首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
There has been increasing evidence that at least some gamma-ray bursts (GRBs) are emission beamed. The beamed GRB-afterglow evolution has been discussed by several authors in the ultrarelativistic case. It has been shown that the dynamics of the blast wave will be significantly modified by the sideways expansion, and there may be a sharp break in the afterglow light curves under certain circumstances. However, this is only true when the fireball is still relativistic. Here we present an analytical approach to the evolution of the beamed GRB blast wave expanding in the surrounding medium (density     in the non-relativistic case, our purpose is to explore whether the sideways expansion will strongly affect the blast-wave evolution as in the relativistic case. We find that the blast-wave evolution is strongly dependent on the speed of the sideways expansion. If it expands with the sound speed, then the jet angle θ increases with time as     which means that the sideways expansion has little effect on the afterglow light curves, the flux     for     and     for     It is clear that the light curve of     is not always steeper than that of     as in the relativistic case. We also show that if the expansion speed is a constant, then the jet angle     and the radius     in this case the sideways expansion has the most significant effect on the blast-wave evolution, the flux     independent of s , and we expect that there should be a smooth and gradual break in the light curve.  相似文献   

2.
Whether gamma-ray bursts are highly beamed or not is a very important question, as it has been pointed out that the beaming will lead to a sharp break in the afterglow light curves during the ultrarelativistic phase, with the breaking point determined by  Γ∼1/ θ 0  , where Γ is the bulk Lorentz factor and θ 0 is the initial half opening angle of the ejecta, and such a break is claimed to be present in the light curves of some GRBs. In this paper we will examine whether all the observed breaks in GRB afterglow light curves can be explained by jet effects. Here we present a detailed calculation of the jet evolution and emission, and have obtained a simple formula of bulk Lorentz factor evolution. We show that the light curves are very smoothly steepened by jet effect, and the shape of the light curve is determined by only one parameter –     , where E and n are the fireball energy and surrounding medium density, respectively. We find that for GRB 990123 and GRB 991216, the jet model can approximately fit their light curves, and the values of     are about 0.17 and 0.22, respectively. On the other hand, the light curves of GRB 990510, GRB 000301c, GRB 000926 and GRB 010222 cannot be fitted by the jet model, which suggests that the breaks may be caused by some other reasons, and the jet effect should be not the unique reason.  相似文献   

3.
Gamma-ray burst (GRB) afterglow observations in the Swift era have a perceived lack of achromatic jet breaks compared to the BeppoSAX or pre- Swift era. Specifically, relatively few breaks, consistent with jet breaks, are observed in the X-ray light curves of these bursts. If these breaks are truly missing, it has serious consequences on the interpretation of GRB jet collimation and energy requirements, and the use of GRBs as cosmological tools. Here, we address the issue of X-ray breaks that are possibly 'hidden' and hence the light curves are misinterpreted as being single power laws. We do so by synthesizing X-ray telescope (XRT) light curves and fitting both single and broken power laws, and comparing the relative goodness of each fit via Monte Carlo analysis. Even with the well-sampled light curves of the Swift era, these breaks may be left misidentified, hence caution is required when making definite statements on the absence of achromatic breaks.  相似文献   

4.
The afterglow of GRB 050401 presents several novel and interesting features. (i) An initially faster decay in optical band than in X-rays. (ii) A break in the X-ray light curve after ∼0.06 d with an unusual slope after the break. (iii)The X-ray afterglow does not show any spectral evolution across the break while the R -band light curve does not show any break. We have modelled the observed multiband evolution of the afterglow of GRB 050401 as originating in a two-component jet, and interpreting the break in X-ray light curve as due to lateral expansion of a narrow collimated outflow which dominates the X-ray emission. The optical emission is attributed to a wider jet component. Our model reproduces all the observed features of multiband afterglow of GRB 050401. We present optical observations of GRB 050401 using the 104-cm Sampurnanand Telescope at the Aryabhatta Research Institute of Observational Sciences (ARIES), Nainital. Results of the analysis of multiband data are presented and compared with GRB 030329, the first reported case of double jet.  相似文献   

5.
We present the first statistical analysis of 27 Ultraviolet Optical Telescope (UVOT) optical/ultraviolet light curves of gamma-ray burst (GRB) afterglows. We have found, through analysis of the light curves in the observer's frame, that a significant fraction rise in the first 500 s after the GRB trigger, all light curves decay after 500 s, typically as a power law with a relatively narrow distribution of decay indices, and the brightest optical afterglows tend to decay the quickest. We find that the rise could be either produced physically by the start of the forward shock, when the jet begins to plough into the external medium, or geometrically where an off-axis observer sees a rising light curve as an increasing amount of emission enters the observers line of sight, which occurs as the jet slows. We find that at 99.8 per cent confidence, there is a correlation, in the observed frame, between the apparent magnitude of the light curves at 400 s and the rate of decay after 500 s. However, in the rest frame, a Spearman rank test shows only a weak correlation of low statistical significance between luminosity and decay rate. A correlation should be expected if the afterglows were produced by off-axis jets, suggesting that the jet is viewed from within the half-opening angle θ or within a core of a uniform energy density  θc  . We also produced logarithmic luminosity distributions for three rest-frame epochs. We find no evidence for bimodality in any of the distributions. Finally, we compare our sample of UVOT light curves with the X-ray Telescope (XRT) light-curve canonical model. The range in decay indices seen in UVOT light curves at any epoch is most similar to the range in decay of the shallow decay segment of the XRT canonical model. However, in the XRT canonical model, there is no indication of the rising behaviour observed in the UVOT light curves.  相似文献   

6.
The Swift satellite early X-ray data show a very steep decay in most of the gamma-ray bursts light curves. This decay is either produced by the rapidly declining continuation of the central engine activity or by some leftover radiation starting right after the central engine shuts off. The latter scenario consists of the emission from an 'ember' that cools via adiabatic expansion and, if the jet angle is larger than the inverse of the source Lorentz factor, the large angle emission. In this work, we calculate the temporal and spectral properties of the emission from such a cooling ember, providing a new treatment for the microphysics of the adiabatic expansion. We use the adiabatic invariance of   p 2/ B ( p   is the component of the electrons' momentum normal to the magnetic field, B ) to calculate the electrons' Lorentz factor during the adiabatic expansion; the electron momentum becomes more and more aligned with the local magnetic field as the expansion develops. We compare the theoretical expectations of the adiabatic expansion (and the large angle emission) with the current observations of the early X-ray data and find that only ∼20 per cent of our sample of 107 bursts are potentially consistent with this model. This leads us to believe that, for most bursts, the central engine does not turn off completely during the steep decay of the X-ray light curve; therefore, this phase is produced by the continued rapidly declining activity of the central engine.  相似文献   

7.
When the axis of a gamma-ray burst (GRB) does not coincide with the spin axis of its source, there may result a ring-shaped jet. Using some refined jet dynamics, we calculate multi-wavelength afterglow light curves for such ring-shaped jets. In the R-band we find an obvious break in the afterglow light curve due to the beaming effect and the break is affected by many parameters, such as the electron energy fraction ξe, the magnetic energy fraction ξ2B, the width of ring A0 and the medium number density n. The overall light curve can be divided into three power-law stages, I.e., an ultra-relativistic stage, an after-break stage and a deep Newtonian stage. For each stage the power-law index is larger in the ring-shaped jet than in the corresponding conical jet.  相似文献   

8.
We present an internal shock model with external characteristics for explaining the complicated light curves of gamma-ray bursts. Shocks produce gamma-rays in the interaction between a precessing beam of relativistic particles and the interstellar medium. Each time the particle beam passes the same line of sight with the observer the interstellar medium is pushed outward. Subsequent interactions between the medium and the beam are delayed by the extra distance to be travelled for the particles before the shock can form. This results in a natural retardation and leads to an intrinsic asymmetry in the light curves produced for gamma-ray bursts. In addition, we account for the cooling of the electron–proton plasma in the shocked region, which gives rise to an exponential decay in the gamma-ray flux. The combination of these effects and the precessing jet of ultrarelativistic particles produces light curves that can be directly compared with observed gamma-ray burst light curves. We illustrate the model by fitting a number of observed gamma-ray bursts that are difficult to explain with only a precessing jet. We develop a genetic algorithm to fit several observed gamma-ray bursts with remarkable accuracy. We find that for different bursts the observed fluence, assuming isotropic emission, easily varies over four orders of magnitude from the energy generated intrinsically.  相似文献   

9.
Optical and radio afterglows arising from shocks by relativistic conical ejecta running into pre-burst massive stellar winds are revisited. Under the homogeneous thin-shell approximation and a realistic treatment for the lateral expansion of jets, our results show that a notable break exists in the optical light curve in most cases we calculated in which the physical parameters are varied within reasonable ranges. For a relatively tenuous wind which cannot decelerate the relativistic jet to cause a light curve break within days, the wind termination shock due to the ram pressure of the surrounding medium occurs at a small radius, namely, a few times 1017 cm. In such a structured wind environment, the jet will pass through the wind within several hours and run into the outer uniform dense medium. The resulting optical light curve flattens with a shallower drop after the jet encounters the uniform medium, and then declines deeply, triggered by runaway lateral expansion.  相似文献   

10.
We present ellipsoidal light-curve fits to the quiescent B , V , R and I light curves of GRO J1655–40 (Nova Scorpii 1994). The fits are based on a simple model consisting of a Roche-lobe-filling secondary and an accretion disc around the black hole primary. Unlike previous studies, no assumptions are made concerning the interstellar extinction or the distance to the source; instead these are determined self-consistently from the observed light curves. In order to obtain tighter limits on the model parameters, we used the distance determination from the kinematics of the radio jet as an additional constraint. We obtain a value for the extinction that is lower than was assumed previously; this leads to lower masses for both the black hole and the secondary star of  5.4±0.3  and  1.45±0.35 M  , respectively. The errors in the determination of the model parameters are dominated by systematic errors, in particular arising from uncertainties in the modelling of the disc structure and uncertainties in the atmosphere model for the chemically anomalous secondary in the system. A lower mass of the secondary naturally explains the transient nature of the system if it is in either a late case A or early case B mass-transfer phase.  相似文献   

11.
The complex structure of the light curves of Swift Gamma-Ray Bursts (GRBs) has made the identification of breaks, and the interpretation of the blast wave caused by the burst, more difficult than in the pre- Swift era. We aim to identify breaks, which are possibly hidden, and to constrain the blast wave parameters; electron energy distribution, p , density profile of the circumburst medium, k , and the continued energy injection index, q . We do so by comparing the observed multiwavelength light curves and X-ray spectra of our sample to the predictions of the blast wave model. We can successfully interpret all of the bursts in our sample of 10, except two, within this framework and we can estimate, with confidence, the electron energy distribution index for 6 of the sample. Furthermore, we identify jet breaks in a number of the bursts. A statistical analysis of the distribution of p reveals that, even in the most conservative case of least scatter, the values are not consistent with a single, universal value. The values of k suggest that the circumburst density profiles are not drawn from only one of the constant density or wind-like media populations.  相似文献   

12.
Variability is one of the extremely observational properties. In the radio bands, variability is caused by the shock in the jet. In this case, emissions increase rapidly following an exponential curve, and then decrease rapidly also in an exponential curve. The variability time scale is important with regard to the physics carrying on in the jet. However, it is not easy to fit the light curve. In this paper, we proposed a method of light curve fitting on a PC machine, in which the theoretical exponential light curve is adopted to the observations using the least regression method. Using this method, anybody can fit the light curve and get the time scale by moving and clicking the mouse. We also used this method to some light curves obtained from the archive and compared our results with those in the literature.  相似文献   

13.
The prompt ( t ≲0.16 d) light curve and initial 9th-magnitude optical flash from GRB 990123 can be attributed to a reverse external shock, or possibly to internal shocks. We discuss the time decay laws and spectral slopes expected under various dynamical regimes, and the constraints imposed on the model by the observations, arguing that they provide strongly suggestive evidence for features beyond those in the simple standard model. The longer term afterglow behaviour is discussed in the context of the forward shock, and it is argued that, if the steepening after 3 d is due to a jet geometry, this is likely to be a result of jet-edge effects, rather than sideways expansion.  相似文献   

14.
Helium star–compact object binaries, and helium star–neutron star binaries in particular, are widely believed to be the progenitors of the observed double-neutron-star systems. In these, the second neutron star is presumed to be the compact remnant of the helium star supernova. In this paper, the observational implications of such a supernova are discussed, and in particular are explored as a candidate γ-ray burst mechanism. In this scenario, the supernova results in a transient period of rapid accretion on to the compact object, extracting via magnetic torques its rotational energy at highly super-Eddington luminosities in the form of a narrowly beamed, strongly electromagnetically dominated jet. Compton scattering of supernova photons advected within the ejecta, and photons originating at shocks driven into the ejecta by the jet, will cool the jet and can produce the observed prompt emission characteristics, including the peak-inferred isotropic energy relation, X-ray flash characteristics, subpulse light curves, energy-dependent time lags and subpulse broadening, and late time spectral softening. The duration of the burst is limited by the rate of Compton cooling of the jet, eventually creating an optically thick, moderately relativistically expanding fireball that can produce the afterglow emission. If the black hole or neutron star stays bound to a compact remnant, late term light curve variability may be observed as in SN 2003dh.  相似文献   

15.
We present spectroscopic and photometric observations of the peculiar Type II supernova (SN) 1998A. The light curves and spectra closely resemble those of SN 1987A, suggesting that the SN 1998A progenitor exploded when it was a compact blue supergiant. However, the comparison with SN 1987A also highlights some important differences: SN 1998A is more luminous and the spectra show bluer continua and larger expansion velocities at all epochs. These observational properties indicate that the explosion of SN 1998A is more energetic than SN 1987A and more typical of Type II supernovae. Comparing the observational data with simulations, we deduce that the progenitor of SN 1998A was a massive star  (∼25 M)  with a small pre-supernova radius  (≲6 × 1012 cm)  . The Ba  ii lines, unusually strong in SN 1987A and some faint II-P events, are almost normal in the case of SN 1998A, indicating that the temperature plays a key role in determining their strength.  相似文献   

16.
We study the particle energy distribution in the cocoon surrounding Cygnus A, using radio images between 151 MHz and 15 GHz and a 200 ks Chandra Advanced CCD Imaging Spectrometer-Imaging (ACIS-I) image. We show that the excess low-frequency emission in the lobe further from the Earth cannot be explained by absorption or excess adiabatic expansion of the lobe or a combination of both. We show that this excess emission is consistent with emission from a relic counterlobe and a relic counterjet that are being re-energized by compression from the current lobe. We detect hints of a relic hotspot at the end of the relic X-ray jet in the more distant lobe. We do not detect relic emission in the lobe nearer to the Earth as expected from light traveltime effects assuming intrinsic symmetry. We determine that the duration of the previous jet activity phase was slightly less than that of the current jet-active phase. Further, we explain some features observed at 5 and 15 GHz as due to the presence of a relic jet.  相似文献   

17.
The central engine causing the production of jets in radio sources may work intermittently, accelerating shells of plasma with different mass, energy and velocity. Faster but later shells can then catch up slower earlier ones. In the resulting collisions shocks develop, converting some of the ordered bulk kinetic energy into magnetic field and random energy of the electrons which then radiate. We propose that this internal shock scenario , which is the scenario generally thought to explain the observed gamma-ray burst radiation, can also work for radio sources in general, and for blazars in particular. We investigate in detail this idea, simulating the birth, propagation and collision of shells, calculating the spectrum produced in each collision, and summing the locally produced spectra from those regions of the jet which are simultaneously active in the observer's frame. We can thus construct snapshots of the overall spectral energy distribution, time-dependent spectra and light curves. This allows us to characterize the predicted variability at any frequency, study correlations between the emission at different frequencies, specify the contribution of each region of the jet to the total emission, and find correlations between flares at high energies and the birth of superluminal radio knots and/or radio flares. The model has been applied to reproduce qualitatively the observed properties of 3C 279. Global agreement in terms of both spectra and temporal evolution is found. In a forthcoming work, we will explore the constraints that this scenario sets on the initial conditions of the plasma injected in the jet and the shock dissipation for different classes of blazars.  相似文献   

18.
We present the results of the one-year long observational campaign of the type II plateau SN 2005cs, which exploded in the nearby spiral galaxy M51 (the Whirlpool galaxy). This extensive data set makes SN 2005cs the best observed low-luminosity, 56Ni-poor type II plateau event so far and one of the best core-collapse supernovae ever. The optical and near-infrared spectra show narrow P-Cygni lines characteristic of this SN family, which are indicative of a very low expansion velocity (about  1000 km s−1  ) of the ejected material. The optical light curves cover both the plateau phase and the late-time radioactive tail, until about 380 d after core-collapse. Numerous unfiltered observations obtained by amateur astronomers give us the rare opportunity to monitor the fast rise to maximum light, lasting about 2 d. In addition to optical observations, we also present near-infrared light curves that (together with already published ultraviolet observations) allow us to construct for the first time a reliable bolometric light curve for an object of this class. Finally, comparing the observed data with those derived from a semi-analytic model, we infer for SN 2005cs a 56Ni mass of about  3 × 10−3 M  , a total ejected mass of  8–13 M  and an explosion energy of about  3 × 1050 erg  .  相似文献   

19.
We present the full VRI light curves and the times of minima of TY UMa to provide a complete photometric solution and a long-term trend of period variation. The light curves show a high degree of asymmetry (the O'Connell effect). The maxima at 0.25 phase (Max I) are 0.021, 0.015, and 0.020 mag fainter than those at 0.75 phase (Max II) in V , R , and I , respectively. The period of TY UMa has varied in a sinusoidal way, superimposed on the long-term upward parabolic variation. The secularly increasing rate of the period is deduced as 1.83 s per century  ( P˙ / P =5.788×10-10 d d-1)  . The period of sinusoidal variation is about 57.4 yr. The spot model has been applied to fit the asymmetric light curves of TY UMa, to explain light variations. By changing only the spot parameters, the model light curves can fit the observed light curves for three epochs. This indicates that the variation of the spot location and size is the main reason for changing the shape of light curves, including two different maxima and the interchanging depths of occultation and transit minima.  相似文献   

20.
New light curves and photometric solutions of the contact binary AZ Vir are presented in this paper. The light curves appear to exhibit a typical O'Connell effect, with Maximum I being 0.021 mag (V) and 0.023 mag (B) brighter than Maximum II, respectively. From the observations, six times of minimum light were determined and from the present times of minimum light and those collected from the references, the light elements of the system were improved. The light curves were analyzed by means of the Wilson‐Devinney program. The results suggest that AZ Vir is a W‐subtype contact binary with a mass ratio of q = 0.623(2). The asymmetry of the light curves is explained by star spot models. (© 2007 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号