首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
研究了高斯辐射成分在可视点所画出轨迹上的分布,这个可视点因脉冲星的转动而作非匀速度运动.通过假设辐射区域围绕磁轴均匀分布,一个高斯辐射成分便对应于可视轨迹划过的一个辐射区域.因为演示辐射区域在可视轨迹上是不均匀的分布,因此高斯成分沿轨迹也是不均匀的,而高斯成分的密度在磁轴与视线距离最近时为最大.高斯成分的分布取决于脉冲星的两个角度:旋转轴和视线之间的夹角,以及磁轴和旋转轴之间的倾角.基于此模型,一个脉冲星平均轮廓中观察到的多个高斯成分便对应于可视轨迹在特定的转动相位范围内的辐射区域.演示了脉冲星旋转的近侧和远侧的相位,分别对应的主脉冲和中间脉冲,两者高斯成分的数量和分布是不同的.而且还发现,沿可视轨迹上的辐射区域总数与围绕磁轴的辐射区域的总数是不同,并且预测的辐射区域数目会因忽略可见点的运动而明显不同.拟合表明脉冲星轮廓的高斯成分的形状和数量可能与实际构成轮廓的成分的形状和数量不同.以PSR B0826–34的辐射为例,并假设辐射来自单一磁极.  相似文献   

2.
选取23颗双峰轮廓脉冲星,考察脉冲星射电辐射锥成分的谱行为.通过对前导和后随成分峰值强度比与频率的关系进行幂律谱拟合,给出了前后两部分的相对谱指数.结果显示,大多数脉冲星的相对谱指数集中分布在零附近,这表明,前导和后随成分的辐射本质上没有差别;相对谱指数的近似高斯分布显示出,其辐射部位高辐射束中心距离之差具有一定的随机性.  相似文献   

3.
Based on dividing the profile into a number of absolute phase intervals,the phase-resolved spectra (PHRS) are derived from published time-aligned average profiles at radio frequencies over two decades for the classic conal-double pulsar B1133 16. The relative spectral index,defined as the difference between the spectral indices of a reference and the given arbitrary phase interval,is obtained by power-law fit at each phase interval. The derived phase-resolved spectra show an "M-like" shape,of which the leading part and trailing part are approximately symmetrical. The basic feature of the PHRS is that the spectrum first flat-tens then steepens as the pulse phase sweeps from the profile center to the profile edges. The PHRS provide a coherent explanation of the major features of profile evolution of B1133 16,namely,the pulse width shrinkage with increasing frequency and the frequency evolution of the relative intensity between the leading and trailing conal components,and the bridge emission. The PHRS may be an indicator for emission spectral variation across the pulsar magnetosphere. Possible mapping from PHRS to emission-location-dependent spectral vari-ation is presented,and some intrinsic mechanisms are discussed.  相似文献   

4.
Amongst the sources seen in very high gamma-rays several are associated with Pulsar Wind Nebulae (“TeV plerions”). The study of hard X-ray/soft gamma-ray emission is providing an important insight into the energetic particle population present in these objects. The unpulsed emission from pulsar/pulsar wind nebula systems in the energy range accessible to the INTEGRAL satellite is mainly synchrotron emission from energetic and fast cooling electrons close to their acceleration site. Our analyses of public INTEGRAL data of known TeV plerions detected by ground based Cherenkov telescopes indicate a deeper link between these TeV plerions and INTEGRAL detected pulsar wind nebulae. The newly discovered TeV plerion in the northern wing of the Kookaburra region (G313.3+0.6 powered by the middle aged PSR J1420-6048) is found to have a previously unknown INTEGRAL counterpart which is besides the Vela pulsar the only middle aged pulsar detected with INTEGRAL. We do not find an INTEGRAL counterpart of the TeV plerion associated with the X-ray PWN “Rabbit” G313.3+0.1 which is possibly powered by a young pulsar.  相似文献   

5.
由单颗脉冲星定义的脉冲星时受多种噪声源的影响,其短期和长期稳定度都不够好.为了削弱这些噪声源对单脉冲星时的影响,可以采取合适的算法对多个单脉冲星时进行综合得到综合脉冲星时,从而提高综合脉冲星时的长期稳定度.文中介绍4种综合脉冲星时算法:经典加权算法、小波分析算法、维纳滤波算法和小波域中的维纳滤波算法,将这4种算法分别应用于Arecibo天文台对两颗毫秒脉冲星PSR B1855+09和PSRB1937+21观测得到的计时残差并作出比较.  相似文献   

6.
We report on observations of the X-ray pulsar IGR J16320−4751 (also known as AX J1631.9−4752) performed simultaneously with International Gamma-Ray Astrophysics Laboratory ( INTEGRAL ) and XMM–Newton . We refine the source position and identify the most likely infrared counterpart. Our simultaneous coverage allows us to confirm the presence of X-ray pulsations at ∼1300 s, that we detect above 20 keV with INTEGRAL for the first time. The pulse fraction is consistent with being constant with energy, which is compatible with a model of polar accretion by a pulsar. We study the spectral properties of IGR J16320−4751 during two major periods occurring during the simultaneous coverage with both satellites, namely a flare and a non-flare period. We detect the presence of a narrow 6.4 keV iron line in both periods. The presence of such a feature is typical of supergiant wind accretors such as Vela X-1 or GX 301−2. We inspect the spectral variations with respect to the pulse phase during the non-flare period, and show that the pulse is solely due to variations of the X-ray flux emitted by the source and not due to variations of the spectral parameters. Our results are therefore compatible with the source being a pulsar in a High Mass X-ray Binary. We detect a soft excess appearing in the spectra as a blackbody with a temperature of ∼0.07 keV. We discuss the origin of the X-ray emission in IGR J16320−4751: while the hard X-rays are likely the result of Compton emission produced in the close vicinity of the pulsar, based on energy argument we suggest that the soft excess is likely the emission by a collisionally energized cloud in which the compact object is embedded.  相似文献   

7.
We have undertaken an extensive study of X-ray data from the accreting millisecond pulsar XTE J1751 − 305 observed by RXTE and XMM–Newton during its 2002 outburst. In all aspects this source is similar to the prototypical millisecond pulsar SAX J1808.4 − 3658, except for the higher peak luminosity of 13 per cent of Eddington, and the optical depth of the hard X-ray source, which is larger by a factor ∼2. Its broad-band X-ray spectrum can be modelled by three components. We interpret the two soft components as thermal emission from a colder  ( kT ∼ 0.6 keV)  accretion disc and a hotter (∼1 keV) spot on the neutron star surface. We interpret the hard component as thermal Comptonization in plasma of temperature ∼40 keV and optical depth ∼1.5 in a slab geometry. The plasma is heated by the accretion shock as the material collimated by the magnetic field impacts on to the surface. The seed photons for Comptonization are provided by the hotspot, not by the disc. The Compton reflection is weak and the disc is probably truncated into an optically thin flow above the magnetospheric radius. Rotation of the emission region with the star creates an almost sinusoidal pulse profile with an rms amplitude of 3.3 per cent. The energy-dependent soft phase lags can be modelled by two pulsating components shifted in phase, which is naturally explained by a different character of emission of the optically thick spot and optically thin shock combined with the action of the Doppler boosting. The observed variability amplitude constrains the hotspot to lie within 3°–4° of the rotational pole. We estimate the inner radius of the optically thick accreting disc to be about 40 km. In that case, the absence of emission from the antipodal spot, which can be blocked by the accretion disc, gives the inclination of the system as ≳70°.  相似文献   

8.
We present a calculation of a three-dimensional pulsar magnetosphere model to explain high-energy emission from the Geminga pulsar with a thick outer gap. High-energy γ -rays are produced by primary accelerated particles with a power-law energy distribution through curvature radiation inside the outer gap. We also calculate the emission pattern, pulse profile and phase-resolved spectra of high-energy γ -rays of the Geminga pulsar, and find that its pulse profile is consistent with the observed one if the magnetic inclination and viewing angle are ∼50° and ∼86° respectively. We describe the relative phases among soft (thermal) X-rays, hard (non-thermal) X-rays, and γ -rays. Our results indicate that X-ray and γ -ray emission from the Geminga pulsar may be explained by the single thick outer gap model. Finally, we discuss the implications of the radio and optical emission of the Geminga pulsar.  相似文献   

9.
This review describes the observational properties of radio pulsars, fast rotating neutron stars, emitting radio waves. After the introduction we give a list of milestones in pulsar research. The following chapters concentrate on pulsar morphology: the characteristic pulsar parameters such as pulse shape, pulsar spectrum, polarization and time dependence. We give information on the evolution of pulsars with frequency since this has a direct connection with the emission heights, as postulated in the radius to frequency mapping (RFM) concept. We deal successively with the properties of normal (slow) pulsars and of millisecond (fast-recycled) pulsars. The final chapters give the distribution characteristics of the presently catalogued 1300 objects.Received: 5 December 2003, Published online: 15 April 2004 Correspondence to: Richard Wielebinski  相似文献   

10.
We investigate the close analogy between the solar radio emission with a quasi-harmonic spectrum structure and one of the microwave emission components of the Crab pulsar in the form of the so-called zebra pattern. The radio emission mechanism of this component can be provided by instability at double plasma resonance and can be realized in extraordinary (for a radio pulsar) conditions, namely in a nonrelativistic plasma with a relatively weak magnetic field. We point out possible models of the emission source in the form of a magnetic trap or a neutral current sheet with a transverse magnetic field localized in the corotating region of the pulsar magnetosphere far from the neutron star surface.  相似文献   

11.
Observations of mean or average pulse profiles and their polarization give us much information on the shape of pulsar beams. The observed polarization variations, profile symmetry and frequency dependence of profile shape strongly suggest that the emission beam is conical and emitted from the vicinity of a magnetic pole. Central and outer parts of the beam have somewhat different properties, but the evidence is that they are emitted by the same basic mechanism. Recent observations suggest that the highly polarized pulse components seen in young pulsars may be emitted at a large angle to the magnetic axis.  相似文献   

12.
We have observed a total of 67 pulsars at five frequencies ranging from 243 to 3100 MHz. Observations at the lower frequencies were made at the Giant Metre-Wave Telescope in India and those at higher frequencies at the Parkes Telescope in Australia. We present profiles from 34 of the sample with the best signal-to-noise ratio and the least scattering. The general 'rules' of pulsar profiles are seen in the data; profiles get narrower, the polarization fraction declines and outer components become more prominent as the frequency increases. Many counterexamples to these rules are also observed, and pulsars with complex profiles are especially prone to rule breaking. We hypothesize that the location of pulsar emission within the magnetosphere evolves with time as the pulsar spins down. In highly energetic pulsars, the emission comes from a confined range of high altitudes, in the middle range of spin down energies the emission occurs over a wide range of altitudes whereas in pulsars with low spin-down energies it is confined to low down in the magnetosphere.  相似文献   

13.
According to two estimated relations between the initial period andthe dynamo-generated magnetic dipole field of pulsars, we calculate the statisticaldistributions of pulsar initial periods. It is found that proto-pulsars are very likelyto have rotation periods between 20 ms and 30 ms, and that most of the pulsarsrotate initially at a period < 60 ms. Our result supports the asymmetric neutrinoemission model for pulsar kick.  相似文献   

14.
We report on our analysis of two XMM-Newton observations of the Vela pulsar performed in December 2000 (total exposure time: 96.5 ks). We succeeded in resolving the pulsar spectrum from the surrounding bright nebular emission taking advantage both of the accurate calibration of the EPIC point spread function and of the Chandra/HRC surface brightness map of the nebula. This made it possible to assess to pulsar spectral shape disentangling its thermal and non-thermal components. Exploiting the photon harvest, we have also been able to perform a phase-resolved study of the pulsar emission.   相似文献   

15.
为了研究脉冲星本质与磁层动力学过程,如何从观测限定脉冲星辐射区域的部位和几何结构是其中一个基本且关键的问题.介绍了目前各种脉冲星辐射区几何限定方法的主要思想和结果,并对其异同和各自的优势作了比较和评述;根据已有的限定结果总结了其对辐射束结构、加速区模型和射电辐射机制等理论问题研究的帮助和启示;从各种方法的发展过程来看,完善能够限定脉冲星多波段辐射区域三维结构的方法,并与辐射区和加速区等理论问题的研究更紧密地结合是该领域的重要发展方向.  相似文献   

16.
Two investigations of millisecond pulsar radiation are discussed: average total intensity pulse morphology and individual pulse to pulse fluctuations. The average emission profiles of millisecond pulsars are compared with those of slower pulsars in the context of polar cap models. In general the full widths of pulsar emission regions continue to widen inversely with periodP as P-(0.30-0.5) as expected for dipole polar cap models. Many pulse components are very narrow. The period scaling of pulsar profiles -separations and widths -can tell us about the angular distribution of radiating currents. An investigation of individual pulses from two millisecond pulsars at 430 MHz shows erratic pulse to pulse variations similar to that seen in slow pulsars. PSR B1937+21 displays occasional strong pulses that are located in the trailing edge of the average profile with relative flux densities in the range of 100 to 400. These are similar to the giant pulses seen in the Crab pulsar.  相似文献   

17.
The initial period of a pulsar is an important factor in our understanding of the formation of neutron stars and of the nature of the equation of state of neutron star matter.Up to now this quantity can only be obtained for a few pulsars for which accurate age and braking index are known.Based on the theory of the offcenter dipole emission,in which pulsars obtain theiry high velocities depending on the initial periods,we calculate the initial period using the proper motion data,Because the orbital velocity of the progenitor and asymmetric kick in the supernova explosion may also contribute to the observed velocity of the pusar,the derived values of initial periods are lower limits.For normal pulsars,the initial periods are in the range of 0.6~2.6ms.For the millisecond pulsars,the initial periods are comparable to their current periods,and the ratio between the initial period and the current period increases with the decrease of the current period.For PSR B1937 21 with the shortest period of 1.56ms,the ratio is 0.77.  相似文献   

18.
The spectral and morphological analysis for gamma-ray sources with multiple emission components remains a major challenge for Cherenkov telescopes due to background emission from diffuse gamma rays. Current methods of background suppression, usually based on the bin-by-bin subtraction of OFF-source data do not allow an analysis of the various background components. As an alternative, we present an approach based on an event-by-event likelihood fit of ON-source data, using a combined spectral model for the source emission as well as for the gamma-like background obtained from fits of the OFF-source data. Multiple emission components are separated by successive fits in different energy regimes and spectral variations inside the extended source is derived. The performance of this approach is evaluated with toy Monte-Carlo studies. For the application to real data, two well-studied H.E.S.S. sources are re-examined: the extragalactic point-source PKS 2155-304 and the extended pulsar wind nebula HESS J1825-137. For the latter, radial variation of the emission spectral index was evaluated, confirming earlier findings by the H.E.S.S. collaboration.  相似文献   

19.
We present X-ray data of the middle-aged radio pulsar PSR B0355+54. The XMM-Newton and Chandra observations show not only emission from the pulsar itself, but also compact diffuse emission extending ∼50″ in the opposite direction to the pulsar’s proper motion. Our analysis also indicates the presence of fainter diffuse emission extending ∼5′ from the point source. The morphology of the diffuse component is similar to the ram-pressure confined pulsar wind nebulae detected for other sources. We find that the compact diffuse component is well-fitted with a power-law, with an index that is consistent with the values found for other pulsar wind nebulae. The core emission from the pulsar can be characterized with a thermal plus power-law fit, with the thermal emission most likely originating in a hot polar cap.  相似文献   

20.
We report the discovery of a prominent non-thermal X-ray feature located near the Galactic centre that we identify as an energetic pulsar wind nebula. This feature, G359.95-0.04, lies 1-lyr north of Sgr A* (in projection), is comet like in shape, and has a power-law spectrum that steepens with increasing distance from the putative pulsar. The distinct spectral and spatial X-ray characteristics of the feature are similar to those belonging to the rare class of ram-pressure confined pulsar wind nebulae. The luminosity of the nebula at the distance of Sgr A*, consistent with the inferred X-ray absorptions, is   Lx ∼ 1 × 1034 erg s−1  in the 2–10 keV energy band. The cometary tail extends back to a region centred at the massive stellar complex IRS 13 and surrounded by an enhanced diffuse X-ray emission, which may represent an associated supernova remnant. Furthermore, the inverse Compton scattering of the strong ambient radiation by the nebula consistently explains the observed TeV emission from the Galactic centre. We also briefly discuss plausible connections of G359.95-0.04 to other high-energy sources in the region, such as the young stellar complexes IRS 13 and SNR Sgr A East.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号