth is suitable in the southern part of the area and corresponds to clayey sand. Interpreted resistivity in the northern part of the area is relatively high and reveals impervious laterite layer. In the southern part of the area resistivity varies between 15 and 40 Ωm at a depth below 30 m. A 2-D resistivity imaging conducted at the most important location in the area is correlated well with the 1-D results. Based on the interpreted resistivity variation with depth at different locations different types of geologic units (laterite, clay, sand, etc.) are classified, and the zone of interests for aquifer has been demarcated. Study reveals that southern part of the area is better for artificial recharge than the northern part. The presence of laterite cover in the northern part of the area restricts the percolation of rainwater to recharge the aquifer at depth. To recharge the aquifer at depth in the northern part of the area, rainwater must be sent artificially at depth by puncturing laterite layers on the top. Such studies in challenging areas will help in understanding the problems and finding its solution.  相似文献   

16.
The use of resistivity sounding and two-dimensional (2-D) resistivity imaging was investigated with the aim of delineating and estimating the groundwater potential in Keffi area. Rock types identified are mainly gneisses and granites. Twenty-five resistivity soundings employing the Schlumberger electrode array were conducted across the area. Resistivity sounding data obtained were interpreted using partial curve matching approach and 1-D inversion algorithm, RESIST version 1.0. The 2-D resistivity imaging was also carried out along two traverses using dipole–dipole array, and the data obtained were subjected to finite element method modeling using DIPRO inversion algorithm to produce a two-dimensional subsurface geological model. Interpretation of results showed three to four geoelectrical layers. Layer thickness values were generally less than 2 m for collapsed zone, and ranged from 5 to 30 m for weathered bedrock (saprolite). Two major aquifer units, namely weathered bedrock (saprolite) aquifer and fractured bedrock (saprock) aquifer, have been delineated with the latter usually occurring beneath the former in most areas. Aquifer potentials in the area were estimated using simple schemes that involved the use of three geoelectrical parameters, namely: depth to fresh bedrock, weathered bedrock (saprolite) resistivity and fractured bedrock (saprock) resistivity. The assessment delineated the area into prospective high, medium and low groundwater potential zones.  相似文献   

17.
Transient Electromagnetic (TEM), known also as Time Domain Electromagnetic (TDEM) and Magnetic Resonance Sounding (MRS) methods were applied jointly to investigate variations in lithology and groundwater salinity in the Nahal Hever South area (Dead Sea coast of Israel). The subsurface in this area is highly heterogeneous and composed of intercalated sand and clay layers over a salt formation, which is partly karstified. Groundwater is very saline, with a chloride concentration of 100–225 g/l. TEM is known as an efficient tool for investigating electrically conductive targets like saline water, but it is sensitive to both the salinity of groundwater and the porosity of rocks. MRS, however, is sensitive primarily to groundwater volume, but it also allows delineating of lithological variations in water-saturated formations. MRS is much less sensitive to variations in groundwater salinity in comparison with TEM. We show that MRS enables us to resolve the fundamental uncertainty in TEM interpretation caused by the equivalence between groundwater resistivity and lithology. Combining TEM and MRS, we found that the sandy Dead Sea aquifer filled with Dead Sea brine is characterized by a bulk resistivity of ρx > 0.4 Ωm, whereas zones with silt and clay in the subsurface are characterized by a bulk resistivity of ρx < 0.4 Ωm. These observations are confirmed by calibration of the TEM method performed near 18 boreholes.  相似文献   

18.
Geoelectric investigation using vertical electrical sounding (VES) (Schlumberger electrode configuration) was carried out in 14 locations at Ninth Mile area, southeastern Nigeria to determine the variations and interrelationship of some geoelectric and geohydraulic parameters of a sandstone hydrolithofacies. The measured resistivity data were interpreted using manual and computer software packages, which gave the resistivity, depth, and thickness for each layer within the maximum current electrodes separation. The aquifer resistivity values range from 86.56 to 4753.0 Ωm with 1669.40 Ωm average value. The values of water resistivity from borehole locations close to the sounding points range from 79.49 to 454 .55 Ωm and averaging about 264.7 Ωm. Porosity values of the sandy aquifer range from 30.19 to 34.20%. Fractional porosity values range from 0.3019 to 0.3292, while the tortuosity values vary between 2.91 and 22.85. The geohydraulic parameters estimated vary across the study area. Formation factor ranges from 0.28 to 15.29, hydraulic conductivity ranges from 1.21 to 66.54 m/day which, however, influences the natural flow of water in the aquifer while tortuosity values range from 2.91 to 23.27. The contour maps clearly show the variation of these parameters in the subsurface and the plots show their relationship and high correlation coefficients with one another. The results of this study have revealed the geological characteristics of the subsurface aquifer, established the influence on the amount of groundwater, and proposed a strategy for the management and exploitation of groundwater resources in the area and other aquiferous formations.  相似文献   

19.
A shallow unconfined glaciofluvial aquifer in North Dakota (USA) has largest groundwater sulfate concentrations near the bottom boundary. A deltaic silt layer underlying the aquifer, at >16 m, is the modern proximate sulfate source for the aquifer. The original sulfate source was pyrite in the organic-rich shale component of the aquifer and silt grain matrix. An oxidizing event occurred during which grain-matrix pyrite sulfur was oxidized to sulfate. Thereafter the silt served as a “conserving” layer, slowly feeding sulfate into the lower part of the aquifer and the underlying till. A method was developed for estimating the approximate initial sulfate concentration in the source layer and the redistribution time since the oxidizing event, using a semi-generic convection–dispersion model. The convection–dispersion model and a model for the evolution of modern sulfate δ 34S in silt-layer pore water from the initial grain-matrix pyrite δ 34S, both estimated that the oxidizing event occurred several thousand years ago, and was likely related to the dry conditions of the Hypsithermal Interval. The silt layer also serves as an arsenic source. Results indicate that deltaic silts derived from organic-rich shale parent materials in a glacial environment can provide long-term sources for sulfate and arsenic and possibly other related oxidative weathering products.  相似文献   

20.

Fluvio-deltaic aquifers are the primary source of drinking water for the people of Bangladesh. Such aquifers, which comprise the Ganges-Brahmaputra-Meghna Delta, are hydrogeologically heterogeneous. Because of widespread groundwater quality issues in Bangladesh, it is crucial to know the hydrostratigraphic architecture and hydrochemistry, as some aquifer units are contaminated, whereas others are safe. Geophysical methods provide a potentially effective and noninvasive method for extensive characterization of these aquifers. This study applies and investigates the limitations of using electrical resistivity imaging (ERI) for mapping the hydrostratigraphy and salinity of an aquifer-aquitard system adjacent to the Meghna River. Some electrical resistivity (ER) sections showed excellent correlation between resistivity and grain size. These suggest that ERI is a powerful tool for mapping internal aquifer architecture and their boundaries with finer-grained aquitards which clearly appear as low-ER zones. However, in parts of some ER sections, variations in electrical properties were determined by porewater resistivity. In these cases, low ER was indicative of brine and did not indicate the presence of finer-grained materials such as silt or clay. Accordingly, the following hydrostratigraphic zones with different resistivities were detected: (1) aquifers saturated with fresh groundwater, (2) a regional silt/clay aquitard, and (3) a deeper brine-saturated formation. In addition, shallow silt/clay pockets were detected close to the river and below the vadose zone. ERI is thus a promising technique for mapping aquifers versus aquitards; however, the observations are easily confounded by porewater salinity. In such cases, borehole information and groundwater salinity measurements are necessary for ground-truthing.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号