首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this paper a novel series of field measurements are presented, which are the first to elucidate the processes influencing siltation in Botlek Harbour. Botlek Harbour is situated at the limit of saline water intrusion in the Rotterdam Waterway. Normally, after the ebb tide fresher river waters are found in the Rotterdam Waterway at the location of Botlek Harbour. On the flooding tide, the tip of the salt wedge is advected along the Rotterdam Waterway towards the mouth of Botlek Harbour. Hence on flood, a lock-exchange mechanism operates between Botlek Harbour and the Rotterdam Waterway. On the flood tide, when there is a supply of suspended particulate matter (SPM) associated with the presence of the estuarine turbidity maximum (ETM) at the mouth of the harbour, the survey data show exchange of SPM into the harbour. This lock-exchange process is found to be the dominant cause for SPM transport into the harbour. This is further substantiated by an analysis of the mass transport mechanisms. In this analysis, the vertical profiles of the instantaneous velocity, salinity and SPM concentration fields, recorded during the surveys, were decomposed into advective and dispersive transport components. The results of this analysis indicate that the correlation between the lock-exchange mechanism on the flood tide with the availability of SPM for exchange and efficient trapping, dominate the total exchange of SPM (97%). Hence, the increase in measured near-bed SPM concentration within the harbour is ascribed to tidal advection of saline water and the ETM along the Rotterdam Waterway. Tidal advection controls the density difference between the estuary and harbour, as well as the availability of SPM for exchange at the entrance to Botlek Harbour. The location of the ETM at the tip of the salt wedge is a key factor in supplying SPM to Botlek Harbour. Consequently the timing of the availability of SPM at the mouth of the harbour needs to be considered in siltation studies. The survey data suggest that Botlek Harbour basin has a 100% trapping efficiency. Analysis of 5 months of data, from a measuring rig located within the harbour, show excursions of the limit of the salt wedge and ETM. These excursions are likely to affect siltation of upstream harbours. Salinity-induced density gradients control the transport and subsequent trapping of SPM in the estuary in close proximity to the harbour entrance, the exchange of SPM between the estuary and harbour, and the trapping of SPM in the harbour basin.  相似文献   

2.
This work quantifies, using ADP and rating curve techniques, the instantaneous outflows at estuarine interfaces: higher to middle estuary and middle to lower estuary, in two medium‐sized watersheds (72 000 and 66 000 km2 of area, respectively), the Jaguaribe and Contas Rivers located in the northeastern (semi‐arid) and eastern (tropical humid) Brazilian coasts, respectively. Results from ADP showed that the net water balances show the Contas River as a net water exporter, whereas the Jaguaribe River Estuary is a net water importer. At the Jaguaribe Estuary, water retention during flood tide contributes to 58% of the total volume transferred during the ebb tide from the middle to lower estuary. However, 42% of the total water volume (452 m3 s?1) that entered during flood tide is retained in the middle estuary. In the Contas River, 90% of the total water is retained during the flood tide contributing to the volume transported in the ebb tide from the middle to the lower estuary. Outflows obtained with the rating curve method for the Contas and Jaguaribe Rivers were uniform through time due to river flow normalization by dams in both basins. Estimated outflows with this method are about 65% (Contas) and 95% (Jaguaribe) lower compared to outflows obtained with ADP. This suggests that the outflows obtained with the rating curve method underestimate the net water balance in both systems, particularly in the Jaguaribe River under a semi‐arid climate. This underestimation is somewhat decreased due to wetter conditions in the Contas River basin. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

3.
An observational study in the middle reach of Delaware Bay shows that vertical stratification is often enhanced during flood tide relative to ebb tide, contrary to the tidal variability predicted by the tidal straining mechanism. This tidal period variability was more pronounced during times of high river discharge when the tidally mean stratification was higher. This tidal variability in stratification is caused by two reinforcing processes. In the along-channel direction, the upstream advection of a salinity front at mid-depth causes an increase of the vertical stratification during the flood tide and a decrease during the ebb tide. In the cross-channel direction, the tilting of isohalines during the ebb reduces vertical stratification, and the subsequent readjustment of the salinity field during the flood enhances the water column stability. A diagnosis of the cross-channel momentum balance reveals that the lateral flows are driven by the interplay of Coriolis forcing and the cross-channel pressure gradient. During the flood tide, these two forces mostly reinforce each other, while the opposite occurs during the ebb tide. This sets up a lateral circulation that is clockwise (looking landward) during the first half of the flood and then reverses and remains counterclockwise during most of the ebb tide. Past maximum ebb, the cross-channel baroclinic term, overcomes Coriolis and reverses the lateral flows.  相似文献   

4.
Water level records at two stations in the Guadalquivir Estuary (Spain), one near the estuary mouth (Bonanza) and one about 77 km upstream (Sevilla), have been analysed to study the amplification of the tide in the estuary. The tidal amplification factor shows interesting temporal variation, including a spring-neap variation, some extreme low values, and especially the anomalous behaviour that the amplification factor is larger during a number of periods. These variations are explained by data analysis combined with numerical and analytical modelling. The spring-neap variation is due to the quadratic relation between the bottom friction and the tidal flow velocity. The river flood events are the direct causes of the extreme low values of the amplification factor, and they trigger the non-linear interaction between the tidal flow and suspended sediment transport. The fluvial sediment input during a river flood causes high sediment concentration in the estuary, up to more than 10 g/l. This causes a reduction of the effective hydraulic drag, resulting in stronger tidal amplification in the estuary for a period after a river flood. After such an event the tidal amplification in the estuary does not always fall back to the same level as before the event, indicating that river flood events have significant influence on the long-term development of this estuary.  相似文献   

5.
In this paper, we analyse the behaviour of fine sediments in the hyper-turbid Lower Ems River, with focus on the river’s upper reaches, a stretch of about 25 km up-estuary of Terborg. Our analysis is based on long records of suspended particulate matter (SPM) from optical backscatter (OBS) measurements close to the bed at seven stations along the river, records of salinity and water level measurements at these stations, acoustic measurements on the vertical mud structure just up-estuary of Terborg and oxygen profiles in the lower 3 m of the water column close to Leerort and Terborg. Further, we use cross-sectionally averaged velocities computed with a calibrated numerical model. Distinction is made between four timescales, i.e. the semi-diurnal tidal timescale, the spring–neap tidal timescale, a timescale around an isolated peak in river flow (i.e. about 3 weeks) and a seasonal timescale. The data suggest that a pool of fluid/soft mud is present in these upper reaches, from up-estuary of Papenburg to a bit down-estuary of Terborg. Between Terborg and Gandersum, SPM values drop rapidly but remain high at a few gram per litre. The pool of fluid/soft mud is entrained/mobilized at the onset of flood, yielding SPM values of many tens gram per litre. This suspension is transported up-estuary with the flood. Around high water slack, part of the suspension settles, being remixed during ebb, while migrating down-estuary, but likely not much further than Terborg. Around low water slack, a large fraction of the sediment settles, reforming the pool of fluid mud. The rapid entrainment from the fluid mud layer after low water slack is only possible when the peak flood velocity exceeds a critical value of around 1 m/s, i.e. when the stratified water column seems to become internally supercritical. If the peak flood velocity does not reach this critical value, f.i. during neap tide, fluid mud is not entrained up to the OBS sensors. Thus, it is not classical tidal asymmetry, but the peak flood velocity itself which governs the hyper-turbid state in the Lower Ems River. The crucial role of river flow and river floods is in reducing these peak flood velocities. During elongated periods of high river flow, in e.g. wintertime, SPM concentrations reduce, and the soft mud deposits consolidate and possibly become locally armoured as well by sand washed in from the river. We have no observations that sediments are washed out of the hyper-turbid zone. Down-estuary of Terborg, where SPM values do not reach hyper-turbid conditions, the SPM dynamics are governed by classical tidal asymmetry and estuarine circulation. Hence, nowhere in the river, sediments are flushed from the upper reaches of the river into the Ems-Dollard estuary during high river flow events. However, exchange of sediment between river and estuary should occur because of tide-induced dispersion.  相似文献   

6.
An analysis of observational data suggests salt exchange in a sinuous coastal plain estuary is significantly impacted by counter-rotating residual horizontal eddies formed by channel curvature in meandering channels. The parts of adjacent eddies that advect material downstream follow the deep part of the channel where the flow continually criss-crosses from one side of the channel to the other and follows a relatively unimpeded trajectory to the sea. On the other hand, the parts of adjacent eddies that advect material upstream cross the channel at a different location where it encounters a series of shoals. In this case, the resulting upstream transport of salt is relatively inefficient and retards the rate at which salt can disperse upstream into the estuary. The strength of these circulations is modulated by the spring/neap cycle, allowing for a stronger gravitational mode of exchange to develop near neap tides, but has minimal impact on the length of the salt intrusion. It is suggested that the impeded upstream salt transport accounts for the observation that an impulse of river discharge advects a given isohaline 10 km downstream in 20 days, but that after the impulse, 70 days are required to return the isohaline to a similar position, counter to the notion of a simple dependence of intrusion length on river discharge.  相似文献   

7.
A numerical modeling study of the influence of the lateral flow on the estuarine exchange flow was conducted in the north passage of the Changjiang estuary. The lateral flows show substantial variabilities within a flood-ebb tidal cycle. The strong lateral flow occurring during flood tide is caused primarily by the unique cross-shoal flow that induces a strong northward (looking upstream) barotropic force near the surface and advects saltier water toward the northern part of the channel, resulting in a southward baroclinic force caused by the lateral density gradient. Thus, a two-layer structure of lateral flows is produced during the flood tide. The lateral flows are vigorous near the flood slack and the magnitude can exceed that of the along-channel tidal flow during that period. The strong vertical shear of the lateral flows and the salinity gradient in lateral direction generate lateral tidal straining, which are out of phase with the along-channel tidal straining. Consequently, stratification is enhanced at the early stage of the ebb tide. In contrast, strong along-channel straining is apparent during the late ebb tide. The vertical mixing disrupts the vertical density gradient, thus suppressing stratification. The impact of lateral straining on stratification during spring tide is more pronounced than that of along-channel straining during late flood and early ebb tides. The momentum balance along the estuary suggests that lateral flow can augment the residual exchange flow. The advection of lateral flows brings low-energy water from the shoal to the deep channel during the flood tide, whereas the energetic water is moved to the shoal via lateral advection during the ebb tide. The impact of lateral flow on estuarine circulation of this multiple-channel estuary is different from single-channel estuary. A model simulation by blocking the cross-shoal flow shows that the magnitudes of lateral flows and tidal straining are reduced. Moreover, the reduced lateral tidal straining results in a decrease in vertical stratification from the late flood to early ebb tides during the spring tide. By contrast, the along-channel tidal straining becomes dominant. The model results illustrate the important dynamic linkage between lateral flows and estuarine dynamics in the Changjiang estuary.  相似文献   

8.
Intermittently open/closed estuaries (IOCE) are a dynamic form of estuary characterised by periodic entrance closure to the ocean. Entrance closure is a function of the relative balance between on and offshore sediment transport with closures occurring during periods of low fluvial discharge whereby the estuary ebb‐tidal prism is reduced. Although the broad scale processes of entrance closure are becoming better understood, there remains limited knowledge on channel morphodynamics during an individual closure event. In this study, the entrance dynamics of three IOCE on the coast of Victoria, Australia, were monitored over a daily timescale following both artificial and natural openings. The influence of changing marine and fluvial conditions on the relative sedimentation rate within the entrance channel was examined. IOCE in Victoria showed two distinct modes of entrance closure: (a) lateral accretion, whereby the estuary gradually closes by longshore drift‐driven spit growth during low river flows; and (b) vertical accretion, where the channel rapidly aggrades under high (> 2 m), near‐normal waves. During storms, when fluvial discharge and wave heights simultaneously increase, large swells will not always close the mouth due to an increase in the ebb‐tidal prism. The estuary water depth and the maximum channel dimensions following opening were not proportional to the opening duration, with this being a function of the wave and fluvial conditions occurring following lagoon drainage. Based on the findings of this work, implementing a successful artificial entrance opening is dependent on reduced onshore sedimentation rates which occur when wave energy is low (< 2 m Hs) relative to river flow. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

9.
Data from time series of transects made over a tidal period across a section of the upper Chesapeake Bay, USA, reveal the influence of lateral dynamics on sediment transport in an area with a deep channel and broad extents of shallower flanks. Contributions to lateral momentum by rotation (Coriolis plus channel curvature), cross channel density gradients and cross channel surface slope were estimated, and the friction and acceleration terms needed to complete the balance were compared to patterns of observed lateral circulation. During ebb, net rotation effects were larger because of river velocity and reinforcement of Coriolis by curvature. During flood, stratification was greater because of landward advection of strong vertical density gradients. Together, the ebb intensified lateral circulation and flood intensified stratification focused sediment and sediment transport along the left side of the estuary (looking seaward). The tendency for greater stratification on flood and net sediment flux toward the left-hand shoal are contrary to more common models which, in the northern hemisphere, predict greater resuspension on flood and move sediment toward the right-hand shoal. These tidal asymmetries interact with the lateral circulation to focus net sediment flux on the left side of the estuary, and to produce net ebb directed sediment transport at the surface of the same order of magnitude as net flood directed sediment transport at the bottom.  相似文献   

10.
Tidal straining effect on sediment transport dynamics in the Huanghe (Yellow River) estuary was studied by field observations and numerical simulations. The measurement of salinity, suspended sediment concentration, and current velocity was conducted during a flood season in 1995 at the Huanghe river mouth with six fishing boats moored at six stations for 25-h hourly time series observations. Based on the measurements, the intra-tidal variations of sediment transport in the highly turbid river mouth was observed and the tidal straining effect occurred. Our study showed that tidal straining of longitudinal sediment concentration gradients can contribute to intra-tidal variability in sediment stratification and to asymmetries in sediment distribution within a tidal cycle. In particular, the tidal straining effect in the Huanghe River estuary strengthened the sediment-induced stratification at the flood tide, thus producing a higher bottom sediment concentration than that during the ebb. A sediment transport model that is capable of simulating sediment-induced stratification effect on the hydrodynamics in the bottom boundary layers and associated density currents was applied to an idealized estuary to demonstrate the processes and to discuss the mechanism. The model-predicted sediment processes resembled the observed characteristics in the Huanghe River estuary. We concluded that tidal straining effect is an important but poorly understood mechanism in the transport dynamics of cohesive sediments in turbid estuaries and coastal seas.  相似文献   

11.
《国际泥沙研究》2020,35(4):417-429
The aim of the current study was to determine the nature of the seasonal variability of the Suspended Particulate Matter (SPM) fluxes from the drainage basin to the estuary in a macrotidal region (Northeastern Brazil), and the estuarine response to a seawater intrusion regarding sediment deposition, which will support the understanding of the global transport of materials at the continent-ocean interface. Thermohaline structure data was acquired using a Conductivity, Temperature, and Depth (CTD) probe with a sampling frequency of 4 Hz. Suspended particulate material was measured by gravimetric measurements applied to exact filtered volume samples. The outflows were measured through the use of an Acoustic Doppler Current Profiler (ADCP) with frequency of 1.5 MHz. The horizontal thermal and saline gradients varied from warmer and less saline waters (2014) to cooler and saline waters (2015). The gradient behavior when linked to volume transport and SPM flows, suggests a minimization of the fluvial flows in 2015, easing the advance of coastal water (CW) towards the inner estuary, leading to an inversion of the baroclinic pressure gradient. The bottom saline front, generated by the entrance of coastal water masses, caused an increase in SPM concentrations due to increased fluid density, resuspension of previously deposited sediment, and erosion of banks. High concentrations of SPM indicate higher volume transport suggesting a hydraulic barrier due to the change/inversion of the baroclinic pressure gradient, resulting in water and material retention. Material deposition was observed during neap tide, while during spring tide the material is resuspended, increasing the concentration, generating cycles of deposition and erosion during the neap-spring tides. The sediment in suspension that reach the estuary, even with low fluvial volume, stay in this environment forming new islands because of deposition. High deposition rates or sediment cycling, if generated by the hydraulic barrier, may indicate that the flows of SPM from the continental drainage to the estuary and adjacent continental shelf are interrupted and the residence time is increased.  相似文献   

12.
The chemical composition of suspended particulate material (SPM) in the Tamar Estuary and its response to tidal sediment resuspension at the turbidity maximum have been investigated. The results discriminate four regions: (1) the outer estuary where spatial changes in the composition of SPM reflect the dispersal of estuarine particles modified by in situ generation of organic particles, (2) the middle estuary where the composition of SPM is mainly determined by hydrodynamic mixing although there is some evidence of in situ chemical reactivity, (3) the upper estuary where sharply distinct and temporally variable SPM compositions are centred at the turbidity maximum; these are largely the result of particle-selective accumulation, sedimentation and resuspension processes rather than of local particle-water chemical exchanges, and (4) the fluvial estuary where the SPM composition reflects the influx of riverine particles.  相似文献   

13.
The influence of river discharge on tidal damping in alluvial estuaries   总被引:2,自引:0,他引:2  
The tidal range, the difference between high water level and low water level, along an alluvial estuary can be described by Savenije's analytical equation [Journal of Hydrology 243 (2001) 205-215] analytical equation. This equation was derived from the complete St Venant equations in a Lagrangian reference frame. In the derivation of that equation the effect of river discharge was disregarded. Measurements in the Schelde Estuary show that this assumption is only valid in the lower part of the estuary, but that in the upper part the river discharge has an influence on tidal damping. In the downstream part of the estuary, where the cross-sectional area is large compared to the cross-sectional area of the river, it is correct to disregard the river discharge. However, in the upstream part of the estuary, where the cross-sectional area approaches that of the river, the fresh water discharge gains importance over the tidal flow and affects the tidal range. In this paper, the derivation of the analytical equation is expanded to include the effect of the river discharge. It is demonstrated that the river discharge can have a considerable influence on tidal damping in the upper reach of the estuary. The river discharge affects tidal damping primarily through friction. A critical point along the estuary is the point where there is a single slack, upstream of which the fresh water velocity is larger than the tidal velocity. The location of this point varies with the river discharge. From that point onwards the effect of river discharge on damping is dominant. It is the point where the estuary becomes primarily of riverine character.  相似文献   

14.
The response of the Chesapeake Bay to river discharge under the influence and absence of tide is simulated with a numerical model. Four numerical experiments are examined: (1) response to river discharge only; (2) response to river discharge plus an ambient coastal current along the shelf outside the bay; (3) response to river discharge and tidal forcing; and (4) response to river discharge, tidal forcing, and ambient coastal current. The general salinity distribution in the four cases is similar to observations inside the bay. Observed features, such as low salinity in the western side of the bay, are consistent in model results. Also, a typical estuarine circulation with seaward current in the upper layer and landward current in the lower layer is obtained in the four cases. The two cases without tide produce stronger subtidal currents than the cases with tide owing to greater frictional effects in the cases with tide. Differences in salinity distributions among the four cases appear mostly outside the bay in terms of the outflow plume structure. The two cases without tide produce an upstream (as in a Kelvin wave sense) or northward branch of the outflow plume, while the cases with tide produce an expected downstream or southward plume. Increased friction in the cases with tide changes the vertical structure of outflow at the entrance to the bay and induces large horizontal variations in the exchange flow. Consequently, the outflow from the bay is more influenced by the bottom than in the cases without tide. Therefore, a tendency for a bottom-advected plume appears in the cases with tide, rather than a surface-advected plume, which develops in the cases without tide. Further analysis shows that the tidal current favors a salt balance between the horizontal and vertical advection of salinity around the plume and hinders the upstream expansion of the plume outside the bay.  相似文献   

15.
《Continental Shelf Research》2006,26(17-18):2281-2298
Since the 1960s a series of large reservoirs have been built in the upper and middle reaches of the Huanghe River. Changes caused by these reservoirs include a decrease in flood discharge and sediment load to the lower reaches and conversely, an increase of the silt concentration in the river water. This accumulation of silt in the river channel is a serious problem in the lower Huanghe River and has caused abnormal and distorted flow courses in the river bed. These effects include: shrinkage of the river channel, frequent dewatering (i.e., zero flow) in the river-mouth area, and hanging rivers (i.e., a river channel elevated above its floodplain). The zero-flow portion of the river has gradually extended upstream for nearly the entire 700 km of the lower reach. Utilization of the floodplains for agriculture and temporary villages has become a major problem. To counter these changes and situations, new measures, new methodology, and new thinking must be adapted incorporating results from the recent works on sediment transport and accumulation. Water conservancy works (dams, pumping stations, siphon-intakes, etc.) are typically used for adjustment of river water and sediment discharges and for irrigation and hydro-power generation. Recently, they are also being used to conduct tests using the reservoir water/sediment mix to flush out sediments deposited in the channel bed and transport the sediment to places where it is needed or into the Bohai Sea. Additionally, the future of the new deltaic sub-lobe in the Bohai Sea (developed in 1996) and the present estuary needs to be considered with respect to future development.  相似文献   

16.
The morphodynamics of shallow, vertically well-mixed estuaries, characterised by tidal flats and deeper channels, have been investigated. This paper examines what contributes to flood/ebb-dominant sediment transport in localised regions through a 2D model study (using the TELEMAC modelling system). The Dyfi Estuary in Wales, UK has been used as a case study and, together with idealised estuary shapes, shows that shallow water depths lead to flood dominance in the inner estuary whilst tidal flats and deep channels cause ebb dominance in the outer estuary. For medium sands and with an artificially ‘flattened’ bathymetry (i.e. no tidal flats), the net sediment transport switches from ebb-dominant to flood-dominant where the parameter a/h (local tidal amplitude ÷ local tidally averaged water depth) exceeds 1.2. Sea level rise will reduce this critical value of a/h and also reduce the ebb-directed sediment transport significantly, leading to a flood-dominated estuarine system. A similar pattern, albeit with greater transport, was simulated with tidal flats included and also with a reduced grain size. This suggests that analogous classifications for flood/ebb asymmetry of the tide in estuaries as a whole may not represent the local sediment transport in sufficient detail. Through the Dyfi simulations, the above criterion involving a/h is shown to be complicated further by augmented flow past a spit at the estuary mouth which gives rise to a self-maintaining scour hole. Simulations of one year of bed evolution in an idealised flat-bottomed estuary, including tidal flow past a spit, recreate the flood/ebb dominance on either side of the spit and the formation of a scour hole in between. The erosion rate at the centre of the hole is reduced as the hole deepens, suggesting the establishment of a self-maintaining equilibrium state.  相似文献   

17.
The Pitt River is a meandering river channel linking the Fraser River estuary and Pitt Lake. The lake acts as a temporary reservoir for tidally diverted Fraser River flow. Stage level can fluctuate 2 m in Pitt River and as much as 1.2 m in Pitt Lake on a tidal cycle. Stage data from three locations in the system, used in conjunction with velocity measurements (profiles and tethered meter), revealed large tidal and seasonal variations in discharge. Calculations indicate that during the flood, basal shear stress peaks earlier in the cycle and reaches higher values than during the ebb. Thus, sediment moves farther forward on a flood flow than it moves back on the succeeding ebb. An upstream movement of sediment in Pitt River from the Fraser River is indicated by: (1) the identical mineralogy of the two rivers, (2) a decrease in median grain size from the Fraser to Pitt Lake, and (3) a predominance of flood-oriented bedforms in the river channel. A delta, 12 km2 area, has accumulated at the lower (draining) end of the lake. Studies of the river channel using hydrographic charts revealed regular meanders (λM = 6100 m) and evenly spaced riffles and pools which appear to be scaled to the strongest flow, winter flood current (2400 m3/s). The winter flood is thus considered to be the effective discharge. Meander point bars are accreting on the ‘upstream’ side indicating deposition by the flood-oriented flow. The three dimensional geometry of the large-scale bedforms which cover the sandy thalweg of both river and delta channel was determined by echo sounding and side-scan sonar. Three distinct sizes (height/spacing = 0.8 m/10–15 m; 1.5 m/25–30m; 3m/50–60 m) of large-scale bedforms (sand waves) were found; their linear relationship of height vs. spacing on a log-log plot suggests a common genesis. Their occurrence by size does not appear to be related to depth of flow but rather to their position in the channel with respect to large scale features which alter flow.  相似文献   

18.
Data collected from the York River estuary demonstrate the importance of asymmetries in stratification to the suspension and transport of fine sediment. Observations collected during two 24-h deployments reveal greater concentrations of total suspended solids during the flood phase of the tide despite nearly symmetric near-bed tidal current magnitude. In both cases, tidally averaged net up-estuary sediment transport near the bed was clearly observed despite the fact that tidally averaged residual near-bed currents were near zero. Tidal straining of the along-channel salinity gradient resulted in a stronger pycnocline lower in the water column during the ebb phase of the tide and appeared to limit sediment suspension. Indirect measurements suggest that the lower, more intense, pycnocline on the ebb acted as a barrier, limiting turbulent length scales and reducing eddy diffusivity well below the pycnocline, even though the lower water column was locally well mixed. In order to more conclusively link changes in stratification to properties of near-bed eddy viscosity and diffusivity, longer duration tripod and mooring data from an additional experiment are examined, that included direct measurement of turbulent velocities. These additional data demonstrate how slight increases in stratification can limit vertical mixing near the bed and impact the structure of the eddy viscosity below the pycnocline. We present evidence that the overlying pycnocline can remotely constrain the vertical turbulent length scale of the underlying flow, limiting sediment resuspension. As a result, the relatively small changes in stratification caused by tidal straining of the pycnocline allow sediment to be resuspended higher in the water column during the flood phase of the tide, resulting in preferential up-estuary transport of sediment.Responsible Editor: Iris Grabemann  相似文献   

19.
River regulation and river training have been performed for various purposes and negative effects have been shown in numerous cases. In some cases the negative effects are so serious that humans have to consider to "renaturalize" the regulated rivers. Only by using the strategy of integrated river management the diverse river uses and natural fluvial processes and ecological systems may be harmonized. Based on analysis of case studies and data collected from literatures this paper presents the concept of integrated river management and four principles of river training. The integrated river management comprises: 1) taking the watershed, upper stream basin including the tributaries, middle and lower reaches and the estuary as an integrated entity in the planning, design and management; and 2) mitigating or controlling the negative impacts on hydrology, erosion and sedimentation, fluvial processes, land use and river use, environment and ecology while in achieving economic benefit from water resources development, flood safety management and hydropower exploitation. River training and management should be in accordance with the four principles: 1) extending the duration of river water flowing on the continent, which may be achieved by extending the river course or reducing the flow velocity; 2) controlling various patterns of erosions and reducing the sediment transportation in the rivers; 3) increasing the diversity of habitat and enhancing the connectivity between the river and riparian waters; and 4) restoring natural landscapes.  相似文献   

20.
Tidal propagation in estuaries is affected by friction and fresh water discharge, besides changes in the depth and morphology of the channel. Main distortions imply variations in the mean water level and asymmetry. Tidal asymmetry can be important as a mechanism for sediment accumulation and turbidity maximum formation in estuaries, while mean water level changes can affect navigation depths. Data from several gauges stations from the Amazon estuary and the adjacent coast were analyzed and a 2DH hydrodynamic model was configured in a domain covering the continental shelf up to the last section of the river where the tidal signature is observed. Based on data, theoretical and numerical results, the various influences in the generation of estuarine harmonics are presented, including that of fresh water discharge. It is shown that the main overtide, M4, derived from the most important astronomic component in the Amazon estuary, M2, is responsible for the tidal wave asymmetry. This harmonic has its maximum amplitude at the mouth, where minimum depths are found, and then decreases while tide propagates inside the estuary. Also, the numerical results show that the discharge does not affect water level asymmetry; however, the Amazon river discharge plays an important role in the behavior of the horizontal tide. The main compound tide in Amazon estuary, Msf, generated from the combination of the M2 and S2, can be strong enough to provoke neap low waters lower than spring ones. The results show this component increasing while going upstream in the estuary, reaching a maximum and then slightly decaying.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号