首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 156 毫秒
1.
以往将位于湘南、桂东北的都庞岭花岗岩基分为西体、中体和东体三部分。野外观察和岩相学研究表明,都庞岭中体和东体主要由黑云母正长花岗岩、黑云母二长花岗岩和二云母二长花岗岩组成,岩石具斑状结构,部分钾长石斑晶呈椭球状至球状,具斜长石环边,构成环斑结构。采用锆石SHRIMP U-Pb法获得都庞岭中体和东体中环斑花岗岩的侵位年龄分别为226.6±6.9 Ma和209.7±3.1 Ma,均属于晚三叠世,相当于印支晚期。都庞岭环斑花岗岩富硅、碱,贫钛、磷、镁和钙,其Rb、Cs、Th、U、REE、Pb、Y含量和Rb/Sr、Rb/Ba比值较高,而Sr、Ba含量和Zr/Hf比值(8.16~25.01)较低,具强烈的Eu负异常(δEu=0.02~0.13),10000×Ga/Al比值(2.64~4.38,平均3.15)高,显示A型花岗岩的地球化学特征。与华南印支早期S型花岗岩相比,都庞岭环斑花岗岩的εNd(t)值(-8.0~-8.3)明显偏高(前者低于-10),而tDM2值(1624~1645 Ma)则明显偏低(前者1800 Ma),表明它们可能直接源于地壳物质的部分熔融,但成岩过程中有地幔物质的参与。都庞岭环斑花岗岩的发现及其时代的确定,揭示了晚三叠世华南东部处于大陆裂解或造山后伸展的构造环境。结合华南东部沉积/岩石大地构造分析,认为华南早中生代构造体制的转换发生在中、晚三叠世,而非前人所认为的发生在中、晚侏罗世;同时,环斑花岗岩的出现,指示了华南中生代大规模成矿作用的来临,晚三叠世是华南中生代大规模成矿的第一个高峰期。  相似文献   

2.
《四川地质学报》2019,(4):546-549
通过对赣中于都县形成于加里东期的古嶂花岗岩岩体的岩相学及岩石地球化学特征进行了系统的研究,探讨其岩石类型、岩石成因及岩浆演化过程,并对其形成的构造背景进行了初步的探讨。岩相学上,古嶂花岗岩主要由石英,钾长石,斜长石,黑云母和白云母组成,其中白云母多为自形-半自形,中-粗粒,应为原生白云母;在地球化学特征方面,SiO_2含量较高,K>Na,CaO含量较低,其A/CNK>1.1,属于强过铝质花岗岩;微量元素组成上,古嶂花岗岩岩体中相对富集Rb、Th、U和稀土元素Ce、Sm、Nd,相对亏损Ba、Sr、Nb,属于低Ba-Sr范畴花岗岩。岩体稀土总量较低,相对富集轻稀土,有明显的Eu亏损,古嶂花岗岩应属于S型花岗岩。本文研究的古嶂花岗岩应为在后碰撞伸展环境中地壳物质在较低温度下部分熔融形成S型花岗岩岩浆,经结晶分异后形成。  相似文献   

3.
《四川地质学报》2022,(4):546-549
通过对赣中于都县形成于加里东期的古嶂花岗岩岩体的岩相学及岩石地球化学特征进行了系统的研究,探讨其岩石类型、岩石成因及岩浆演化过程,并对其形成的构造背景进行了初步的探讨。岩相学上,古嶂花岗岩主要由石英,钾长石,斜长石,黑云母和白云母组成,其中白云母多为自形-半自形,中-粗粒,应为原生白云母;在地球化学特征方面,SiO_2含量较高,K>Na,CaO含量较低,其A/CNK>1.1,属于强过铝质花岗岩;微量元素组成上,古嶂花岗岩岩体中相对富集Rb、Th、U和稀土元素Ce、Sm、Nd,相对亏损Ba、Sr、Nb,属于低Ba-Sr范畴花岗岩。岩体稀土总量较低,相对富集轻稀土,有明显的Eu亏损,古嶂花岗岩应属于S型花岗岩。本文研究的古嶂花岗岩应为在后碰撞伸展环境中地壳物质在较低温度下部分熔融形成S型花岗岩岩浆,经结晶分异后形成。  相似文献   

4.
通过对赣中于都县形成于加里东期的古嶂花岗岩岩体的岩相学及岩石地球化学特征进行了系统的研究,探讨其岩石类型、岩石成因及岩浆演化过程,并对其形成的构造背景进行了初步的探讨。岩相学上,古嶂花岗岩主要由石英,钾长石,斜长石,黑云母和白云母组成,其中白云母多为自形-半自形,中-粗粒,应为原生白云母;在地球化学特征方面,SiO_2含量较高,KNa,CaO含量较低,其A/CNK1.1,属于强过铝质花岗岩;微量元素组成上,古嶂花岗岩岩体中相对富集Rb、Th、U和稀土元素Ce、Sm、Nd,相对亏损Ba、Sr、Nb,属于低Ba-Sr范畴花岗岩。岩体稀土总量较低,相对富集轻稀土,有明显的Eu亏损,古嶂花岗岩应属于S型花岗岩。本文研究的古嶂花岗岩应为在后碰撞伸展环境中地壳物质在较低温度下部分熔融形成S型花岗岩岩浆,经结晶分异后形成。  相似文献   

5.
对黄山铌钽矿区含矿岩体(黑云母二长花岗岩、花岗伟晶岩、细粒黑云母花岗岩)的主量元素、微量元素进行地球化学分析,并与成矿带典型A型花岗岩对比,发现它们属于高分异花岗岩,具富硅高碱、贫钙低镁的特征,A/CNK值均>1,属于准铝质—过铝质岩石。岩石富集高场强元素Nb、Th、Ta、Zr、U、Hf及大离子亲石元素Rb,亏损大离子亲石元素Ba、Sr、P及高场强元素Ti。球粒陨石标准化稀土元素配分形式属于“海鸥型”,具强烈的Eu负异常。10 000×Ga/Al值均>2.60、Zr+Nb+Ce+Y总量远高于350×10-6,岩石成因类型为板内花岗岩A1亚类,推断岩体是在拉张构造背景下由于地幔物质上涌导致底侵作用,促使下地壳部分熔融形成了初始岩浆,在上侵过程中有地壳物质的混染。岩浆在侵位过程中发生的结晶分异作用,使铌钽等成矿元素与岩浆熔体分离,高分异演化熔体、富挥发份流体(主要是F、Cl)共同作用是铌钽富集的主要因素。  相似文献   

6.
大埠加里东期花岗岩富硅(SiO2平均含量为74.68%)、富钾(K2O/Na2O平均值为1.53),属髙钾钙碱性过铝质花岗岩(A/CNK=1.00~1.22,平均值1.10);稀土总量较低(平均值为145.98×10-6),配分模式为轻稀土相对富集的右倾型,轻稀土分异较明显,重稀土无明显分异,具强烈的铕负异常(δEu平均值为0.24);以相对富集大离子元素Rb、Th、U、Zr、Hf和稀土元素Ce、Nd、Sm、Y,明显亏损Ba、Sr、P、Ti为特征。研究表明:大埠加里东期花岗岩为上地壳以泥质岩为主、含少量砂质组分的物源区在后碰撞伸展构造环境下经部分熔融而形成的S型花岗质岩浆,在伸展构造体制下上升侵位而成。  相似文献   

7.
对栗木矿田3个花岗岩体进行了岩石主量元素、微量元素的地球化学研究和分析,岩石化学成分具高铝高硅碱特征,属于高钾钙碱性岩系列;微量元素总量明显偏低,Eu强烈亏损,以富含Li、Rb贫Sr、Ba为特征,花岗岩浆分异度高或岩浆发生过充分的结晶分异作用;推断花岗质岩浆熔出后源区残留相为石榴石+斜长石+钾长石±角闪石±黑云母等组成的麻粒岩相,具深源的特征,在中高—高压条件下部分熔融形成的,同时,受氧逸度(f O 2)较低、水活度(αH 2 O)较低、水逸度(f H 2 O)较高的制约因素影响.通过对华南地区岩石圈深部动力学背景分析,认为岩石圈减薄合理地解释了本区栗木花岗岩体的形成机制.  相似文献   

8.
苏扣林 《江苏地质》2018,42(2):197-205
广州从化区良口亚髻山霞石正长岩为典型岩石遗迹,在碱性岩体野外填图研究过程中,新发现东侧分布有黄田埔高分异花岗岩,形成时间约(146±13)Ma,为晚侏罗世岩浆活动产物。元素地球化学特征显示硅高、钾富、分异指数高、Rb/Sr比值高以及Rb/Ba、Nb/Ta、Zr/Hf、TFeO/MgO比值低;稀土元素ΣREE平均值为248 g/t,ΣCe/ΣYb平均值为2.34,δEu(0.16)负异常明显;Ga(×10~4)/Al比值较低(平均值为3.47),Zr+Nb+Ce+Y含量(平均值为264g/t)低于A型花岗岩(350 g/t);I(Sr)值为0.691 8~0.712 8,平均值为0.708 1;ε_(Nd)(t)值为-3.5~-10.0,平均值为-6.7。元素地球化学、同位素地球化学和同位素年代学综合研究结果表明,岩株的形成可能与上地幔岩浆分异有关,为高分异Ⅰ型花岗岩。  相似文献   

9.
陕西黄龙铺地区多处出露有花岗斑岩体和辉绿岩。花岗斑岩斑晶主要为石英和钾长石,基质为钾长石、石英、斜长石、黑云母等。岩石具高硅、富碱、过铝质特征,属碱性花岗斑岩。岩石具中等Eu亏损(δEu=0.36~0.68);大离子亲石元素Ba、K、Sr及高场强元素Ta亏损,Th、U、Zr、Hf等富集的特征。碱性花岗斑岩的岩石地球化学及铅同位素组成特征与区内含钼花岗斑岩相似,暗示它们可能源于下地壳部分熔融。辉绿岩主要由普通辉石、斜长石、角闪石组成;岩石的SiO2含量变化于48.78%~48.92%;稀土元素配分曲线呈较一致的平滑右倾模式,无明显Eu异常;微量元素亏损高场强元素Zr、Hf、Ta、Nb、Ti,及大离子亲石元素K、Rb、Sr,此外,Ba表现明显的富集特征。辉绿岩的(87Sr/86Sr)ⅰ值介于0.718~0.762,εNd(t)值的范围为-19.53~-19.69,其高初始Sr、低εNd值的同位素特征揭示其可能来源于富集地幔。碱性花岗斑岩和辉绿岩SHRIMP锆石U-Pb年龄分别为(131±1)Ma和(129±2)Ma,形成于早白垩世,构造环境判别分析表明,两类岩体均形成于大陆板块内部伸展环境,与此时东秦岭岩石圈发生大规模减薄作用相耦合。  相似文献   

10.
个旧花岗岩的微量元素和稀土元素地球化学演化特征   总被引:6,自引:2,他引:6  
陆杰 《地球化学》1987,(3):249-259
个旧花岗岩,从斑状黑云母二长花岗岩→中粗粒黑云母钾长花岗岩→二云母碱长花岗岩构成了较完整的同源多阶段演化系列,岩浆是以分离结晶方式演化的。不同类型花岗岩的lg(Rb/Sr)-lgSn,lg(Rb/Ba)-lgSn,lgLa-lgSr,lgCe-lgSr,lgEu-lgSr等具有很好的线性关系,REE分布模式的演化也反映了岩浆分异特征。晚期二云母碱长花岗岩是强烈分异的锡多金属矿化花岗岩,其以高Rb/Sr,Rb/Ba比值和低K/Rb、∑Ce/∑Y比值以及Eu强烈亏损为特征。  相似文献   

11.
柴北缘鹰峰环斑花岗岩矿物学特征及其岩石学意义   总被引:3,自引:0,他引:3  
柴北缘构造带中元古代鹰峰环斑花岗岩主要造岩矿物的研究结果表明,该岩体具pyterlitic型环斑结构,各主要矿物均具多世代特征。钾长石主要以卵形斑晶出现,出溶钠长石条纹极发育,出溶后主晶成分为Or94.57Ab5.25An0.18,钠长石条纹为Or0.71Ab97.59An1.7,推算出球斑均一化成分为Or66.41Ab32.95An0.64。岩浆结晶的斜长石以更长石为主,由于不同程度的蚀变使An降低成为钠质长石。黑云母多有不同程度的蚀变,析出磁铁矿和钛铁矿,析出铁后黑云母的n(Fe)/n(Fe+Mg)=0.5~0.63,属Mg-Fe2+-和Fe2+-黑云母,原成分应更富铁。鹰峰岩体在矿物组成及主要矿物特征上与典型环斑花岗岩的相似,但也存在一些差异,这些差异有的是起因于加里东期的变质改造,有的反映了岩体形成环境和过程的特性。  相似文献   

12.
东南沿海分布大面积的白垩纪晚期侵入岩。这些岩石可分为两期:其中115~100Ma以钙碱性系列岩石为主,岩石组合为辉长岩-闪长岩-花岗闪长岩-二长花岗岩-碱性长石花岗岩;而100~86Ma的岩石为碱性系列,岩石组合为石英二长斑岩-正长斑岩-碱性长石花岗岩。115~100Ma的辉长岩以角闪辉长岩为主,具有极高的CaO、MgO和Al_(2)O_(3)含量,具有极低的SiO_(2)(42.9%~53.8%)、全碱(K_(2)O+Na_(2)O:0.86%~5.28%)、Ba、Nb、Th、Rb和Zr含量,也具有极低的FeO^(T)/MgO、La/Yb和Zr/Hf比值,较高的Eu/Eu^(*)、Sr/Y比值和Sr含量,为基性-超基性堆晶岩。与辉长岩同期的闪长岩和细粒暗色包体具有较高的SiO_(2)(50.34%~63.68%),较低的CaO、P_(2)O_(5)、MgO、Al_(2)O_(3)含量,相对低的Eu/Eu^(*)和Sr/Y比值,变化较大的La/Yb和Zr/Hf比值,代表了从基性岩浆储库中抽取的富硅熔体。115~100Ma的花岗闪长岩和二长花岗岩类岩石为准铝质岩石,SiO_(2)含量变化较大(61.7%~75.3%),具有较低的FeO^(T)/MgO、Ga/Al比值和Nb、Zr及Nb+Zr+Ce+Y元素含量,显示出典型I型花岗岩的特征。这些花岗岩具有相对高的La/Yb、Eu/Eu^(*)和Zr/Hf比值和高的Sr、Ba和Zr含量。结合岩相学特征,这些花岗岩为堆晶花岗岩。而115~100Ma的碱性长石花岗岩具有极高的SiO_(2)含量(大于75%),低的Eu/Eu^(*)、La/Yb、Zr/Hf和Sr/Y比值,具有低的Ba、Sr和Zr含量和高的Rb、Nb、Y和Th含量和Rb/Sr比值,表明这些花岗岩是由富硅岩浆储库中抽离的高硅熔体侵入地壳形成。100~86Ma期间形成的二长斑岩和正长斑岩具有极高的全碱含量,可以达到8%~12%,其SiO_(2)主要集中在60%~70%,具有极高的Zr、Sr和Ba含量和Eu/Eu^(*)、La/Yb和Sr/Y比值,显示出堆晶花岗岩的特征。而100~86Ma期间形成的大部分碱性长石花岗岩具有极高的SiO_(2)含量(大于75%),并显示出A型花岗岩的特征,具有高的Rb/Sr比值和高的Rb、Y和Th和低的Ba、Sr含量和低的Zr/Hf、La/Yb、Eu/Eu^(*)和Sr/Y比值,表明它们是由富硅岩浆储库抽离的高硅熔体侵入浅部地壳形成。东南沿海高硅花岗岩的形成和穿地壳岩浆系统密切相关,高硅花岗岩是由浅部地壳内晶体-熔体分异产生的熔体侵入地壳所形成,而高硅花岗岩的地球化学特征与岩浆储库的水及挥发份含量密切相关。115~100Ma期间,从富水的岩浆储库抽离的熔体形成具有低高场强元素含量和低Rb/Sr比值的高硅花岗岩,这一过程与古太平洋板块俯冲有关;100~86Ma期间,从富挥发份的岩浆储库抽离的熔体形成碱性特征、富含高场强元素和具有高的Rb/Sr比值的高硅花岗岩,这一过程和古太平洋板块回撤软流圈上涌有关。  相似文献   

13.
文章对位于南岭西段湘桂交界处的都庞岭东侧岩体开展了锆石SHRIMP U-Pb年代学、岩石学、矿物化学、岩石地球化学和Sm-Nd、Lu-Hf同位素分析研究。锆石SHRIMP U-Pb定年结果显示,粗中粒斑状黑云母二长花岗岩年龄为215.6±2.1 Ma,中粒斑状黑云母二长花岗岩年龄为220.5±1.8 Ma,中粒环斑黑云母二长花岗岩年龄为222.8±1.5 Ma,结合以往研究获得的细粒白云母二长花岗岩年龄209.7±3.1 Ma,认为岩体侵位时限介于222.8~209.7 Ma,为印支期岩浆活动产物,非以往认为的燕山期。环斑钾长石、黑云母聚晶的矿物化学特征表明环斑黑云母二长花岗岩形成过程中岩浆温度、压力、成分发生震荡变化,在玄武质岩浆的底侵作用下发生多次熔融作用形成黑云母聚晶。都庞岭黑云母二长花岗岩具有较高的SiO2和K2O+Na2O含量,A/CNK值为1.02~1.39,里特曼指数(δ)为0.93~2.18,属过铝质钙碱性系列;微量元素地球化学性质表现为富集REE、Rb、Th和U及较高的HFSE(Nb、Y和Ga),亏损Ba、Sr、Eu,具有高的TFeO/MgO、Ga/Al比值,地球化学特征显示为A型花岗岩;Nd同位素εNd(t)值为-8.74~-8.13,T2DM值为1.71~1.66 Ga;锆石Hf同位素εHf(t)值为-14.1~-1.4,T2DM值为2.14~1.34 Ga,显示都庞岭黑云母二长花岗岩主要源于古老地壳物质的部分熔融,并受到了一定程度的亏损地幔物质的混染。印支运动的变质峰期在258~243 Ma,233 Ma以后华南地区处于伸展的构造背景并受到幔源玄武质岩浆大范围底侵,诱发地壳物质重熔形成伸展背景下的都庞岭印支期铝质A型(环斑)花岗岩。   相似文献   

14.
The evolution characteristics of Gejiu granites, Yunnan Province are described in terms of their petrology, especially their trace elements and REE geochemistry. The three major types of Gejiu granites: porphyritic biotite monzonitic granite (stage I), medium-coarse-grained biotite-K-feldspar granite (stage II) and two-mica alkali-feldspar granite (stage III) are thought to have been formed successively from the same granite magma source through fractional crystallization (Rayliegh fractionation), because linear correlations are found between log(Rb/Sr)-log Sn, log(Rb/Ba)-log Sn, log(Rb/Ba)-log(Rb/Sr), log La-log Sr, log Ce-log Sr, log Eu-log Sr, etc. In addition, the characteristics of REE distribution patterns in these three major types of granites also reflect the magmatic differentiation features of Gejiu granites. Of the three major types, the two-mica alkali-feldspar granite of stage III underwent the strongest differentiation, and thus has the closest genetic relationship with the Gejiu tin-polymetallic ore deposit. Such tin-polymetal mineralized granites are characterized by high Rb/Sr and Rb/Ba ratios, low K/Rb and ΣCe/ΣY ratios and remarkable Eu depletion.  相似文献   

15.
Ilmari Haapala  Sari Lukkari 《Lithos》2005,80(1-4):347-362
The 6×3 km Kymi monzogranite stock represents the apical part of an epizonal late-stage pluton that was emplaced within the 1.65 to 1.63 Ga Wiborg rapakivi batholith. The stock has a well-developed zonal structure, from the rim to the center: stockscheider pegmatite, equigranular topaz granite, porphyritic topaz granite. The contact between the two granites is usually gradational within a few centimeters, but local inclusions of the porphyritic granite in the equigranular granite indicate that the latter solidified later. Hydrothermal greisen and quartz veins, some of which contain genthelvite, beryl, wolframite, cassiterite, and sulfides, cut the granites of the stock and the surrounding country rocks. The equigranular granite contains 1 to 4 vol.% topaz, and its biotite is lithian siderophyllite; the porphyritic granite has 0 to 3 vol.% topaz, and the mica is siderophyllite. The equigranular granite is geochemically highly evolved with elevated Li, Rb, Ga, Ta, and F, and very low Ba, Sr, Ti, and Zr. The REE patterns show deep negative Eu anomalies and tetrad effects indicating extreme magmatic fractionation and aqueous fluid–rock interaction. The zonal structure of the stock is interpreted as a result of differentiation within the magma chamber. Internal convection in the crystallizing magma chamber and upward flow of residual melt as a boundary layer along sloping contacts resulted in accumulation of a layer of highly evolved, volatile-rich magma in the apical part of the chamber. Crystallization of this apical magma produced the stockscheider pegmatite and the equigranular granite; the underlying crystal mush solidified as the porphyritic granite. Much of the crystallization took place from volatile-saturated melt, and episodic voluminous degassing expelled fluids into opened fractures where they or their derivatives reacted with country rocks and caused alteration and mineralization.  相似文献   

16.
对内蒙古科尔沁右翼中旗碱长花岗岩进行了同位素年代学及岩石地球化学研究。碱长花岗岩LA-ICP-MS锆石U-Pb加权平均年龄为(166±1)Ma,表明该侵入体是中侏罗世侵位形成的。岩石学及地球化学成分显示其属于碱性、具A型花岗岩特征。岩石高硅(w(SiO2)=74.80%~76.34%)、富碱(w(Na2O+K2O)=7.94%~8.71%)、高铁镁比(TFeO/MgO=13.54~24.28)、贫钙(w(CaO)=0.10%~0.21%)、贫镁(w(MgO)=0.08%~0.16%)和低钛(w(TiO2)=0.07%~0.10%);稀土配分曲线呈现"海鸥式"分布特征,显示强烈的Eu负异常(δEu=0.09~0.17);微量元素特征显示具有较高质量分数的有Zr(128.95×10-6~156.32×10-6)、Yb(4.93×10-6~5.35×10-6)和Y(40.93×10-6~56.75×10-6),较低质量分数的有Sr(23.16×10-6~37.14×10-6)、Ba(186.13×10-6~231.31×10-6),在微量元素原始地幔标准化蛛网图上显示明显的Sr、Ba和Ti的负异常。以上特征表明,碱长花岗岩为A型花岗岩。岩石具有高的Rb/Sr值(4.26~7.81,平均为6.12)和Rb/Nb值(10.2~14.7,平均为12.7),显示出壳源岩浆的成分特征。综合分析表明,碱长花岗岩为低压下长英质地壳部分熔融的产物。w(Rb)-w(Yb+Ta)图解、w(Rb)-w(Y+Nb)图解、w(Ta)-w(Yb)图解、w(Nb)-w(Y)图解、Ce/Nb-Y/Nb图解、Ce/Nb-Yb/Ta图解及结合区域构造演化研究表明,碱长花岗岩形成于造山后伸展的构造环境,并与松辽盆地及其周围的花岗岩一起暗示松辽盆地是在中侏罗世造山作用之后伸展的构造环境下形成的陆内盆地。  相似文献   

17.
东天山百灵山西辉长岩、似斑状花岗岩近年来才被发现,为了解其成因及相关大地构造背景,对其进行地质学、地球化学、锆石U-Pb定年及Sr-Nd同位素分析.LA-ICP-MS锆石U-Pb测年结果显示,百灵山西辉长岩、似斑状花岗岩分别形成于236 Ma和228 Ma.辉长岩具有较低的SiO2(43.50%~46.03%)含量,较高的CaO(11.40%~13.24%)、Fe2O3T(9.62%~11.84%)和MgO(6.02%~10.58%;Mg#=53~69)含量以及Ce/Pb、Ti/Zr、Ti/Y及Ba/Th比值,且富集LREE、LILE,表明其形成于受板片脱水流体交代地幔楔的部分熔融.似斑状花岗岩表现出I型花岗岩的特征,且具有较高的SiO2(71.14%~72.71%),强富集LREE[(La/Yb)N=12.61~28.45]和LILE(例如Rb,K和Pb),表明其形成于下地壳的部分熔融.而较高的Mg#(39~41)值、Ti/Y(154.40~306.18)比值,显示其源区有地幔物质的加入.结合前人研究成果,可知东天山地区在240 Ma以后已经进入陆内演化阶段,百灵山西辉长岩及似斑状花岗岩均形成于陆内环境.   相似文献   

18.
海南岛中元古代花岗岩地球化学及成因研究   总被引:16,自引:3,他引:16  
海南岛中元古代花岗岩岩体主要由二长花岗岩、花岗冈长岩等岩石组成,构成一个明显的 自花岗岩向花岗闪长岩和英云闪长岩的岩浆演化系列及钙碱性演化趋势。该岩体为一套板块碰撞 后隆起期原地一半原地过铝质花岗岩。是板块碰撞引起的地壳增厚升温和随之的玄武岩浆底侵加 热联合作用下,主要由抱板群变质沉积岩及斜长角闪片麻岩部分融熔、并在幔源物质的参与下形 成的,所形成的花岗质岩浆在“走滑扩容泵吸”机制驱动下沿戈枕剪切带上升、固结就位,因而具壳 幔二元混合成因特点。化学成分以高 SiO2、K2O、Rb、Ba、Ta、Ce和贫P、Ti、Zr、Sr、Fe2O3+FeO、 MgO、CaO为特征;元素比值Zr/Nb、La/Nb、Ba/Nb、Rb/Nb、K/Nb、Ba/La及Cr、Co、Ni、V均接近 大陆中下地壳成分,Rb、Sr、Ba、Ta、Zr及比值K/Sr、Rb/Sr石r/Ba变化范围小,反映岩浆源区成分 或熔融方式上的一致性;轻重稀土较强分馏,负铕异常明显,稀土配分模式总体相似,呈左高右低 型,和抱板群变质沉积岩稀上元素组成基本一致;εNd(t)值普遍高于抱板群地层,(87Sr/86Sr)i值变化 大,暗示幔源参与信息。结合抱板群变基性火山岩的  相似文献   

19.
秦亚  梁一鸿  胡兆初  冯坚  李敏 《地球科学》2013,38(4):677-688
主微量元素分析和LA-ICP-MS锆石U-Pb年龄显示吉南老岭地区的头道、老岭、上绿水桥和高台子岩体为一套早白垩世铝质A型花岗岩.主要岩性为钾长花岗岩、晶洞钾长花岗岩、花岗斑岩和花岗岩.LA-ICP-MS锆石U-Pb年龄为121~125Ma.主量元素具有富Si、alk, 贫Fe、Mg、Ca、Ti的特征; 微量元素亏损Ba、Sr、Ti、Nb、Ta、P, 富集K、Rb、Th等不相容元素; 稀土元素具有中等到强烈的负铕异常及右倾海鸥型的球粒陨石标准化稀土配分模式.元素地球化学特征表明岩体为铝质A型花岗岩(A/CNK=0.82~1.15, A/NK=1.00~1.28).岩石具有较低的不相容元素Ce/Nb、Y/Nb、Yb/Ta比值, 为A1型非造山花岗岩.研究表明吉南老岭地区早白垩世时处于非造山的伸展构造环境, 是华北板块东部早白垩世伸展地球动力学背景在吉林南部地区的岩浆活动体现.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号