首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Diagnosing vertical motion in the Equatorial Atlantic   总被引:2,自引:0,他引:2  
Estimating the vertical velocity (w) in the oceanic upper-layers is a key issue for understanding the cold tongue development in the Eastern Equatorial Atlantic. In this methodological paper, we develop an expanded and general formulation of the vertical velocity equation based on the primitive equation (PE) system, in order to gain new insight into the physical processes responsible for the Equatorial and Angola upwellings. This approach is more accurate for describing the real ocean than simpler considerations based on just the wind-driven patterns of surface layer divergence. The w-sources/forcings are derived from the PE w-equation and diagnosed from a realistic ocean simulation of the Equatorial Atlantic. Sources of w are numerous and express the high complexity of terms related to the turbulent momentum flux, to the circulation and to the mass fields, some of them depending explicitly on w and others not. The equatorial upwelling is found to be mainly induced by the (i) the zonal turbulent momentum flux, (ii) the curl of turbulent momentum flux and (iii) the imbalance between the circulation and the pressure fields. The Angola upwelling in the eastern part of the basin is controlled by strong curl of turbulent momentum flux. A strong cross-regulation is evidenced between the w-forcings independent of w and dependent on w, which suggests an equatorial balanced-dynamics. The w-forcing depending on w represents the negative feedback of the ocean to the w-forcing independent of w: in the equatorial band, this adjustment is led by non-linear processes and by vortex stretching outside.  相似文献   

2.
Abstract

A new non-linear model of mixing and convection based on a modelling of two buoyant interacting fluids is applied to penetrative convection in the upper ocean due to surface cooling. In view of simple algebra, the model is one-dimensional. Dissipation is included, but no mean shear is present. A non-similar analytical solution is found in the case of a well-mixed layer bounded below by a sharp thermocline treated as a boundary layer. This solution is valid if the Richardson number, R i , defined as the ratio of the total mixed-layer buoyancy to a characteristic rms vertical velocity, is much greater than unity. The model predicts a deepening rate proportional to R i ?3/4. The thermocline remains of constant thickness, and the ratio thermocline thickness to mixed-layer depth decreases as R i ?3/4 as the mixed layer deepens. If the surface flux is constant, the mixed-layer depth increases with time as t ½. The vertical structure throughout the mixed layer and thermocline is given by the analytical solution, and vertical profiles of mean temperature and vertical fluxes are plotted. Computed profiles and available laboratory data agree remarkably well. Moreover, the accuracy of the simple analytical results presented here is comparable to that of sophisticated turbulence numerical models.  相似文献   

3.
Abstract

A two gyre circulation and inertial western boundary currents have been observed in a sloping bottom laboratory model of a barotropic ocean circulation. Water of viscosity v is contained in a rotating (angular velocity ω), square basin of side L (30 cm) with a flat top and a bottom slope (tan θ) such that the depth (H) varies from 12 to 15 cm. The flow is driven by a distributed source and sink at the upper surface, a plate drilled with 342 holes. The hole distribution and size is arranged so that the average imposed vertical velocity, w = w 0 sin (2πy′/30), models the Ekman divergence from a two gyre zonal wind stress. Fluid flow is observed with the thymol blue technique over the ranges of Rossby numbers (w 0/2ωL tan θ) from 1.44 × 10?3 to 1.41 × 10?2 and Ekman numbers (v/2ωH 2) from 2.13 × 10?5 to 2.10 × 10?3. At the largest Rossby numbers the flow pattern changes markedly, but the non-uniformity of the imposed vertical velocity also penetrates deep into the fluid in this regime.  相似文献   

4.
An eddy-resolving coupled physical–biological model is used to study the effect of cyclonic eddy in enhancing offshore chlorophyll-a (Chl-a) bloom in the southeastern tropical Indian Ocean during boreal summer–fall 2006. The results demonstrate that the offshore Chl-a blooms are markedly coincident with the high eddy kinetic energy. Moreover, the vertical variations in Chl-a, nitrate, temperature, and mixed-layer depth (MLD) strongly imply that the cyclonic eddies induce surface Chl-a bloom through the injection of nutrient-rich water into the upper layer. Interestingly, we found that the surface bloom only occurs when the deep Chl-a maximum is located within the MLD. On the other hand, the response of subsurface Chl-a to the eddy pumping is remarkable, although it is hardly observable at the surface.  相似文献   

5.
In this research, three vertical velocities were included in a one-dimensional (1D) ocean model for a case study of the SouthEast Asian Time-Series Study station in the South China Sea. The vertical velocities consisted three processes, i.e., Ekman pumping (WEK), Eddy pumping (WEP), and the background upwelling (WBK). The quantification of WEK followed the classical Ekman pumping theory. The WEP, whose underlying mechanism was consistent with the baroclinic modes (dominated by the first mode), was quantified by Argo observation and altimetry data. The WBK, related with the background circulation, was estimated from the long-term heat budget balance. The skill assessment indicated that the case with all three processes performed best. The study confirmed the capability of the 1D model with three types of vertical velocities, which can reproduce the general structure and variation of temperature in vertical direction.  相似文献   

6.
Abstract

It is shown that the linear equatorial dynamics of a shallow ocean is characterized by two boundary layers of width γ? L and γL (γ is the Ekman number of the flow, assumed small, and L is a horizontal dimension of the basin). In the γ? layer stress in the bottom Ekman layer is comparable to that in the surface Ekman layer. In the γ layer vertical friction is important throughout the depth of the ocean. Should the Rossby number ? be so large as to invalidate a linear theory (? > γ5/3), then inertial effects become important at a distance ?2/5 L from the equator. The role played in the circulation of the basin by the non-linear equatorial current first studied by Charney (1960) is shown to be similar to that of the γ layer of the linear theory. Though lateral friction is unimportant in a linear model of the flow, shear layers at the equator are found to be a necessary feature of non-linear flow.  相似文献   

7.
We examine the seasonal mixed-layer temperature (MLT) and salinity (MLS) budgets in the Banda–Arafura Seas region (120–138° E, 8–3° S) using an ECCO ocean-state estimation product. MLT in these seas is relatively high during November–May (austral spring through fall) and relatively low during June–September (austral winter and the period associated with the Asian summer monsoon). Surface heat flux makes the largest contribution to the seasonal MLT tendency, with significant reinforcement by subsurface processes, especially turbulent vertical mixing. Temperature declines (the MLT tendency is negative) in May–August when seasonal insolation is smallest and local winds are strong due to the southeast monsoon, which causes surface heat loss and cooling by vertical processes. In particular, Ekman suction induced by local wind stress curl raises the thermocline in the Arafura Sea, bringing cooler subsurface water closer to the base of the mixed layer where it is subsequently incorporated into the mixed layer through turbulent vertical mixing; this has a cooling effect. The MLT budget also has a small, but non-negligible, semi-annual component since insolation increases and winds weaken during the spring and fall monsoon transitions near the equator. This causes warming via solar heating, reduced surface heat loss, and weakened turbulent mixing compared to austral winter and, to a lesser extent, compared to austral summer. Seasonal MLS is dominated by ocean processes rather than by local freshwater flux. The contributions by horizontal advection and subsurface processes have comparable magnitudes. The results suggest that ocean dynamics play a significant part in determining both seasonal MLT and MLS in the region, such that coupled model studies of the region should use a full ocean model rather than a slab ocean mixed-layer model.  相似文献   

8.
Measurements of turbulent fluctuations of horizontal and vertical components of velocity, salinity and suspended particulate matter are presented. Turbulent Prandtl numbers are found to increase with stratification and to become larger than 1. Consequently, the vertical turbulent mass transport is suppressed by buoyancy forces, before the turbulent kinetic energy (TKE) and vertical turbulent momentum exchange are inhibited. With increasing stratification, the buoyancy fluxes do not cease, instead they become countergradient. We find that buoyantly driven motions play an active role in the transfer of mass. This is in agreement with trends derived from Monin–Obukhov scaling. For positive Richardson flux numbers (Ri f ), the log velocity profile in the near-bed layer requires correction with a drag reduction. For negative Ri f , the log velocity profile should be corrected with a drag increase, with increasing |Ri f |. This highlights the active role played by buoyancy in momentum transfer and the production of TKE. However, the data do not appear to entirely follow Monin–Obukhov scaling. This is consistent with the notion that the turbulence field is not in equilibrium. The large stratification results in the decay of turbulence and countergradient buoyancy fluxes act to restore equilibrium in the energy budget. This implies that there is a finite adjustment timescale of the turbulence field to changes in velocity shear and density stratification. The energy transfers associated with the source and sink function of the buoyancy flux can be modeled with the concept of total turbulent energy.  相似文献   

9.
Abstract

This paper presents an analytical, two-dimensional model of the wind-induced homogeneous circulation near the edge of an ice pack floating on the ocean surface. It is shown that a vertical shear layer arises under the ice edge, by which the wind-driven geostrophic motion in the open ocean is matched to the flow region underneath the ice. As in coastal upwelling models, this shear layer consists of a thin E 1/2-layer inside a thicker E 1/4-layer (E being the Ekman number). Under certain conditions the shear layer produces a vertical mass flux from the bottom to the surface Ekman layer. Near the surface this upwelling flux is concentrated in the narrow E 1/2-layer. Comparison with observations of upwelling at the edge of a polar ice pack shows good agreement.  相似文献   

10.
Theory of wave boundary layers (WBLs) developed by Reznik (J Mar Res 71: 253–288, 2013, J Fluid Mech 747: 605–634, 2014, J Fluid Mech 833: 512–537, 2017) is extended to a rotating stratified fluid. In this case, the WBLs arise in the field of near-inertial oscillations (NIOs) driven by a tangential wind stress of finite duration. Near-surface Ekman layer is specified in the most general form; tangential stresses are zero at the lower boundary of Ekman layer and viscosity is neglected below the boundary. After the wind ceases, the Ekman pumping at the boundary becomes a linear superposition of inertial oscillations with coefficients dependent on the horizontal coordinates. The solution under the Ekman layer is obtained in the form of expansions in the vertical wave modes. We separate from the solution a part representing NIO and demonstrate development of a WBL near the Ekman layer boundary. With increasing time t, the WBL width decays inversely proportional to \( \sqrt{t} \) and gradients of fields in the WBL grow proportionally to \( \sqrt{t} \); the most part of NIO is concentrated in the WBL. Structure of the WBL depends strongly on its horizontal scale L determined by scale of the wind stress. The shorter the NIO is, the thinner and sharper the WBL is; the short-wave NIO with L smaller than the baroclinic Rossby scale LR does not penetrate deep into the ocean. On the contrary, for L?≥?LR, the WBL has a smoother vertical structure; a significant long-wave NIO signal is able to reach the oceanic bottom. An asymptotic theory of the WBL in rotating stratified fluid is suggested.  相似文献   

11.
Observations taken by aircraft and conventional platforms are used to investigate dynamical, physical, and radiative processes within a marine stratus cloud during the Canadian Atlantic Storms Program (CASP) II field project which took place over the east coast of Canada. Stratus which formed over the ocean on February 6, 1992 during the nighttime, is studied to analyze cloud top and base processes. The cloud was supercooled during the study period. Fluctuations and fluxes are calculated along constant flight altitude legs approximately 100 km long in space. The scales of structures larger than 5 km are removed from the analysis using a running average technique. Droplet spectra obtained by a forward scattering spectrometer probe (FSSP) were used in a 1-D radiative transfer model to calculate infrared (IR) fluxes and radiative heating rates. A heat conservation equation was used to estimate vertical air velocity (w a ) within the cloud. The results showed that, because of a warmer ocean surface, significant moisture and heat were transferred from the ocean surface to the boundary layer. The cloud base was at about 400 m height and the top was at about 1.4 km.w a at the cloud base was estimated about 5 cm s–1. Strong IR cooling rate at the cloud top was calculated to be 75°C day–1 for a 100 m thick layer. Negative skewness inw a , suggesting narrow downdrafts, was likely due to radiative cooling at the cloud top. The entrainment velocity was found to be about 1.5 cm s–1 at cloud top. Mean moisture and heat fluxes within the cloud were estimated to be comparable to those from the ocean surface. Vertical air velocity at the cloud top due to radiative cooling was found to be about –40 cm s–1.  相似文献   

12.
The transport of the Antarctic Circumpolar Current (ACC) is influenced by a variety of processes and parameters. A proper implementation of basin geometry, ocean topography and baroclinicity is known to be a fundamental requisite for a realistic simulation of the circulation and transport. Other, more subtle parameters are those of eddy-induced transports and diapycnal mixing of thermohaline tracers or buoyancy, either treated by eddy resolution or by a proper parameterization. Quite a number of realistic numerical simulations of the circulation in the Southern Ocean have recently been published. Many concepts on relations of the ACC transport to model parameters and forcing function are in discussion, however, without much generality and little success. We present a series of numerical simulations of circumpolar flow with a simplified numerical model, ranging from flat-bottom wind-driven flow to baroclinic flow with realistic topography and wind and buoyancy forcing. Analysis of the balances of momentum, vorticity, and baroclinic potential energy enables us to develop a new transport theory, which combines the most important mechanisms driving the circulation of the ACC and determining its zonal transport. The theory is based on the importance of the bottom vertical velocity in generating vorticity and shaping the baroclinic potential energy of the ACC. It explains the breaking of the -constraint by baroclinicity and brings together in one equation the wind and buoyancy forcing of the current. The theory emphasizes the role of Ekman pumping and eddy diffusion of buoyancy to determine the transport. It also demonstrates that eddy viscosity effects are irrelevant in the barotropic vorticity balance and that friction arises via eddy diffusion of density. In this regime, the classical Stommel model of vorticity balance is revived where the bottom friction coefficient is replaced by (with the Gent–McWilliams coefficient and the baroclinic Rossby radius ) and a modified wind curl forcing appears.  相似文献   

13.
Abstract

A simple model is given that describes the response of the upper ocean to an imposed wind stress. The stress drives both mean and turbulent flow near the surface, which is taken to mix thoroughly a layer of depth h, and to erode the stably stratified fluid below. A marginal stability criterion based on a Froude number is used to close the problem, and it is suggested that the mean momentum has a strong role in the mixing process. The initial deepening is predicted to obey

where u. is the friction velocity of the imposed stress, N the ambient buoyancy frequency, and t the time.

After one-half inertial period the deepening is arrested by rotadeon at a depth h = 22/4 u.{(Nf)+

where f is the Coriolis frequency. The flow is then a “mixed Ekman” layer, with strong inertial oscillations superimposed on it. Three quarters of the mean energy of the deepening layer is found to be kinetic, and only one-quarter potential.

Heating and cooling are included in the model, but stress dominates for time-scales of a day or less. Non-uniform stratification and currents existing prior to the onset of the wind are easily included.

Agreement between the first formula above and laboratory experiments of Kato and Phillips is very satisfactory; the second formula is consistent with observations of Francis and Stommel, though a more thorough test is needed. Oceanic observations in general support the assumption of slab-like mean profiles and direct response of the fluid to local winds.  相似文献   

14.
Although large-scale tidal and inertial motions dominate the kinetic energy and vertical current shear in shelf seas and ocean, short-scale internal waves at higher frequencies close to the local buoyancy frequency are of some interest for studying internal wave breaking and associated diapycnal mixing. Such waves near the upper limit of the inertio-gravity wave band are thought to have relatively short O (102–103 m) horizontal scales and to show mainly up- and downward motions, which contrasts with generally low aspect ratio large-scale ocean currents. Here, short-term vertical current (w) observations using moored acoustic Doppler current profiler (ADCP) are presented from a shelf sea, above a continental slope and from the open ocean. The observed w, with amplitudes between 0.015 and 0.05 m s−1, all span a considerable part of the water column, which is not a small vertical scale O(water depth) or O (100–500 m, the maximum range of observations), with either 0 or π phase change. This implies that they actually represent internal waves of low vertical modes 1 or 2. Maximum amplitudes are found in layers of largest stratification, some in the main pycnocline bordering the frictional bottom boundary layer, suggesting a tidal source. These ‘pycnocline-w’ compose a regular train of (solitary) internal waves and linearly decrease to small values near surface and bottom.  相似文献   

15.
Large-scale zonal flow driven across submarine topography establishes standing Rossby waves. In the presence of stratification, the wave pattern can be represented by barotropic and baroclinic Rossby waves of mixed planetary topographic nature, which are locked to the topography. In the balance of momentum, the wave pattern manifests itself as topographic formstress. This wave-induced formstress has the net effect of braking the flow and reducing the zonal transport. Locally, it may lead to acceleration, and the parts induced by the barotropic and baroclinic waves may have opposing effects. This flow regime occurs in the circumpolar flow around Antarctica. The different roles that the wave-induced formstress plays in homogeneous and stratified flows through a zonal channel are analyzed with the BARBI (BARotropic-Baroclinic-Interaction ocean model, Olbers and Eden, J Phys Oceanogr 33:2719–2737, 2003) model. It is used in complete form and in a low-order version to clarify the different regimes. It is shown that the barotropic formstress arises by topographic locking due to viscous friction and the baroclinic one due to eddy-induced density advection. For the sinusoidal topography used in this study, the transport obeys a law in which friction and wave-induced formstress act as additive resistances, and windstress, the effect of Ekman pumping on the density stratification, and the buoyancy forcing (diapycnal mixing of the stratified water column) of the potential energy stored in the stratification act as additive forcing functions. The dependence of the resistance on the system parameters (lateral viscosity ε, lateral diffusivity κ of eddy density advection, Rossby radius λ, and topography height δ) as well as the dependence of transport on the forcing functions are determined. While the current intensity in a channel with homogeneous density decreases from the viscous flat bottom case in an inverse quadratic law ~δ –2 with increasing topography height and always depends on ε, a stratified system runs into a saturated state in which the transport becomes independent of δ and ε and is determined by the density diffusivity κ rather than the viscosity: κ/λ 2 acts as a vertical eddy viscosity, and the transport is λ 2/κ times the applied forcing. Critical values for the topographic heights in these regimes are identified.  相似文献   

16.
The classical Ekman theory tells us that the ocean surface current turns to the right(left) side of wind direction with 45° in the north(south) hemisphere,but the observation and research results show that the surface current deflexion angle is smaller than 45° in the Arctic and high latitude areas while larger than 45° in the low latitude areas.In order to explain these phenomena,a series of idealized numerical experiments are designed to investigate the influence of vertical viscosity coefficients with different vertical distribution characteristics on the classical and steady Ekman spiral structure.Results show that when the vertical viscosity coefficient decreases with water depth,the surface current deflexion angle is larger than 45°,whereas the angle is smaller than 45° when the vertical viscosity coefficient increases with water depth.So the different observed surface current deflexion angles in low latitude sea areas and the Arctic regions should be attributed to the different vertical distribution characteristics of vertical viscosity coefficients in the upper ocean.The flatness of the Ekman spiral is not equal to one and does not show regular behaviors for the numerical experiments with different distribution of vertical viscosity.However,the magnitudes and directions of volume transport of Ekman spirals are almost the same as the results of classical Ekman theory,i.e.,vertical viscosity coefficient distributions have no effect on the magnitudes and directions of volume transport.  相似文献   

17.
Gahyun Goh  Yign Noh 《Ocean Dynamics》2013,63(9-10):1083-1092
Large eddy simulation (LES) reveals that the Coriolis force plays an important role in seasonal thermocline formation. In the high-latitude ocean, a seasonal thermocline is formed at a certain depth, across which the downward transports of heat and momentum are prohibited. On the other hand, in the equatorial ocean, heat and momentum continue to propagate downward to the deeper ocean without forming a well-defined thermocline. Mechanism to clarify the latitudinal difference is suggested. The depth of a seasonal thermocline h is scaled in terms of both the Ekman length scale λ and the Monin–Obukhov length scale L, as h ??? 0.5()1/2, which is in contrast to the earlier suggestion as h?∝?L.  相似文献   

18.
Ocean–atmosphere coupling in the Humboldt Current System (HCS) of the Southeast Pacific is studied using the Scripps Coupled Ocean–atmosphere Regional (SCOAR) model, which is used to downscale the National Center for Environmental Prediction (NCEP) Reanalysis-2 (RA2) product for the period 2000–2007 at 20-km resolution. An interactive 2-D spatial smoother within the sea-surface temperature (SST)–flux coupler is invoked in a separate run to isolate the impact of the mesoscale (~50–200 km, in the oceanic sense) SST field felt by the atmosphere in the fully coupled run. For the HCS, SCOAR produces seasonal wind stress and wind stress curl patterns that agree better with QuikSCAT winds than those from RA2. The SCOAR downscaled wind stress distribution has substantially different impacts on the magnitude and structure of wind-driven upwelling processes along the coast compared to RA2. Along coastal locations such as Arica and Taltal, SCOAR and RA2 produce seasonally opposite signs in the total wind-driven upwelling transport. At San Juan, SCOAR shows that upwelling is mainly due to coastal Ekman upwelling transport, while in RA2 upwelling is mostly attributed to Ekman pumping. Fully coupled SCOAR shows significant SST–wind stress coupling during fall and winter, while smoothed SCOAR shows insignificant coupling throughout, indicating the important role of ocean mesoscale eddies on air–sea coupling in HCS. Coupling between SST, wind speed, and latent heat flux is incoherent in large-scale coupling and full coupling mode. In contrast, coupling between these three variables is clearly identified for oceanic mesoscales, which suggests that mesoscale SST affects latent heat directly through the bulk formulation, as well as indirectly through stability changes on the overlying atmosphere, which affects surface wind speeds. The SST–wind stress and SST–heat-flux couplings, however, fail to produce a strong change in the ocean eddy statistics. No rectified effects of ocean–atmosphere coupling were identified for either the atmospheric or oceanic mean conditions, suggesting that mesoscale coupling is too weak in this region to strongly alter the basic climate state.  相似文献   

19.
We consider the effect of compressibility on mixed Ekman–Hartmann boundary layers on an infinite plane (z = 0), in the presence of an external magnetic field oblique to the boundary. The aim is to investigate the influence of the magnetic pressure on the fluid density, and hence, via mass conservation, on the mass flow into or out of the boundary layer. We find that if the z-component of vorticity in the main flow, immediately above the boundary layer, is negative, then there is a competition between Ekman suction and the magnetic pressure effect. Indeed, as the magnetic field strength is increased, the magnetic pumping may overcome the Ekman suction produced by anti-cyclonic main flow vortices. Such a mechanism, based on the competition between these effects, may be of importance for understanding the dynamics of the magnetic field in stellar (or planetary) interiors. For the solar tachocline, we find that the analysed magnetic pressure effect is unlikely to play a significant role; however, we give examples of what changes in the assumed scalings would be necessary for the effect to become important.  相似文献   

20.
Stratorotational instability (SRI) has been proposed as a mechanism for outward angular momentum transport in Keplerian accretion disks. A particular designed Taylor–Couette laboratory experiment with axial stratification is suitable for studying the instability. Bottom endplate is cooled and top endplate is heated to achieve axial stratification. Due to constructive constraints, endplates are visually unamenable and quantitative measurement techniques in the co-rotating frame can only be done by looking through the outer cylinder. For this purpose, we built a co-rotating mini-PIV (Particle Image Velocimetry) system with a camera having a tilted viewing angle regarding the horizontal laser sheet. The aim of this study is (i) to quantify the uncertainty of the mini-PIV together with the used calibration technique and (ii) to compare experimental findings on SRI with theoretical predictions.

We perform measurements of the azimuthal and radial component of the velocity in axial stably stratified Taylor–Couette flows, consider velocity profiles and do frequency-filtering and flow decomposition. The absolute error of the mini-PIV system is 2% and we realised that stratified Taylor–Couette flows have smaller Ekman endwall effects than homogeneous ones. Still, Ekman pumping has an impact of the flow and might be responsible for differences between the data and theoretical models ignoring the endwalls. Here we focus on the flow structure during transition to SRI, the drift rate of SRI modes and the radial momentum flux as a function of the Reynolds number. Whereas the structure in form of trapped boundary Kelvin modes and the drift rate corresponds well with earlier predictions, the momentum flux shows a nonlinear dependency with respect to the Reynolds number. Away from the region of transition, theoretical models show a linear relationship. Several possible reasons for the mismatch between the experimental and theoretical models are discussed. Most important, we experimentally demonstrated that in the Rayleigh stable flow regime the SRI can provide a significant amount of outward momentum flux which makes this instability interesting in the context of accretion disks and also of atmospheric vortices where rotation and stratification also play a significant role.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号