首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Wave attenuation by moored cylinders is considered. The cylinders are submerged with their axes horizontal. Linear potential theory is applied. Three-dimensional motions of the cylinders subjected to normal and oblique monochromatic waves are determined using potential theory and a boundary integral method. Each cylinder has length 9.1 m (30 ft) and radius 1.5 m (5 ft), with its top 1.5 m (5 ft) below the still water line and its bottom 3.0 m (10 ft) above the seabed. Free-surface elevations are obtained for a single cylinder and for two cylinders in series. These configurations are effective wave barriers for a range of wave frequencies and incident angles.  相似文献   

2.
A numerical method, based on a boundary integral equation combined with a non-linear time stepping procedure for the free water surface, is developed for simulations of the interaction between highly non-linear water waves and submerged horizontal cylinders. The method is based on potential theory, and the omission of viscous effects restricts the wave-structure interaction computations to low Keulegan-Carpenter numbers where inertia forces are dominant. The numerical scheme is verified by computations with a steep wave of exact form during several wave periods, and by computations of a breaking wave. A new method for tracing the orbits of water particles in the fluid domain is developed, and the influence from submerged structures on the orbits is visualized through several computational examples. The wave forces on submerged structures are computed and are found to correspond well with other computed results for low Keulegan-Carpenter numbers.  相似文献   

3.
本文对内孤立波作用下圆柱体的水动力特性进行了数值研究。对不同直径、不同水深比、不同浸没深度的圆柱进行了水平方向受力分析,从多个因素出发,研究了内孤立波对水下竖直圆柱的水平作用情况。通过分析水平作用力和力矩的时程曲线,得到内孤立波行进过程中对于圆柱体的横向作用力和力矩与时间的关系。通过对比不同工况下内孤立波橫向作用力幅值,得到内孤立波作用力幅值与圆柱直径、水深比以及浸没深度的关系。结果表明,内孤立波横向作用力(力矩)幅值与圆柱直径呈线性相关关系,但与水深比相关关系不明显,随着圆柱浸没深度的增加,内孤立波横向作用力幅值呈现出先增大后减小的趋势。  相似文献   

4.
The linear water wave scattering and radiation by an array of infinitely long horizontal circular cylinders in a two-layer fluid of infinite depth is investigated by use of the multipole expansion method. The diffracted and radiated potentials are expressed as a linear combination of infinite multipoles placed at the centre of each cylinder with unknown coefficients to be determined by the cylinder boundary conditions. Analytical expressions for wave forces, hydrodynamic coefficients, reflection and transmission coefficients and energies are derived. Comparisons are made between the present analytical results and those obtained by the boundary element method, and some examples are presented to illustrate the hydrodynamic behavior of multiple horizontal circular cylinders in a two-layer fluid. It is found that for two submerged circular cylinders the influence of the fluid density ratio on internal-mode wave forces is more appreciable than surface-mode wave forces, and the periodic oscillations of hydrodynamic results occur with the increase of the distance between two cylinders; for four submerged circular cylinders the influence of adding two cylinders on the wave forces of the former cylinders is small in low and high wave frequencies, but the influence is appreciable in intermediate wave frequencies.  相似文献   

5.
This paper deals with the random forces produced by high ocean waves on submerged horizontal circular cylinders. Arena [Arena F, Interaction between long-crested random waves and a submerged horizontal cylinder. Phys Fluids 2006;18(7):1–9 (paper 076602)] obtained the analytical solution of the random wave field for two dimensional waves by extending the classical Ogilvie solution [Ogilvie TF, First- and second-order forces on a cylinder submerged under a free surface. J Fluid Mech 1963;16:451–472; Arena F, Note on a paper by Ogilvie: The interaction between waves and a submerged horizontal cylinder. J Fluid Mech 1999;394:355–356] to the case of random waves. In this paper, the wave force acting on the cylinder is investigated and the Froude Krylov force [Sarpkaya T, Isaacson M, Mechanics of wave forces on offshore structures, Van Nostrand Reinhold Co.; 1981], on the ideal water cylinder, is calculated from the random incident wave field. Both forces represent a Gaussian random process of time. The diffraction coefficient of the wave force is obtained as quotient between the standard deviations of the force on the solid cylinder and of the Froude Krylov force. It is found that the diffraction coefficient of the horizontal force Cdo is equal to the Cdv of the vertical force. Finally, it is shown that, since a very large wave force occurs on the cylinder, it may be calculated, in time domain, starting from the Froude Krylov force. It is then shown that this result is due to the fact that the frequency spectrum of the force acting on the cylinder is nearly identical to that of the Froude–Krylov force.  相似文献   

6.
The effectiveness of a submerged, bottom-mounted, flexible breakwater is investigated numerically. The structure is a horizontal, hemicylindrical shell filled with water. Potential flow is considered, and steady-state motions caused by monochromatic waves are studied. The three-dimensional response to normal and oblique waves is determined using the finite element method and a boundary integral method. Results are presented for a shell with a length of 150 m and a radius of 4 m, situated in water having a mean depth of 6 m. They indicate that the structure is effective in reducing the incident wave intensity over a wide range of frequencies.  相似文献   

7.
The hydrodynamic problem arising form the interaction of linear water waves with a wave energy device consisting of two coaxial vertical cylinders of different radii is investigated. One cylinder is riding in waves, while another is submerged in fluid. By use of the method of separation of variables and the method of matched eigenfunction expansion, analytical expressions for the potentials are obtained. Using the expressions for the potentials, analytical expressions for the hydrodynamic coefficients and exciting forces/moments on the device are obtained. Numerical results of the hydrodynamic coefficients and exciting forces/moments are presented for some ratios of the radius of the submerged cylinder to that of the riding one. It is found that the radius of the submerged cylinder has a significant influence on the hydrodynamic coefficients and exciting forces/moments for relatively bigger radius of the submerged cylinder at low frequencies.  相似文献   

8.
李庆昕  宁德志  滕斌 《海洋学报》2017,39(1):96-103
基于势流理论采用时域高阶边界元方法建立了模拟非线性波浪与淹没水平双、三圆柱作用的数值水槽模型,其中采用混合欧拉-拉格朗日方法更新自由水面,四阶Runga-Kutta方法进行时间步进。利用两点法分离得到潜体下游高阶自由波,进而研究潜体间距、布置形式等对高倍频自由波的影响。同时在物理水槽内开展多潜体高阶谐波物理模型试验,并将试验结果与数值结果进行对比,吻合较好。研究发现:淹没双圆柱下游高阶谐波幅值随潜体间距呈现周期性振荡变化,其振荡的重现距离约为波长一半。而淹没三圆柱下游的高阶谐波随第一个间距呈周期性振荡变化,随第二个间距的增大而减小。  相似文献   

9.
赵明  滕斌  谭丽 《中国海洋工程》2004,18(3):335-346
In this paper, a numerical model is established for estimating the wave forces on a submerged horizontal circular cylinder. For predicting the wave motion, a set of two-dimensional Navier-Stokes equations is solved numerically with a finite element method. In order to track the moving non-linear wave surface boundary, the Navier-Stokes equations are discretized in a moving mesh system. After each computational time step, the mesh is modified according to the changed wave surface boundary. In order to stabilize the numerical procedure, a three-step finite element method is applied in the time integration. The water sloshing in a tank and wave propagation over a submerged bar are simulated for the first time to validate the present model. The computational results agree well with the analytical solution and the experimental data.Finally, the model is applied to the simulation of interaction between waves and a submerged horizontal circular cylinder.The effects of the KC number and the cylinder depth on the wave forces are studied.  相似文献   

10.
A train of surface waves is normally incident upon a cylinder that is totally submerged in a body of deep water. Details are given for the cases of circular or elliptic cross-sections, with estimates for the transmission and reflection constants when the cylinder is many wavelengths below the surface. Corresponding results are suggested for arbitrary smooth cylinders.  相似文献   

11.
The radiation problem for two parallel-spaced cylinders is studied. The solution is expressed explicitly in terms of well-behaved convergent series with elementary functions, which are convenient for numerical computation and readily applicable for two-dimensional two-body potential problems. The added mass and damping coefficients together with the phase angles of radiated wave potentials for the forced heave and sway motions of two identical submerged cylinders are presented. The results are useful for determination of the hydrodynamic properties of multi-hull semi-submersibles. In view of the close relationship between a radiation and a scattering problem, the application of the results to the problem of energy extraction from water waves is also noted.  相似文献   

12.
The numerical investigation of regular waves interacting with a submerged horizontal twin-plate breakwater is presented in this paper. A numerical model with an absorbing wave-maker is established based on the VOF method. The validity of the model is verified by experimental results. Comparisons between the numerical and experimental results show that both the water surface profiles and the wave-induced pressures can be modeled accurately. Wave deformation over the breakwater,water particle velocities aroun...  相似文献   

13.
Yong Liu  Yu-cheng Li  Bin Teng 《Ocean Engineering》2007,34(17-18):2364-2373
This study examines the hydrodynamic performance of a new perforated-wall breakwater. The breakwater consists of a perforated front wall, a solid back wall and a submerged horizontal porous plate installed between them. The horizontal porous plate enhances the stability and wave-absorbing capacity of the structure. An analytical solution based on linear potential theory is developed for the interaction of water waves with the new proposed breakwater. According to the division of the structure, the whole fluid domain is divided into three sub-domains, and the velocity potential in each domain is obtained using the matched eigenfunction method. Then the reflection coefficient and the wave forces and moments on the perforated front wall and the submerged horizontal porous plate are calculated. The numerical results obtained for limiting cases are exactly the same as previous predictions for a perforated-wall breakwater with a submerged horizontal solid plate [Yip, T.L., Chwang, A.T., 2000. Perforated wall breakwater with internal horiontal plate. Journal of Engineering Mechanics ASCE 126 (5), 533–538] and a vertical wall with a submerged horizontal porous plate [Wu, J.H., Wan, Z.P., Fang, Y., 1998. Wave reflection by a vertical wall with a horizontal submerged porous plate. Ocean Engineering 25 (9), 767–779]. Numerical results show that with suitable geometric porosity of the front wall and horizontal plate, the reflection coefficient will be always rather small if the relative wave absorbing chamber width (distance between the front and back walls versus incident wavelength) exceeds a certain small value. In addition, the wave force and moment on the horizontal plate decrease significantly with the increase of the plate porosity.  相似文献   

14.
A modified Boussinesq-type model is derived to account for the propagation of either regular or irregular waves in two horizontal dimensions. An improvement of the dispersion and shoaling characteristics of the model is obtained by optimizing the coefficients of each term in the momentum equation, expanding in this way its applicability in very deep waters and thus overcoming a shortcoming of most models of the same type. The values of the coefficients are obtained by an inverse method in such a way as to satisfy exactly the dispersion relation in terms of both first and second-order analyses matching in parallel the associated shoaling gradient. Furthermore a physically more sound way to approach the evaluation of wave number in irregular wave fields is proposed. A modification of the wave generator boundary condition is also introduced in order to correctly simulate the phase celerity of each input wave component. The modified model is applied to simulate the propagation of breaking and non-breaking, regular and irregular, long and short crested waves in both one and two horizontal dimensions, in a variety of bottom profiles, such as of constant depth, mild slope, and in the presence of submerged obstacles. The simulations are compared with experimental data and analytical results, indicating very good agreement in most cases.  相似文献   

15.
C.Z. Wang  G.X. Wu  K.R. Drake 《Ocean Engineering》2007,34(8-9):1182-1196
Interactions between water waves and non-wall-sided cylinders are analyzed based on velocity potential theory with fully nonlinear boundary conditions on the free surface and the body surface. The finite element method (FEM) is adopted together with a 3D mesh generated through an extension of a 2D Delaunay grid on a horizontal plane along the depth. The linear matrix equation for the velocity potential is constructed by imposing the governing equation and boundary conditions through the Galerkin method and is solved through an iterative method. By imposing the gradient of the potential equal to the velocity, the Galerkin method is used again to obtain the velocity field in the fluid domain. Simulations are made for bottom mounted and truncated cylinders with flare in a numerical tank. Periodic waves and wave groups are generated by a piston type wave maker mounted on one end of the tank. Results are obtained for forces, wave profiles and wave runups. Further simulations are made for a cylinder with flare subjected to forced motion in otherwise still open water. Results are provided for surge and heave motion in different amplitudes, and for a body moving in a circular path in the horizontal plane. Comparisons are made in several cases with the results obtained from the second order solution in the time domain.  相似文献   

16.
Yong Liu  Bin Teng 《Ocean Engineering》2008,35(16):1588-1596
This study examines the hydrodynamic performance of a modified two-layer horizontal-plate breakwater. The breakwater consists of an upper submerged horizontal porous plate and a lower submerged horizontal solid plate. By means of the matched eigenfunction expansion method, a linear analytical solution is developed for the interaction of water waves with the structure. Then the reflection coefficient, the transmission coefficient, the energy-loss coefficient and the wave forces acting on the plates are calculated. The numerical results obtained for limiting cases are exactly the same as previous predictions for a single submerged horizontal solid plate and a single submerged horizontal porous plate. Numerical results show that with a suitable geometrical porosity of the upper plate, the uplift wave forces on both plates can be controlled at a low level. Numerical results also show that the transmission coefficient will be always small if the dimensionless plate length (plate length versus incident wavelength) exceeds a certain moderate value. This is rather significant for practical engineering, as the incident wavelength varies over a wide range in practice. Moreover, it is found that the hydrodynamic performance of the present structure may be further enhanced if the lower plate is also perforated.  相似文献   

17.
This note brings together and extends previously known results for the added masses and dampings of surface-piercing or completely submerged horizontal circular cylinders. For vertical (heave) motions, but not horizontal (sway) motions, a striking qualitative change occurs in these hydrodynamic coefficients when the cylinder breaks the surface. This is simply explained in terms of low-frequency asymptotics and the equivalent wavemaker method.  相似文献   

18.
《Ocean Engineering》1999,26(4):325-341
Based on a two-dimensional linear water wave theory, this study develops the boundary element method (BEM) to examine normally incident wave scattering by a fixed, submerged, horizontal, impermeable plate and a submerged permeable breakwater in water of finite depth. Numerical results for the transmission coefficients are also presented. In addition, the numerical technique's accuracy is demonstrated by comparing the numerical results with previously published numerical and experimental ones. According to that comparison, the transmission coefficient relies not only on the submergence of the horizontal impermeable plate and the height of the permeable breakwater, but also on the distance between horizontal plate and permeable breakwater. Results presented herein confirm that the transmission coefficient is minimum for the distance approximately equal to four times the water depth.  相似文献   

19.
V. Armenio 《Ocean Engineering》1998,25(10):881-905
In this paper, an improved version of the MAC method (SIMAC), recently developed at the University of Trieste, is employed for the study of the wave generation and propagation into a numerical wave tank and for the evaluation of dynamic loads over submerged fixed bodies.In the first part of the work, a numerical wave tank was developed. A pneumatic wave-maker at the left-hand side of the tank was implemented by the use of a pressure perturbation at the free surface. The pressure varies in time with a sinusoidal law. Grid sensitivity tests, checks on mass conservation and the Fourier analysis of the waves which propagate in the tank showed the effectiveness of SIMAC in treating such problems. The wave-maker was then calibrated.In the second part of the work, the dynamic loads over submerged square and rectangular cylinders were evaluated. The time records of the horizontal and vertical forces which act over the body were then treated using the Morison equation in order to derive the inertial and damping coefficients. The analysis was carried out for KC numbers ranging between 0.447 and 3.58. Numerical results satisfactorily tallied with experimental data. The analysis of the velocity field near the body evidenced the influence of vortex generation and vortex shedding on the coefficients of inertial forces.  相似文献   

20.
Most off-shore oil platforms are supported by vertical cylinders extending to the ocean floor. An important problem in off-shore engineering is the calculation of the wave loading exerted on these vertical cylinders. Analytical solutions have been found for the case of plane incident waves incident on a circular cylinder by MacCamy and Fuchs [(1954), Wave forces on piles: a diffraction theory. U.S. Army Corps of Engineering, Beach Erosion Board, Technical Memorandum No. 69] and also for short-crested waves incident on a circular cylinder by Zhu [(1993), Diffraction of short-crested waves around a circular cylinder. Ocean Engng 20, 389–407]. However, for a cylinder of arbitrary cross-section, no analytic solutions currently exist. Au and Brebbia [(1983), Diffraction of water waves for vertical cylinders using boundary elements. Appl. Math. Modelling 7, 106–114] proposed an efficient numerical approach to calculate the wave loads induced by plane waves on vertical cylinders by using the boundary element method. However, wind-generated waves are better modelled by short-crested waves. Whether or not these short-crested waves can induce larger wave forces on a structure is of great concern to ocean engineers. In this paper wave loads, induced by short-crested incident waves, on a vertical cylinder of arbitrary cross-section are discussed. For a cylinder of certain cross-section, the wave loads induced by short-crested waves can be larger than those induced by plane waves with the same total wave number.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号