首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Marine Geodesy》2013,36(3-4):131-146
On December 7, 2001, the Jason-1 satellite was successfully launched by a Boeing Delta II rocket from the Vandenberg site in California, USA. Its main mission was to maintain the high accuracy altimeter measurements, provided since 1992 by TOPEX/Poseidon (T/P), ensuring continuity in observing and monitoring the ocean for intraseasonal to interannual changes, mean sea level, tides, and so forth. Despite four times less mass and power, the Jason-1 system has been designed to have the same performances as T/P, measuring sea surface topography at the centimeter level. This new Centre National d'Etudes Spatiales/National Aeronautics and Space Administration (CNES/NASA) mission also provides near real-time data for sea state and ocean forecast. The first 10 months of the Jason mission were dedicated to the verification of the system performance and cross-calibration with T/P measurements. A complete CALVAL plan was conducted by the Science and Project Teams of the mission based on in situ and regional experiments, global statistical approaches, and multisatellite comparisons, taking advantage of the T/P-Jason overlap during the first months of the mission. CALVAL and first science results showed that the Jason-1 performances were compliant with prelaunch specifications. This was a needed preamble before starting the routine phase of the mission in July 2003 with generation and distribution of validated geophysical data records to the whole user community.  相似文献   

2.
《Marine Geodesy》2013,36(3-4):147-157
On 7 December 2001, Jason-1 was successfully launched by a Boeing Delta II rocket from the Vandenberg Air Force Base, California. The Jason-1 satellite will maintain the high accuracy altimeter service provided since 1992 by TOPEX/Poseidon (T/P), ensuring the continuity in observing and monitoring the Ocean Dynamics (intraseasonal to interannual changes, mean sea level, tides, etc.). Despite one-fourth the mass and power, the Jason-1 system has been designed to have basically the same performance as T/P, measuring sea surface topography at a centimetric level. This new CNES/NASA mission also provides near real-time data for sea state and ocean forecast. The first two months of the Jason-1 mission have been dedicated to the assessment of the overall system. The goals of this assessment phase were: 1. To assess the behavior of the spacecraft at the platform and payload levels (Jason-1 being the first program to call on the PROTEUS versatile multimission platform for Low and Medium Earth Orbit Missions developed in partnership between Alcatel Space and CNES); 2. To verify that platform performance requirements are met with respect to Jason-1 requirements; 3. To verify that payload instruments performance requirements evaluated at instrument level are met; 4. To assess the performance of the Jason-1 Ground System. This article will display the main outputs of the assessment of the system. It will demonstrate that all the elements of the onboard and ground systems are within the specifications. Provision of data to the Jason-1 Science Working Team started at the end of March 2002. This is the goal of a six-month phase after closure of the initial assessment phase to derive the error budget of the system in terms of altimetry user products.  相似文献   

3.
On 7 December 2001, Jason-1 was successfully launched by a Boeing Delta II rocket from the Vandenberg Air Force Base, California. The Jason-1 satellite will maintain the high accuracy altimeter service provided since 1992 by TOPEX/Poseidon (T/P), ensuring the continuity in observing and monitoring the Ocean Dynamics (intraseasonal to interannual changes, mean sea level, tides, etc.). Despite one-fourth the mass and power, the Jason-1 system has been designed to have basically the same performance as T/P, measuring sea surface topography at a centimetric level. This new CNES/NASA mission also provides near real-time data for sea state and ocean forecast. The first two months of the Jason-1 mission have been dedicated to the assessment of the overall system. The goals of this assessment phase were:

1. To assess the behavior of the spacecraft at the platform and payload levels (Jason-1 being the first program to call on the PROTEUS versatile multimission platform for Low and Medium Earth Orbit Missions developed in partnership between Alcatel Space and CNES);

2. To verify that platform performance requirements are met with respect to Jason-1 requirements;

3. To verify that payload instruments performance requirements evaluated at instrument level are met;

4. To assess the performance of the Jason-1 Ground System.

This article will display the main outputs of the assessment of the system. It will demonstrate that all the elements of the onboard and ground systems are within the specifications. Provision of data to the Jason-1 Science Working Team started at the end of March 2002. This is the goal of a six-month phase after closure of the initial assessment phase to derive the error budget of the system in terms of altimetry user products.  相似文献   

4.
5.
The focus of this study is the validation of significant wave height (SWH) and sea surface height anomaly (SSHA) obtained from the first Ka-band altimeter AltiKa onboard SARAL (Satellite for ARGOS and Altimeters). It is a collaborative mission of the Indian Space Research Organization and Centre National d'Etudes Spatiales (CNES). This is done using in-situ observations from buoy and Jason-2 measurements. Validation using buoy observations are at particular locations while that using Jason-2 altimeter is an attempt towards global validation of Altika products. The results clearly indicate that the SARAL/AltiKa provide high-quality data and the errors are within a predefined range of accuracy. A parallel validation of SWH from other altimeters, which monitored ocean since last decade, like EnviSAT and Jason-2 was also performed with buoy observations. The results clearly show that the accuracy of AltiKa SWH is much better than EnviSAT and comparable to reference mission Jason-2. The accuracy is quite good for the calm sea while in the rough seas the accuracy degrades some. The inter-comparison of SARAL/AltiKa SSHA with Jason-2 indicates a fair match between them. These validation exercises demonstrate the high quality of AltiKa products, usable for practical applications.  相似文献   

6.
It is demonstrated that the Jason-1 measurements of sea surface height (SSH), wet path delay, and ionosphere path delay are within required accuracies, via a global cross-calibration with similar measurements made by TOPEX/Poseidon (T/P) over a 6-month period. Since the two satellites were on the same groundtrack separated in time by only 70 s, measurements were recorded at approximately the same location and time. The variations in the wet path delay measured by Jason-1 compared to T/P are only 5 mm RMS, well within the required performance of 1.2 cm RMS. The RMS of the ionosphere differences is also well within the expected values, with a mean RMS of 1.2 cm. The largest difference is that the Jason-1 SSH is biased high relative to T/P SSH by 144 mm after the T/P and Jason-1 data are both corrected with improved sea state bias (SSB) models. However, the bias will change if a different SSB model is used, so the user should be cautious that the bias used matches the SSB models. The bias is generally constant within ± 10 mm in the open ocean, but appears to be higher or lower in some regions. Additionally, the SSH has been verified by comparison with 36 island tide gauges over the same period. After removing the global relative bias, the Jason-1 SSH data agree with tide gauges within 3.7 cm RMS and with T/P data within about 3.5 cm RMS on average for 1-s measurements, meeting the required accuracy of 4.2 cm RMS.  相似文献   

7.
The Jason-1 satellite was launched on 7 December 2001 with the primary objective of continuing the high accuracy time series of altimeter measurements that began with the TOPEX/Poseidon mission in 1992. To achieve this goal, it is necessary to validate the performance of the Jason-1 measurement system, and to verify that its error budget is at least at the same level as that of the TOPEX/Poseidon mission. The article reviews the main components of the Jason-1 altimetric error budget from instrument characterization to the geophysical use of the data. Using the Interim Geophysical Data Records (16DR) that were distributed to the Jason-1 Science Working Team during the verification phase of the mission, it is shown that the Jason-1 mission is performing well enough to continue studies of the large-scale features of the ocean, and especially to continue time series of mean sea-level variations with an accuracy comparable to TOPEX/Poseidon.  相似文献   

8.
Guest editorial     
George A. Maul 《Marine Geodesy》2013,36(3-4):167-168
The Jason-1 satellite was launched on 7 December 2001 with the primary objective of continuing the high accuracy time series of altimeter measurements that began with the TOPEX/Poseidon mission in 1992. To achieve this goal, it is necessary to validate the performance of the Jason-1 measurement system, and to verify that its error budget is at least at the same level as that of the TOPEX/Poseidon mission. The article reviews the main components of the Jason-1 altimetric error budget from instrument characterization to the geophysical use of the data. Using the Interim Geophysical Data Records (16DR) that were distributed to the Jason-1 Science Working Team during the verification phase of the mission, it is shown that the Jason-1 mission is performing well enough to continue studies of the large-scale features of the ocean, and especially to continue time series of mean sea-level variations with an accuracy comparable to TOPEX/Poseidon.  相似文献   

9.
《Marine Geodesy》2013,36(3-4):305-317
It is demonstrated that the Jason-1 measurements of sea surface height (SSH), wet path delay, and ionosphere path delay are within required accuracies, via a global cross-calibration with similar measurements made by TOPEX/Poseidon (T/P) over a 6-month period. Since the two satellites were on the same groundtrack separated in time by only 70 s, measurements were recorded at approximately the same location and time. The variations in the wet path delay measured by Jason-1 compared to T/P are only 5 mm RMS, well within the required performance of 1.2 cm RMS. The RMS of the ionosphere differences is also well within the expected values, with a mean RMS of 1.2 cm. The largest difference is that the Jason-1 SSH is biased high relative to T/P SSH by 144 mm after the T/P and Jason-1 data are both corrected with improved sea state bias (SSB) models. However, the bias will change if a different SSB model is used, so the user should be cautious that the bias used matches the SSB models. The bias is generally constant within ± 10 mm in the open ocean, but appears to be higher or lower in some regions. Additionally, the SSH has been verified by comparison with 36 island tide gauges over the same period. After removing the global relative bias, the Jason-1 SSH data agree with tide gauges within 3.7 cm RMS and with T/P data within about 3.5 cm RMS on average for 1-s measurements, meeting the required accuracy of 4.2 cm RMS.  相似文献   

10.
Since Jason-1launch, extensive validation of Jason-1 data and cross-calibration relative to TOPEX/Poseidon (T/P) have been performed by the CLS validation team within the CNES Jason-1 project. These validation activities are routinely operated as part of the Jason-1 ground segment, and often lead to in-depth studies to understand all validation conclusions. This paper presents the main results in terms of Jason-1 data quality: verification of data availability and validity, monitoring of the most relevant altimeter and radiometer parameters, assessment of the Jason-1 altimeter system performances. From global statistical analysis of more than 2 years of Jason-1 GDR data, results for all components of the altimeter measurement are derived in terms of bias, trend and precision. This work also represents a contribution to the estimation of the Jason-1 error budget. Thorough studies have been more focused on specific issues in relation to data quality: this is the case for the analysis of the high frequency content of the Jason-1 data and its impact on the T/P to Jason-1 comparison. From the results presented in this paper, it is demonstrated that the Jason-1 mission fulfils the requirements of high precision altimetry. In particular, it allows continuing the observation of the Mean Sea Level (MSL) variations at the same accuracy as T/P, which was one of the challenges of the Jason-1 mission. Potential improvements and open issues are also identified, with the objective of still making progress in terms of altimeter data quality.  相似文献   

11.
Since Jason-1launch, extensive validation of Jason-1 data and cross-calibration relative to TOPEX/Poseidon (T/P) have been performed by the CLS validation team within the CNES Jason-1 project. These validation activities are routinely operated as part of the Jason-1 ground segment, and often lead to in-depth studies to understand all validation conclusions. This paper presents the main results in terms of Jason-1 data quality: verification of data availability and validity, monitoring of the most relevant altimeter and radiometer parameters, assessment of the Jason-1 altimeter system performances. From global statistical analysis of more than 2 years of Jason-1 GDR data, results for all components of the altimeter measurement are derived in terms of bias, trend and precision. This work also represents a contribution to the estimation of the Jason-1 error budget. Thorough studies have been more focused on specific issues in relation to data quality: this is the case for the analysis of the high frequency content of the Jason-1 data and its impact on the T/P to Jason-1 comparison. From the results presented in this paper, it is demonstrated that the Jason-1 mission fulfils the requirements of high precision altimetry. In particular, it allows continuing the observation of the Mean Sea Level (MSL) variations at the same accuracy as T/P, which was one of the challenges of the Jason-1 mission. Potential improvements and open issues are also identified, with the objective of still making progress in terms of altimeter data quality.  相似文献   

12.
High-precision satellite altimeters help in measuring the variations in sea level since the early 1990s. After a number of such successful altimetry missions such as Topex/Poseidon, Jason-1, Jason-2, and Envisat, SARAL/AltiKa, a high resolution altimetry mission based on the Ka frequency band that can also cover high latitudinal zones, was launched in February 2013. Even though the data set available from this recent mission is not yet suitable for climate research owing to its short duration, in this study we perform a preliminary validation of SARAL/AltiKa sea-level data. The first part of the validation is the comparison of SARAL/AltiKa and Jason-2 sea-level data between March 2013 and August 2014 in terms of temporal mean spatial pattern. Comparisons in terms of global mean sea-level time series and latitudinal band-based mean time series are also performed. The second part of the validation is the comparison of the SARAL/AltiKa sea-level based time series with several tide gauge records covering the period of our study. Finally, an analysis of the annual sea-level budget with SARAL/AltiKa data, steric sea level, and ocean mass is performed. Results of these preliminary comparisons show good agreement with other sea-level data.  相似文献   

13.
Sea surface slope computed from along-track Jason-1 and TOPEX/POSEIDON (T/P) altimeter data at ocean mesoscale wavelengths are compared to determine the equivalent 1 Hz instrument height noise of the Poseidon-2 and TOPEX altimeters. This geophysical evaluation shows that the Ku-band 1-Hz range noise for both instruments is better than 1.7 cm at 2 m significant wave heights (H1/3), exceeding error budget requirements for both missions. Furthermore, we show that the quality of these instruments allows optimal filtering of the 1-Hz along-track sea surface height data for sea surface slopes that can be used to calculate cross track geostrophic velocity anomalies at the baroclinic Rossby radius of deformation to better than 5 cm/sec precision along 87.5% of the satellite ground track between 2 and 60 degrees absolute latitude over the deep abyssal ocean (depths greater than 1000 m). This level of precision will facilitate scientific studies of surface geostrophic velocity variability using data from the Jason-1 and T/P Tandem Mission.  相似文献   

14.
《Marine Geodesy》2013,36(3-4):355-366
Sea surface slope computed from along-track Jason-1 and TOPEX/POSEIDON (T/P) altimeter data at ocean mesoscale wavelengths are compared to determine the equivalent 1 Hz instrument height noise of the Poseidon-2 and TOPEX altimeters. This geophysical evaluation shows that the Ku-band 1-Hz range noise for both instruments is better than 1.7 cm at 2 m significant wave heights (H1/3), exceeding error budget requirements for both missions. Furthermore, we show that the quality of these instruments allows optimal filtering of the 1-Hz along-track sea surface height data for sea surface slopes that can be used to calculate cross track geostrophic velocity anomalies at the baroclinic Rossby radius of deformation to better than 5 cm/sec precision along 87.5% of the satellite ground track between 2 and 60 degrees absolute latitude over the deep abyssal ocean (depths greater than 1000 m). This level of precision will facilitate scientific studies of surface geostrophic velocity variability using data from the Jason-1 and T/P Tandem Mission.  相似文献   

15.
The CNES/ISRO mission SARAL/AltiKa was successfully launched on 25 February 2013. It reached its nominal orbit on 13 March 2013. AltiKa is the first altimeter using the Ka-band frequency. This article presents the results of the calibration and validation activities perfromed on the first year of the SARAL/AltiKa mission. The main objective of the article is to assess the SARAL/AltiKa data quality and to estimate the altimeter system performance using GDR products. To achieve this goal, we present mono-mission metrics and compare them with Jason-2 over the same period. Even if these missions do not have the same ground track, precise comparisons are still possible. They allow assessing parameter discrepancies and SSH consistency between both missions in order to detect geographically correlated biases, jumps or drifts. These results show that SARAL/AltiKa data quality is excellent: ocean data coverage is greater than 99.5%, standard deviation at cross-overs is 5.4 cm. The mission therefore fulfills the requirements of high precision altimetry and can be used (in conjunction with Jason-2) to monitor the global mean sea level, ensuring the continuity of the record over ERS/Envisat historical ground track. Possible improvements and open issues are also identified, foreseeing an even better mission performance.  相似文献   

16.
刘治中  杨俊钢  张杰  崔伟 《海洋学报》2020,42(3):129-139
Jason-3卫星高度计于2016年1月17日成功发射,2016年2月12日进入预定轨道,与Jason-2高度计同轨进入编队飞行阶段,并落后Jason-2高度计约1分20秒,两者相距约560 km。2016年9月1日,Jason-2高度计变换轨道,编队飞行阶段结束,两高度计进入平行轨道,以增加卫星高度计对地观测的空间覆盖。本研究主要开展了Jason-3高度计的数据质量的评估与检验,包括Jason-3高度计数据可用性和有效性的验证,以及Jason-3高度计和校正辐射计各参数的数据质量监测。重点开展了Jason-2与Jason-3高度计各项参数的综合比较,利用Jason-2与Jason-3高度计编队飞行阶段的数据精确评估了两高度计参数的一致性,并从全球数据角度分析了Jason-3高度计获取各参数的能力以及稳定性;通过与Jason-2互交叉点比较分析评估Jason-3高度计海面高度数据质量情况,验证Jason-3高度计数据精度。结果表明,Jason-3高度计的数据质量满足高度计测高的要求,具有与Jason-1、Jason-2、T/P等高度计相同或更高的测高精度以监测全球海平面变化,此外,Jason-3有效波高参数数据质量明显优于Jason-2高度计。  相似文献   

17.
This article describes an “absolute” calibration of Jason-1 (J-1) altimeter sea surface height bias using a method developed for TOPEX/Poseidon (T/P) bias determination reported previously. The method makes use of U.K. tide gauges equipped with Global Positioning System (GPS) receivers to measure sea surface heights at the same time, and in the same geocentric reference frame, as Jason-1 altimetric heights recorded in the nearby ocean. The main time-dependent components of the observed altimeter-minus-gauge height-difference time series are due to the slightly different ocean tides at the gauge and in the ocean. The main harmonic coefficients of the tide differences are calculated from analysis of the copious TOPEX data set and then applied to the determination of T, P, and J-1 bias in turn. Datum connections between the tide gauge and altimetric sea surface heights are made by means of precise, local geoid differences from the EGG97 model. By these means, we have estimated Jason-1 altimeter bias determined from Geophysical Data Record (GDR) data for cycles 1–61 to be 12.9 cm, with an accuracy estimated to be approximately 3 cm on the basis of our earlier work. This J-1 bias value is in close agreement with those determined by other groups, which provides a further confirmation of the validity of our method and of its potential for application in other parts of the world where suitable tide gauge, GPS, and geoid information exist.  相似文献   

18.
Guoqi Han 《Marine Geodesy》2004,27(3):577-595
Sea level observations from the tandem TOPEX/Poseidon (T/P) and Jason-1 altimetry missions (2002-2003) are used to study characteristics of sea level and surface currents over the Scotian Shelf and Slope off Nova Scotia. The consistency and error characteristics of T/P and Jason-1 measurements are examined not only in terms of sea level and cross-track current anomalies but also with respect to current anomalies at crossovers, kinematic properties associated with Gulf Stream warm core rings (WCR), and the shelf-edge current transport. Nominal absolute currents are constructed by adding the altimetric geostrophic current anomalies to an annual-mean model circulation field. The concurrent frontal analysis data are analyzed for occurrence of the WCRs and associated kinematic properties are derived from altimetric current anomalies. The comparison of the sea level and cross-track current anomalies from January to July 2002 shows overall good agreement between T/P and Jason, with correlation coefficients different from zero at the 5% significance level at essentially all locations for sea level and at most locations for currents. The cross-track geostrophic current anomalies from January to July 2002 and from September 2002 to December 2003 are further used to calculate the root-mean-square (rms) current magnitude, and the normalized relative vorticity associated with WCRs. The altimetric currents are consistent with each other and complementary to frontal analysis data in deriving the properties of the WCRs. The rms current magnitude is ∼55 cm/s and the normalized relative vorticity is ∼0.15. The model-altimetry combined absolute currents are used to estimate near-surface transport associated with the shelf-edge current, showing good correlation between T/P and Jason estimates and strong seasonal changes. The current anomalies derived from altimetry and moored measurements are significantly (at the 5% significance level) correlated and comparable in the rms magnitude.  相似文献   

19.
This study focuses on assessing the accuracy of 20-Hz waveform retracked Jason-2 (J-2) altimetry sea surface heights (SSHs) in the vicinity of Taiwan by comparisons with the TOPEX/Poseidon (T/P) 10-Hz SSHs and sea level data from the Anping tide gauge. The study areas exhibit high, medium, and low amplitudes of ocean tides and contain diverse bathymetries with depths of 0–4000 m. The performance of Offset Center of Gravity (OCOG), threshold, modified threshold, and ice retrackers was examined by comparing the retracked SSHs with Earth Gravitational Model 2008 (EGM08) geoid via the use of the improvement percentages (IMPs). The results indicate that both altimetry measurements are significantly improved by waveform retracking techniques, with a maximum IMP of 46.6% for T/P and 82.0% for J-2, and the optimal achievement of retrackers is influenced by the characteristics of the study areas. In addition, valid retracked J-2 SSHs are much closer to shorelines than T/P. A comparison of retracked J-2 data with Anping tide gauge records reveals that applying the optimal retracking algorithms reduces the root mean squares of differences and increases the number of valid measurements.  相似文献   

20.
GUOQI HAN 《Marine Geodesy》2013,36(3-4):577-595
Sea level observations from the tandem TOPEX/Poseidon (T/P) and Jason-1 altimetry missions (2002–2003) are used to study characteristics of sea level and surface currents over the Scotian Shelf and Slope off Nova Scotia. The consistency and error characteristics of T/P and Jason-1 measurements are examined not only in terms of sea level and cross-track current anomalies but also with respect to current anomalies at crossovers, kinematic properties associated with Gulf Stream warm core rings (WCR), and the shelf-edge current transport. Nominal absolute currents are constructed by adding the altimetric geostrophic current anomalies to an annual-mean model circulation field. The concurrent frontal analysis data are analyzed for occurrence of the WCRs and associated kinematic properties are derived from altimetric current anomalies. The comparison of the sea level and cross-track current anomalies from January to July 2002 shows overall good agreement between T/P and Jason, with correlation coefficients different from zero at the 5% significance level at essentially all locations for sea level and at most locations for currents. The cross-track geostrophic current anomalies from January to July 2002 and from September 2002 to December 2003 are further used to calculate the root-mean-square (rms) current magnitude, and the normalized relative vorticity associated with WCRs. The altimetric currents are consistent with each other and complementary to frontal analysis data in deriving the properties of the WCRs. The rms current magnitude is ~55 cm/s and the normalized relative vorticity is ~0.15. The model-altimetry combined absolute currents are used to estimate near-surface transport associated with the shelf-edge current, showing good correlation between T/P and Jason estimates and strong seasonal changes. The current anomalies derived from altimetry and moored measurements are significantly (at the 5% significance level) correlated and comparable in the rms magnitude.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号