首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Z. Zhong  K.H. Wang   《Ocean Engineering》2006,33(7):927-949
Theoretical investigations on solitary waves interacting with a surface-piercing concentric porous cylinder system are presented in this paper. The outer cylinder is porous and considered thin in thickness, while the inner cylinder is solid. Both cylinders are rigidly fixed on the bottom. Following Isaacson's [Isaacson, Micheal de St. Q., 1983. Solitary wave diffraction around large cylinder. Journal of the Waterway, Port, Coastal and Ocean Engineering 109(1), 121–127.] approach, we obtained the solutions for free-surface elevation and the corresponding velocity potential in terms of Fourier integrals. Numerical results are presented to show the effects of incident wave condition, porosity of the outer cylinder and radius ratio on wave forces and wave elevations around the inner and outer cylinders.  相似文献   

2.
Wave interaction with a concentric porous cylinder system   总被引:1,自引:0,他引:1  
This is a theoretical investigation of wave interaction with a concentric surface-piercing two-cylinder system. The exterior cylinder is porous and considered to be thin in thickness and the interior cylinder is impermeable. Both cylinders are rigidly fixed at the sea bed. The fluid motion is idealized as a linearized potential flow. The free-surface elevation and the total net hydrodynamic forces acting on both cylinders are determined analytically. The wave-induced overturning moments are also evaluated. It is found that, with the existence of the exterior porous cylinder, the hydrodynamic force acting on the interior cylinder is reduced if compared to the force exerted on the interior cylinder by a direct wave impact. The reduction of the wave amplitude around the leeward side of the outer porous cylinder is shown from the free-surface computations. In this paper, results are also presented to illustrate the effects of wave parameter and structural porosity on this wave and cylinder interaction problem. The role played by the ratio of radii of the inner and outer cylinders is duscussed.  相似文献   

3.
The linear water wave scattering and radiation by an array of infinitely long horizontal circular cylinders in a two-layer fluid of infinite depth is investigated by use of the multipole expansion method. The diffracted and radiated potentials are expressed as a linear combination of infinite multipoles placed at the centre of each cylinder with unknown coefficients to be determined by the cylinder boundary conditions. Analytical expressions for wave forces, hydrodynamic coefficients, reflection and transmission coefficients and energies are derived. Comparisons are made between the present analytical results and those obtained by the boundary element method, and some examples are presented to illustrate the hydrodynamic behavior of multiple horizontal circular cylinders in a two-layer fluid. It is found that for two submerged circular cylinders the influence of the fluid density ratio on internal-mode wave forces is more appreciable than surface-mode wave forces, and the periodic oscillations of hydrodynamic results occur with the increase of the distance between two cylinders; for four submerged circular cylinders the influence of adding two cylinders on the wave forces of the former cylinders is small in low and high wave frequencies, but the influence is appreciable in intermediate wave frequencies.  相似文献   

4.
This paper presents a method of estimating wave forces acting on a submerged horizontal circular cylinder fixed in oblique waves.The experiments show that drag and inertia coefficients in beam sea are available for calculating the wave forces in oblique waves.Wave forces exerted on a vertical circular cylinder in deep waves are also investigated.The experimental results show that wave forces acting on the vertical cylinder coincide approximately with hydrodynamic forces acting on a submerged circular cylinder in an oscillating fluid.  相似文献   

5.
The interaction of a solitary wave with an array of surface-piercing vertical circular cylinders is investigated numerically. The wave motion is modeled by a set of generalized Boussinesq equations. The governing equations are discretized using a finite element method. The numerical model is validated against the experimental data of solitary wave reflection from a vertical wall and solitary wave scattering by a vertical circular cylinder respectively. The predicted wave surface elevation and the wave forces on the cylinder agree well with the experimental data. The numerical model is then employed to study solitary wave scattering by arrays of two circular cylinders and four circular cylinders respectively. The effect of wave direction on the wave forces and the wave runup on the cylinders is quantified.  相似文献   

6.
Wave forces acting on submerged circular cylinders moving forward with a constant velocity in regular waves are investigated experimentally. Hydrodynamic forces acting on the cylinder forced to surge in a steady are also measured and hydrodynamic coefficients were obtained. Wave force coefficients obtained from wave force measurements are compared with the hydrodynamic coefficients from surging tests, and the similarity and difference between them are discussed. Experiments show that these coefficients are quite different from those of the cylinder without a forward velocity.  相似文献   

7.
Most off-shore oil platforms are supported by vertical cylinders extending to the ocean floor. An important problem in off-shore engineering is the calculation of the wave loading exerted on these vertical cylinders. Analytical solutions have been found for the case of plane incident waves incident on a circular cylinder by MacCamy and Fuchs [(1954), Wave forces on piles: a diffraction theory. U.S. Army Corps of Engineering, Beach Erosion Board, Technical Memorandum No. 69] and also for short-crested waves incident on a circular cylinder by Zhu [(1993), Diffraction of short-crested waves around a circular cylinder. Ocean Engng 20, 389–407]. However, for a cylinder of arbitrary cross-section, no analytic solutions currently exist. Au and Brebbia [(1983), Diffraction of water waves for vertical cylinders using boundary elements. Appl. Math. Modelling 7, 106–114] proposed an efficient numerical approach to calculate the wave loads induced by plane waves on vertical cylinders by using the boundary element method. However, wind-generated waves are better modelled by short-crested waves. Whether or not these short-crested waves can induce larger wave forces on a structure is of great concern to ocean engineers. In this paper wave loads, induced by short-crested incident waves, on a vertical cylinder of arbitrary cross-section are discussed. For a cylinder of certain cross-section, the wave loads induced by short-crested waves can be larger than those induced by plane waves with the same total wave number.  相似文献   

8.
Fully nonlinear interactions between water waves and vertical cylinder arrays in a numerical tank are studied based on a finite element method (FEM). The three-dimensional (3D) mesh is constructed through an extension of a 2D Delaunay surface grid along the vertical line. The velocity potential is obtained by solving a linear matrix system of FEM, and a difference scheme is then used to calculate the velocity on the free surface to track its movement. Waves and hydrodynamic forces are obtained for both bottom mounted and truncated cylinders. The simulations have provided many results to show the nature of mutual interference between cylinders in arrays and its effects on waves and forces at the nearly trapped mode frequency. The effect of the tank wall on waves and forces has been investigated, and the nonlinear features of waves and forces have also been discussed.  相似文献   

9.
In-line force on a cylinder translating in oscillatory flow   总被引:2,自引:0,他引:2  
Experiments were conducted with smooth and sand-roughened cylinders moving with constant velocity in a sinusoidally oscillating flow to determine the drag and inertia coefficients and to examine the effect of wake biasing on the modified Morison equation. The various flow parameters such as the relative cylinder velocity. Reynolds number, and the Keulegan-Carpenter number were varied systematically and the in-line force measured simultaneously. The principal results, equally valid for both smooth and rough cylinders, are as follows: the drag coefficient decreases with increasing relative current for a given Reynolds number and Keulegan-Carpenter number; the effect of wake biasing on the drag and inertia coefficients is most pronounced in the drag-inertia dominated regime; and the two-term Morison equation with force coefficients obtained under no-current conditions is not applicable to the prediction of wave and current induced loads on circular cylinders.  相似文献   

10.
The hydrodynamic forces on the stationary partially submerged cylinder are investigated through towing test with Reynolds number ranging from 5 × 104 to 9 × 105. Three test groups of partially submerged cylinders with submerged depths of 0.25 D, 0.50 D, and 0.75 D and one validation group of fully submerged cylinders are conducted. During the experiments, the hydrodynamic forces on the cylinders are measured using force sensors. The test results show a considerable difference in the hydrodynamic coefficients for the partially submerged cylinders versus the fully submerged cylinders. A significant mean downward lift force is first observed for the partially submerged cylinders in a steady flow. The maximum of the mean lift coefficients can reach 1.5. Two distinct features are observed due to the effects of overtopping: random distributions in the mean drag coefficients and a clear quadratic relationship between the mean lift coefficients and the Froude number appear in the non-overtopping region. However, the novel phenomenon of a good linear relationship with the Froude number for the mean hydrodynamic coefficients is clearly shown in the overtopping region. In addition, fluctuating hydrodynamic coefficients are further proposed and investigated. These results are helpful to have a better understanding of the problem and to improve related structural designs.  相似文献   

11.
This paper describes a plane regular wave interaction with a combined cylinder which consists of a solid inner column and a coaxial perforated outer cylinder.The outer perforated surface is a thin porous cylinder with an annular gap between it and the inner cylinder.The non-linear boundary condition at the perforated wall is a prime focus in the study;energy dissipation at the perforated wall occurs through the resistance to the fluid across the perforated wall.Explicit analytical formulae are presented to calculate the wave run-up on the outer and inner surfaces of the perforated cylinder and the surface of the inner column.The theoretical results of the wave run-up are compared with previous experimental data.Numerical results have also been obtained:when the ratio of the annular gap between the two cylinders to incident wavelength(b-a)/L≤0.1,the wave run-up on the inner surface of the perforated cylinder and the surface of inner column can partially or completely exceed the incident wave height.  相似文献   

12.
In this paper, an exact analytical method is developed for the problem of wave radiation by a uniform cylinder in front of a vertical wall. Based on the image principle, the hydrodynamic problem of a cylinder in front of a vertical wall is transformed into the equivalent problem of double cylinders in unbounded fluid domain. Consequently, an analytical method of eigenfunction expansion is adopted to calculate the radiation of the cylinder due to the motion in surge, sway, roll and pitch, respectively. Moreover, numerical analysis has been carried out in detail in order to discuss the influences of the distance between the cylinder and the vertical wall and water depth on the added mass and radiation damping of the cylinder. It is shown that added mass and damping of the cylinder in front of a vertical wall are evidently different from those in case of the cylinder in unbounded fluid domain from the numerical results. It is also found that the added mass and radiation damping oscillate with wave number, and the oscillating frequency increases with the increasing of the distance between the cylinder and the wall.  相似文献   

13.
The deployment of suitable configurations of mutually interacting floating bodies for efficiently controlling their hydrodynamic interactions towards the reduction of the wave drift forces and, thus, of the mooring lines’ loads, has, nowadays, gained a great scientific interest. In this paper, the hydrodynamic behaviour of a floating cylinder and a concentric annular flexible plate is analysed in the frequency domain aiming at the minimization of the drift forces acting on the cylinder by optimizing the flexural rigidity of the plate. The diffraction/radiation problem is solved using a higher-order boundary element method. The analysis is implemented assuming that both floating bodies oscillate freely in heave, while for the plate, flexible modes are, additionally, considered for describing its structural deformations. The required modes shapes are determined in vacuum (“dry” mode superposition approach) through analytical expressions. The flexural rigidity of the plate, D, is optimized at a specific wave number using a real-coded genetic algorithm. Initially, results are compared with numerical results of other investigators for the case of two rigid concentric floating cylinders. Next, extended results are presented, focusing on the effect of D, including its optimum value, on various physical quantities describing the behaviour of both the cylinder and the plate. Contrary to the isolated cylinder, the presence of the plate introduces sharp peaks in the variation pattern of the drift force of the cylinder, bounded at specific wave numbers, where resonance of the seiche mode of water motion in the annular cavity or of specific flexible modes of the plate occurs. However, by reducing D to its optimum value, the cylinder’s drift force obtains practically zero values at the target wave number, due to an efficient improvement of the wave field in the annular cavity around the cylinder. Moreover, a great reduction of the drift force compared to the isolated cylinder is achieved in the subsequent high frequency range.  相似文献   

14.
波浪对透空外双壁筒柱的绕射   总被引:3,自引:2,他引:3  
滕斌  韩凌 《海洋工程》2001,19(1):32-37
应用透空壁内流体速度与两壁间压力差成正比的线性模型,建立了外壁透空的双筒圆柱对波浪绕射的解析解。通过数值计算研究了外壁透空率的大小、内外柱半径之比等因素对桩柱上总波浪作用力和波面高度的影响。数值结果表明圆柱外壁透空系数的增加,将明显地降低圆柱周围的波浪高度和圆柱上的波浪力;内外柱径之比的大小对波浪力和波高的最大值无太大影响,而对波浪力剧烈衰减区的位置和波高的振荡周期有决定作用。  相似文献   

15.
基于粘性流模型的筒型基础防波堤波浪力数值分析   总被引:3,自引:0,他引:3  
筒型基础防波堤是一种新型港口海岸工程结构,其基础上部是由连续排列的圆筒构成的直立防浪墙.采用粘性流数值模型,研究连续圆筒防波堤上波浪力竖向分布、水平(沿圆筒环向)分布和波浪力合力特性,并对粘性流数值模型计算的平面直墙波浪力与海港水文规范方法计算结果;粘性流数值模型计算的连续圆筒墙面波浪力与平面直墙波浪力;无限长连续圆筒墙面波浪力与有限长连续圆筒墙面波浪力进行比较分析.针对所选工程算例,建议按<海港水文规范>中平面直墙波浪力计算方法确定连续圆筒防波堤上的波浪力时,波峰时考虑0.90左右的折减系数,波谷时考虑0.95左右的折减系数.  相似文献   

16.
The three-dimensional scattering of cnoidal waves by cylinder arrays are studied numerically by using the generalized Boussinesq equations. The boundary-fitted coordinate transformation and a dual-grid technique are used to simplify the finite-difference computation. Also, a set of open boundary conditions and an incident cnoidal wave are incorporated for time-domain simulation. The free-surface elevation and hydrodynamic forces on each cylinder are calculated to illustrate the evolution of nonlinear waves and their interactions with large cylinder arrays. Comparisons are made between the present nonlinear wave loads and those obtained from linear diffraction theory. The sheltering role played by the neighboring cylinders and the feature of wave interference are discussed.  相似文献   

17.
Spectral analysis is used to determine the wave force characteristics on structures exposed to random waves. Considerable work has been carried out to determine the magnitude of random wave forces acting on a single cylinder, but little information is available in the case of a group of cylinders in random waves. Such situations arise when structures comprise multiple tubular members which are in close proximity, and wave forces cannot be calculated precisely by analytical methods due to complicated flow conditions past the group. Experimental studies are also required for proper understanding and analysis. An experimental scheme was carried out to study the wave force characteristics on a single cylinder and on a group of cylinders in response to two different wave spectra with the same significant wave height, and the results are compared.  相似文献   

18.
Nonlineareffectoninertiacomponentofwaveforcesonacylinder¥LiYanbaoandSongReng(DepartmentofHydraulicEngineering,TianjinUniversi...  相似文献   

19.
The response of an oscillating circular cylinder at the wake of an upstream fixed circular cylinder was classified by different researchers as galloping, wake induced galloping or wake induced vibration. Furthermore it is already known that a sharp edge square cylinder would undergo galloping if it is subjected to uniform flow. In this study the influence of the wake of a fixed circular cylinder on the response of a downstream square cylinder at different spacing ratios (S/D = 4, 8, 11) is experimentally investigated. The subject appears not to have received previous attention. The lateral displacements, lift forces and the pressure data from gauges mounted in the wake of the oscillating cylinder are recorded and analyzed. The single degree of freedom vibrating system has a low mass-damping parameter and the Reynolds number ranges from 7.7 × 102 to 3.7 × 104.In contrast to that for two circular cylinders in tandem arrangement, the freely mounted downstream square cylinder displays a VIV type of response at all spacing ratios tested. There is no sign of galloping or wake induced galloping with the square cylinder. With increase at the spacing ratio the cross-flow oscillations decrease. It is shown that the vortices arriving from the upstream fixed circular cylinder play a major role on the shedding mechanism behind the downstream square cylinder and cause the square cylinder to shed vortices with frequencies above Strouhal frequency of the fixed square cylinder (St = 0.13). The VIV type of oscillations in the downstream square cylinder is most probably caused by the vortices newly generated behind the square cylinder.  相似文献   

20.
The benchmark simulations of wave run-up on a fixed single truncated circular cylinder and four circular cylinders are presented in this paper. Our in-house CFD solver naoe-FOAM-SJTU is adopted which is an unsteady two-phase CFD code based on the open source package OpenFOAM. The Navier-Stokes equations are employed as the governing equations, and the volume of fluid (VOF) method is applied for capturing the free surface. Monochromatic incident waves with the specified wave period and wave height are simulated and wave run-up heights around the cylinder are computed and recorded with numerical virtual wave probes. The relationship between the wave run-up heights and the incident wave parameters are analyzed. The numerical results indicate that the presented naoe-FOAM-SJTU solver can provide accurate predictions for the wave run-up on one fixed cylinder and four cylinders, which has been proved by the comparison of simulated results with experimental data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号