首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
鲜水河活动断裂带地震地质研究的新进展   总被引:2,自引:0,他引:2  
鲜水河断裂带是我国西部著名的断裂之一。通过对鲜水断裂带所进行的1/5万地质填图及相应的工作,对该断裂带的演化历史。组合形成,分段性和各段的活动习性,古地震与历史地震的复发间隔等方面的研究,都取得了新的进展。  相似文献   

2.
In this paper, fluid flow is examined for a mature strike‐slip fault zone with anisotropic permeability and internal heterogeneity. The hydraulic properties of the fault zone were first characterized in situ by microgeophysical (VP and σc) and rock‐quality measurements (Q‐value) performed along a 50‐m long profile perpendicular to the fault zone. Then, the local hydrogeological context of the fault was modified to conduct a water‐injection test. The resulting fluid pressures and flow rates through the different fault‐zone compartments were then analyzed with a two‐phase fluid‐flow numerical simulation. Fault hydraulic properties estimated from the injection test signals were compared to the properties estimated from the multiscale geological approach. We found that (1) the microgeophysical measurements that we made yield valuable information on the porosity and the specific storage coefficient within the fault zone and (2) the Q‐value method highlights significant contrasts in permeability. Fault hydrodynamic behavior can be modeled by a permeability tensor rotation across the fault zone and by a storativity increase. The permeability tensor rotation is linked to the modification of the preexisting fracture properties and to the development of new fractures during the faulting process, whereas the storativity increase results from the development of micro‐ and macrofractures that lower the fault‐zone stiffness and allows an increased extension of the pore space within the fault damage zone. Finally, heterogeneities internal to the fault zones create complex patterns of fluid flow that reflect the connections of paths with contrasting properties.  相似文献   

3.
唐山-河间-磁县新生地震构造带   总被引:30,自引:5,他引:30       下载免费PDF全文
地震构造研究往往注重那些形成历史长且规模较大的活动断裂带。实际上还存在一种与现代地质环境和区域应力状态基本保持一致的最近构造阶段新发育的断裂带,即新生断裂带。地震活动与这两种构造带关系密切。根据地震和地质构造等资料分析认为,唐山-河间-磁县地震带是一条晚第三纪开始发育的新生地震构造带。  相似文献   

4.
唐山-河间-磁县新生地震构造带   总被引:11,自引:8,他引:11       下载免费PDF全文
徐杰  牛娈芳 《地震地质》1996,18(3):193-198
地震构造研究往往注重那些形成历史长且规模较大的活动断裂带。实际上还存在一种与现代地质环境和区域应力状态基本保持一致的最近构造阶段新发育的断裂带,即新生断裂带。地震活动与这两种构造带关系密切。根据地震和地质构造等资料分析认为,唐山-河间-磁县地震带是一条晚第三纪开始发育的新生地震构造带  相似文献   

5.
郯庐断裂带最新活动的断层分布于潍坊至嘉山一带, 而安丘—莒县断裂是郯庐断裂带的重要活动断裂之一。 基于地质考察、 高密度电法探测和钻孔联合剖面, 对安丘—莒县断裂小店—大店段断层活动证据及断层泥分布特征进行研究。 地质考察发现紫红色砂砾岩逆冲到全新世耕植土上方, 两者之间发育断层泥带, 断层泥内含少量角砾岩, 为全新世活动逆断层。 高密度电法探测结果表明断层通过位置电阻率差异明显。 钻孔联合剖面揭露的地层: 全新世耕植土、 全风化砂质泥岩、 强风化砂质泥岩、 碎裂岩、 断层泥带及中风化砂质泥岩。 钻孔K1和K2揭露深灰色断层泥带, 倾向西, 倾角约为74°, 厚度约为13.9 m, 与南侧出露的断层泥带产状相协调。 工作区范围内, 发育多处褶皱、 破碎带和断层泥带, 断层表现为全新世逆断层性质。  相似文献   

6.
We combine detailed mapping and microstructural analyses of small fault zones in granodiorite with numerical mechanical models to estimate the effect of mesoscopic (outcrop-scale) damage zone fractures on the effective stiffness of the fault zone rocks. The Bear Creek fault zones were active at depths between 4 and 15 km and localize mesoscopic off-fault damage into tabular zones between two subparallel boundary faults, producing a fracture-induced material contrast across the boundary faults with softer rocks between the boundary faults and intact granodiorite outside the boundary faults. Using digitized fault zone fracture maps as the modeled fault geometries, we conduct nonlinear uniaxial compression tests using a novel finite-element method code as the experimental “laboratory” apparatus. Map measurements show that the fault zones have high nondimensional facture densities (>1), and damage zone fractures anastamose and intersect, making existing analytical effective medium models inadequate for estimation of the effective elastic properties. Numerical experiments show that the damage zone is strongly anisotropic and the bulk response of the fault zone is strain-weakening. Normal strains as small as 2% can induce a reduction of the overall stiffness of up to 75%. Fracture-induced effective stiffness changes are large enough to locally be greater than intact modulus changes across the fault due to juxtaposition of rocks of different lithologies; therefore mesoscopic fracturing is as important as rock type when considering material or bimaterial effects on earthquake mechanics. These results have important implications for earthquake rupture mechanics models, because mesoscopic damage zone fractures can cause a material contrast across the faults as large as any lithology-based material contrast at seismogenic depths, and the effective moduli can be highly variable during a single rupture event.  相似文献   

7.
In order to reconstruct the architectural evolution of a fault zone with heterogeneous structures, we studied the Atera Fault in Central Japan, and described the detailed mesoscopic and microscopic features of the zone. The fault zone studied consists of a 1.2‐m wide fault core of fault breccia mixed with fragments derived from welded tuff, granite, and mafic volcanic rocks. The 1.2‐m wide fault core is bordered by a western damage zone characterized by a welded tuff fault breccia and an eastern damage zone characterized by a granite cataclasite. A secondary fault core, a 30‐cm wide granite‐derived fault gouge, cross‐cuts the granite cataclasite. Although welded tuff fault breccia and granite cataclasite are also pervasively fractured and fragmented, the fault cores are significantly affected by fragment size reduction due to intense abrasive wear and comminution. The 1.2‐m wide fault core includes fragments and a sharp dark layer composed of mafic volcanic rocks, which can be correlated with neighboring 1.6 Ma volcanic rocks. This observation places a younger constraint on the age of the fault core formation. Carbonate coating on basalt fragments in the 1.2‐m wide fault core has also been fractured indicating the repetition of intense fragmentation. Bifurcated, black and gray veins near the 1.2‐m wide fault core are likely injection veins, formed by the rapid injection of fine material within fault zones during seismic events. The granite‐derived fault gouge, characterized by hard granite fragments without intense brecciation and microfracturing, in a kaolinite‐rich clay matrix, is interpreted as the most recent slip zone within the exposed fault zone. A preview of published geological and hydrological studies of several fault zones shows that clay‐rich fault cores can exhibit much lower permeability than the adjacent damage zones represented in this present case by the welded tuff fault breccia and granite cataclasite.  相似文献   

8.
We present the first demonstration of hydraulic tomography (HT) to estimate the three-dimensional (3D) hydraulic conductivity (K) distribution of a fractured aquifer at high-resolution field scale (HRFS), including the fracture network and connectivity through it. We invert drawdown data collected from packer-isolated borehole intervals during 42 pumping tests in a wellfield at the former Naval Air Warfare Center, West Trenton, New Jersey, in the Newark Basin. Five additional tests were reserved for a quality check of HT results. We used an equivalent porous medium forward model and geostatistical inversion to estimate 3D K at high resolution (K blocks <1 m3), using no strict assumptions about K variability or fracture statistics. The resulting 3D K estimate ranges from approximately 0.1 (highest-K fractures) to approximately 10−13 m/s (unfractured mudstone). Important estimated features include: (1) a highly fractured zone (HFZ) consisting of a sequence of high-K bedding-plane fractures; (2) a low-K zone that disrupts the HFZ; (3) several secondary fractures of limited extent; and (4) regions of very low-K rock matrix. The 3D K estimate explains complex drawdown behavior observed in the field. Drawdown tracing and particle tracking simulations reveal a 3D fracture network within the estimated K distribution, and connectivity routes through the network. Model fit is best in the shallower part of the wellfield, with high density of observations and tests. The capabilities of HT demonstrated for 3D fractured aquifer characterization at HRFS may support improved in situ remediation for contaminant source zones, and applications in mining, repository assessment, or geotechnical engineering.  相似文献   

9.
Saline seepage zone development, and hence the onset of dryland salinity, is a major environmental problem occurring within the Spicers Creek catchment. The primary objective of this paper was to identify previously unmapped faults and show the correlation between these faults and groundwater salinization. As identified from this study, there is a close association between geological structural features and the formation of saline seepage zones. The most saline groundwaters in the catchment were encountered where two geological structures join and form a fault intersection. These saline groundwaters are found at various depths within the fractured aquifers, and changes in groundwater chemistry in the aquifers are associated with the presence of fault zones. 18O and δ2H stable isotopes, together with 87Sr/86Sr isotopic ratios, indicate that groundwaters within the fault zones are enriched in 18O and have a strontium signature similar to seawater. This study identifies several geological structures in the Spicers Creek catchment and demonstrates that groundwaters with the highest salinity arise where fault intersections occur. The results of this study may be used to interpret further the mechanisms leading to seepage zone formation in dryland salinity‐affected catchments located throughout the Central West region of New South Wales, Australia. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

10.
Accurate characterization of heterogeneity in groundwater basins is crucial to the sustainable management of groundwater resources. This study explores the temporal sampling issues and the role of flux measurements in the characterization of heterogeneity in groundwater basins using numerical experiments. The experiments involve a digital basin imitating the groundwater basin of the North China Plain (NCP), where the groundwater exploitation reduction program is ongoing. Using the experiments, we champion that the reduction program could collect groundwater level information induced by operational variations of existing pumping wells at different locations in the basin. Such a dataset could serve as a basin-scale hydraulic tomography (HT) to characterize the basin-scale heterogeneity cost-effectively. Both steady-state and transient-state inversion experiments demonstrate the advantage of HT surveys in characterizing basin-scale heterogeneity over conventional pumping tests at fixed well locations. Additionally, head data at the early, intermediate, and late time from well hydrographs should be selected for the HT analysis to maximize HT's power and save computational costs. When accurate geological zones are incorporated in prior information, flux measurements significantly improve parameter estimates based on conventional pumping tests. However, their effects are less noticeable for long-term HT surveys in such basin-scale aquifers without fissures or fractures. This basin-scale tomographic survey example serves a guide for field data collection and optimization of the analysis of future basin-scale HT.  相似文献   

11.
To study the impact of modern coal mining on the overlying formation, a full‐life‐cycle four‐dimensional seismic monitoring study has been carried out. Four seismic data campaigns have been performed using flexi‐bin geometry with square bins, with total duration of 171 days. The four seismic datasets have been processed with the same processing workflow and parameters; major problems such as statics correction, signal‐to‐noise ratio, resolution, and consistency processing are addressed taking into account the geological features of the research area. This guarantees that remaining four‐dimensional differences between the time‐lapse datasets show mostly geological factors due to the coal mining and effects such as surface subsidence. Our four‐dimensional seismic monitoring of modern coal mining shows that mined and unmined areas have significant zoning characteristics; coal mining has a direct impact on the overlying formation. The mining leads to obvious event subsidence, which reflects that overlying formations undergo subsidence during the mining process. The overlying formation appears as two zones called caving zone and fractured zone. We determine the fault dip of the overlying formation at one end of the working face to be 56°or so by calculation and conversion. We also see that, during the coal mining process, over time, the overlying formation has a self‐recovery capability, which gradually strengthens from the roof siltstone upward to the Aeolian sandstone near the surface. The stability of 20‐m coal pillars between working faces displays a strengthening trend and remains safe during the mining process due to both coal seam supporting and formation compaction effects.  相似文献   

12.
Hydraulic tomography for detecting fracture zone connectivity   总被引:1,自引:0,他引:1  
Hao Y  Yeh TC  Xiang J  Illman WA  Ando K  Hsu KC  Lee CH 《Ground water》2008,46(2):183-192
Fracture zones and their connectivity in geologic media are of great importance to ground water resources management as well as ground water contamination prevention and remediation. In this paper, we applied a recently developed hydraulic tomography (HT) technique and an analysis algorithm (sequential successive linear estimator) to synthetic fractured media. The application aims to explore the potential utility of the technique and the algorithm for characterizing fracture zone distribution and their connectivity. Results of this investigation showed that using HT with a limited number of wells, the fracture zone distribution and its connectivity (general pattern) can be mapped satisfactorily although estimated hydraulic property fields are smooth. As the number of wells and monitoring ports increases, the fracture zone distribution and connectivity become vivid and the estimated hydraulic properties approach true values. We hope that the success of this application may promote the development and application of the new generations of technology (i.e., hydraulic, tracer, pneumatic tomographic surveys) for mapping fractures and other features in geologic media.  相似文献   

13.
根据人们对板缘地震填空的认识,本文用震级—断层长度的经验关系式分析了我国郯庐断裂带、张家口—烟台断裂带、鲜水河和塔里木盆地北缘等断裂带的地震活动与地质构造的关系。指出在板块内部同样存在着地震沿带逐渐“填满补齐”的现象。这种地震填空,主要发生在那些扭压型和剪滑型的断裂带上。一个基本连续的活动断裂带是板内地震填空所必需的地质条件。作者认为,板内地震填空与断层现代运动的不同型式(或状态)密切相关。一个活动断裂带由稳滑、相对闭锁到破裂位错正是地震空区形成、发展直至发生大地震的带内地震填空过程,与此相应的应变积累段、闭锁段和释放松动段在地质上的差别是:断面上新沉积物覆盖程度依次减小,断层泥粘结度逐次降低而其厚度依次增厚,因而对于那些全新世以来有过活动而断面上新沉积物覆盖较大的一类活断层尤应引起注意。  相似文献   

14.
Fault zones are an important control on fluid flow, affecting groundwater supply, contaminant migration, and carbon storage. However, most models of fault seal do not consider fault zone cementation, despite the recognition that it is common and can dramatically reduce permeability. In order to study the field-scale hydrogeologic effects of fault zone cementation, we conducted a series of aquifer pumping tests in wells installed within tens of meters of the variably cemented Loma Blanca Fault, a normal fault in the Rio Grande Rift. In the southern half of the study area, the fault zone is cemented by calcite; the cemented zone is 2-8 m wide. In the center of the study area, the cemented fault zone is truncated at a buttress unconformity that laterally separates hydrostratigraphic units with a ∼40X difference in permeability. The fault zone north of the unconformity is not cemented. Constant rate pumping tests indicate that where the fault is cemented, it is a barrier to groundwater flow. This is an important demonstration that a fault with no clay in its core and similar sediment on both sides can be a barrier to groundwater flow by virtue of its cementation; most conceptual models for the hydrogeology of faults would predict that it would not be a barrier to groundwater flow. Additionally, the lateral permeability heterogeneity across the unconformity imposes another important control on the local flow field. This permeability discontinuity acts as either a no-flow boundary or a constant head boundary, depending on the location of pumping.  相似文献   

15.
有研究认为1989年和1991年阳原盆地西侧冀晋交界附近发生的2次中强地震震群导致盆地东侧应力随之调整,意味着阳原盆地开启了新的地震活跃周期。盆地东侧地震活动主要集中在盆地北缘断裂附近,其中段大蟒沟至台家庄为该北缘断裂最活动段,该断裂带的最新活动情况对于震情形势分析具有重要意义。本研究在河北阳原盆地北缘断裂带中段的大蟒沟、姚家庄、南口村、台家庄布设了4条测线开展2期Rn、CO2及Hg浓度测量,在南口村、台家庄剖面开展一期土壤化学成分分析,以研究该盆地北缘断裂带中段土壤气体地球化学特征空间差异及其与断裂活动的关系。结果表明:气体浓度高值点分布在断层陡坎、破碎带上,利用断层气在该区域探测隐伏断裂的浅层位置具有可行性;南口村剖面土壤气体释放强度相对高于其他剖面,这种浓度空间分布差异性可能是由于地质构造结构与断裂活动性引起的断裂破碎程度不同所致;土壤中总汞(THg)含量与气体浓度空间分布上具有一定吻合性,基于土壤中总有机碳(TOC)能够吸附Hg元素的特征,THg浓度分布特征能反映一段时间内断层活动状态;结合断裂带周边定点前兆连续观测数据及地震活动性分析认为,该断裂目前活动水平相对较弱。  相似文献   

16.
Drawdown data from independent pumping tests have widely been used to validate the estimated hydraulic parameters from inverse modeling or hydraulic tomography (HT). Yet, the independent pumping test has not been clearly defined. Therefore, the goal of this paper is to define this independent pumping test concept, based on the redundant or nonredundant information about aquifer heterogeneity embedded in the observed heads during cross-hole pumping tests. The definition of complete, moderate redundancy and high nonredundancy of information are stipulated using cross-correlation analysis of the relationship between the head and heterogeneity. Afterward, data from numerical experiments and field sequential pumping test campaigns reinforce the concept and the definition.  相似文献   

17.
This study investigated geological evidence for near-surface crustal deformation in a high-strain shear zone that has been geodetically identified but which is not associated with obvious tectonic landforms. Fieldwork was conducted in the east–west-trending southern Kyushu high-strain shear zone (SKHZ), Japan, focusing mainly on occurrences of fracture zones, which are defined by a visible fracture density of >1 per 10 cm2 and are commonly associated with cataclasite, fault breccia, and gouge. The area in which east–west-trending fracture zones are dominant is restricted to the east–west-trending, ~2-km-wide aftershock area of the 1997 Northwestern Kagoshima Earthquakes. Analysis of slip data from minor faults using the multiple inverse method, irrespective of whether the faults are in fracture zones, reveals that the area where the calculated main stress field is consistent with the current stress field estimated from focal-mechanism solutions of microearthquakes is restricted to the east–west-trending aftershock area. This finding for the SKHZ contrasts with the case of the Niigata–Kobe Tectonic Zone, which is a major strain-concentration zone with many exposed active faults in central Japan and for which the stress field estimated using fault-slip data is considered to be uniform and coincides with the current stress field. The cumulative amount of displacement estimated from the areal density of fracture zones in the SKHZ study area is smaller than that estimated from geodetically measured strain rates. Investigations based on slip data from minor faults and fracture-zone occurrence could help to identify concealed faults that are too small to generate tectonic landforms but which are sufficiently large to trigger major earthquakes.  相似文献   

18.
江西省万载县野猫冲铜矿床为中低温热液(成矿流体)沿构造破碎带蚀变-蚀变岩型铜矿床。在地表地质调查、钻孔岩芯考察及岩矿鉴定的基础上,对野猫冲铜矿控矿构造进行详细研究,表明北东东向大型叠瓦状推(滑)覆构造控制矿区内各地质单元的延深与展布,北东向韧性剪切变形带控制矿区铜金矿体的展布,矿体呈似层状赋存于韧性剪切断裂之间的次级层间破碎带和小断裂带内,带内发育较强的动热变质,硅化、绢云母化和绿泥石化发育。矿石以黄铜矿为主,贫硫,成矿流体具有多期次的活动、叠加改造的特点。上栗-潭埠-宜丰断裂带自西至东已发现20余处铜多金属矿床(点),显示该带具有巨大找矿潜力。  相似文献   

19.
Techniques for characterizing the hydraulic properties and groundwater flow processes of aquifers are essential to design hydrogeologic conceptual models. In this study, rapid time series temperature profiles within open‐groundwater wells in fractured rock were measured using fiber optic distributed temperature sensing (FO‐DTS). To identify zones of active groundwater flow, two continuous electrical heating cables were installed alongside a FO‐DTS cable to heat the column of water within the well and to create a temperature difference between the ambient temperature of the groundwater in the aquifer and that within the well. Additional tests were performed to examine the effects of pumping on hydraulic fracture interconnectivity around the well and to identify zones of increased groundwater flow. High‐ and low‐resolution FO‐DTS cable configurations were examined to test the sensitivities of the technique and compared with downhole video footage and geophysical logging to confirm the zones of active groundwater flow. Two examples are presented to demonstrate the usefulness of this new technique for rapid characterization of fracture zones in open boreholes. The combination of the FO‐DTS and heating cable has excellent scope as a rapid appraisal tool for borehole construction design and improving hydrogeologic conceptual models.  相似文献   

20.
在以往的地震构造研究中,注重了那些继承活动的断裂带.但在与现今区域地质环境和应力场性质基本保持一致的最近构造阶段,还有正在产生的新断裂带,即新生断裂带.我国华北和西南地区由地震活动揭示出的北东向唐山-河间-磁县和北西向腾冲-耿马-澜沧两条地震带,对应的正是新生断裂带.为示区别,称其为新生地震构造带.以这两条地震构造带为例,从地震活动和地质构造方面论证它们的存在,初步分析它们的特征和研究意义.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号