首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Storm evolution is fundamental for analysing the damage progression of the different failure modes and establishing suitable protocols for maintaining and optimally sizing structures. However, this aspect has hardly been studied and practically the whole of the studies dealing with the subject adopt the Equivalent triangle storm. As against this approach, two new ones are proposed. The first is the Equivalent Triangle Magnitude Storm model (ETMS), whose base, the triangular storm duration, D, is established such that its magnitude (area describing the storm history above the reference threshold level which sets the storm condition), HT, equals the real storm magnitude. The other is the Equivalent Triangle Number of Waves Storm (ETNWS), where the base is referred in terms of the real storm's number of waves, Nz. Three approaches are used for estimating the mean period, Tm, associated to each of the sea states defining the storm evolution, which is necessary to determine the full energy flux withstood by the structure in the course of the extreme event. Two are based on the Jonswap spectrum representativity and the other uses the bivariate Gumbel copula (Hs, Tm), resulting from adjusting the storm peaks. The representativity of the approaches proposed and those defined in specialised literature are analysed by comparing the main armour layer's progressive loss of hydraulic stability caused by real storms and that relating to theoretical ones. An empirical maximum energy flux model is used for this purpose. The agreement between the empirical and theoretical results demonstrates that the representativity of the different approaches depends on the storm characteristics and point towards a need to investigate other geometrical shapes to characterise the storm evolution associated with sea states heavily influenced by swell wave components.  相似文献   

2.
3.
The performance of two well accepted formulations for white capping and wind input of third generation wave models, viz., WAM-3 and WAM-4, were investigated using parallel unstructured SWAN (PunSWAN). Several alternative formulations were also considered to evaluate the effects of higher order steepness and wave number terms in white capping formulations. Distinct model configurations were calibrated and validated against available in situ measurements from the Gulf of Mexico. The results showed that some of the in situ calibrated models outperform the saturation level calibrated models in reproducing the idealized wave growth curves. The simulation results also revealed that increasing the power of the steepness term can enhance the accuracy of significant wave height (Hs), at the expense of a higher bias for large waves. It also has negative effects on mean wave period (Ta) and peak wave period (Tp). It is also demonstrated that the use of the quadratic wave number term in the WAM-3 formulation, instead of the existing linear term, ameliorates the Ta underestimation; however, it results in the model being unable to reach any saturation level. In addition, unlike Hs and Tp, it has been shown that Ta is sensitive to the use of the higher order WAM-4 formulation, and the bias is decreased over a wide range of wave periods. However, it also increases the scatter index (SI) of simulated Ta. It is concluded that the use of the WAM-4 wind input formulation in conjunction with the WAM-3 dissipation form, is the most successful case in reproducing idealized wave growth curves while avoiding Ta underestimation of WAM-3 and a potential spurious bimodal spectrum of WAM-4; consequently, this designates another perspective to improve the overall performance of third generation wave models.  相似文献   

4.
In this paper, we present and evaluate three long-term wave models for application in simulation-based design of ships and marine structures. Designers and researchers often rely on historical weather data as a source for ocean area characteristics based on hindcast datasets or in-situ measurements. The limited access and size of historical datasets reduces repeatability of simulations and analyses, making it difficult to assess the sampling variability of performance and loads on marine vessels and structures. Markov, VAR and VARMA wave models, producing independent long-term time series of significant wave height (Hs) and spectral peak period (Tp), is presented as possible solutions to this problem. The models are tested and compared by addressing how the models affect interpretation of design concepts and the ability to replicate statistical and physical characteristics of the wave process. Our results show that the VAR and VARMA models perform sufficiently in describing design performance, but does not capture the physical process fully. The Markov model is found to perform worst of the tested models in the applied tests, especially for measures covering several consecutive sea states.  相似文献   

5.
Wave growth in slanting fetch (with wind blowing obliquely off a coast) is investigated with 7 years worth of routine wave measurements in Lake IJssel in The Netherlands and with the SWAN wave model. Two aspects are considered in particular for this case: the validity of the concept of effective fetch and the role of the non-linear four-wave interactions. For slanting and parallel fetch conditions, we found some significant deviations from the effective fetch assumption, leading to 20–35% mismatch in either the peak period Tp or the significant wave height Hm0 respectively. However, the effect of discrepancies between various widely accepted wave growth formulas turned out to be even more important. The wave directions during slanting fetch are significantly ‘steered’ by the coastline, especially in the first kilometre(s) off the coast. The role of the non-linear four-wave interactions is investigated by running the SWAN (version 40.41) wave model with three different quadruplet formulations. Exact quadruplet methods (Xnl) yielded relatively strong wave steering, despite the four-wave interactions being relatively weak. Application of Xnl did not lead to better overall agreement with measurements — improvements for the mean wave period Tm01 were offset by some deterioration for the wave height Hm0.  相似文献   

6.
This article proposes a predictive method for identifying the range of sea-states considered safe for the installation of offshore structures. A finite element dynamic analysis of the system for various sea-states characterized by significant wave heights and mean zero-up-crossing wave periods and modeled as a combination of several wave components has been performed. Using this procedure a table of safe and unsafe sea-states is generated. The significant wave height (Hs) and mean zero-up-crossing wave period (Tz) of a future sea-state in a location in the north east Pacific were predicted from the distributions whose parameters were estimated using the artificial neural networks (ANNs) trained for this purpose. The location of US National Oceanographic Data Center (NODC) Buoy 46005 is used in this study.The Hs and Tz of some future sea-states were predicted from their corresponding conditional 7-parameter distribution given some information including a number of previously measured Hss and Tz’s. This gives a predicted sea-state for a specific time in future. The parameters of the distributions have been estimated from the outputs of two different 7-network sets of trained ANNs. A pile-driving operation is used as a case study in which the pile configuration, including the non-linear foundation and the gap between the pile and the pile sleeve shims, has been modeled by the finite elements method and the range of sea-states suitable for safe pile-driving operation was identified.  相似文献   

7.
S Neelamani 《Ocean Engineering》2004,31(13):1601-1621
Investigations on sub aerial wave pressures and layer thickness on plane impermeable and non-overtopping seawallns were carried out by using physical model studies. Seawalls with slopes of 1:3, 1:4 and 1:6 were used. JONSWAP spectrum with significant wave height, Hs from 0.08 to 0.2 m and peak periods, Tp from 1.5 to 6.0 s and a constant water depth of 0.7 m is used. Based on extensive measurements, empirical formulas for practical applications are proposed to predict the maximum, significant and mean sub aerial random wave pressure and layer thickness (thickness of water layer perpendicular to the still water level on the run-up zone) by using the surf similarity parameter, significant wave height and elevation on the sub aerial region as inputs. It is found that the maximum layer thickness is 1.11 times the significant layer thickness and maximum sub Arial wave pressure is 1.06 times the significant wave pressures. The predictive equations based on extensive measurements can be used for the design of non-overtopping seawalls.  相似文献   

8.
黄渤海海域波浪时空变化特征分析   总被引:1,自引:0,他引:1  
本文利用欧洲中期预报中心(ECMWF)第五代再分析数据集(ECMWF Reanalysis v5 ERA5,ERA5),对中国黄渤海海域2000-2019年的波浪进行了统计分析。得到如下的结论:1.黄渤海海区波浪具有明显的季节性,渤海区域有效波高呈现出周边小,中间大的特点;黄海海域有效波高Hs呈现由南向北降低的趋势;研究区域冬季有效波高均值大于其他季节。2.平均周期T的季节分布类似于有效波高的季节均值分布。渤海仅秋冬季T的均值存在大于4s的区域;黄海海域T的季节分布也呈现由南向北递减的趋势,其中长江口外海区域秋冬季T的季节均值可达6s。3.有效波高距平场EOF分解结果显示,第一模态表明了波浪变化具有明显的季节性特征;第二模态反映了季风的季节转换对有效波高的影响;第三模态代表的可能是地形的变化对有效波高变化的影响。4.代表点统计结果显示:整个渤海地区的常浪向为 NNE~NE,强浪向以 NE和 NNE 为主;黄海海域的常浪向为SSE-SE向,强浪向以 N和 SSE 为主。  相似文献   

9.
Based on the 45-year (09/1957-08/2008) European Centre for Medium-Range Weather Forecasts (ECMWF) Reanalysis (ERA-40) wave reanalysis dataset, this study analyzes interannual and interdecadal variabilities and intraseasonal oscillations of sea surface wind speed (WS), wind sea wave height (Hw), swell wave height (Hs) and significant wave height (Hs) in the Roaring Forties and tropical waters of the Indian Ocean, to determine swell propagation characteristics. The results show: (1) monthly variabilities of Hs in the Roaring Forties are in good agreement with those in tropical waters of the Indian Ocean; swell plays a dominant role in mixed waves throughout most of the Indian Ocean; and WS, Hw, Hs, and Hs exhibit a significant increasing trend over the 45-year study period. (2) Hs in the Roaring Forties and tropical waters of the Indian Ocean share a common period of 9.8–10.4 years on an interdecadal scale; and WS and Hs in the Roaring Forties and Hs in the tropical waters of the Indian Ocean share a common period of approximately 8 days (weekly oscillation) on an intraseasonal scale. (3) Swell of the Roaring Forties needs approximately 30 h to fully respond to the wind in this region. Approximately 84 h are required for Hs to propagate from the Roaring Forties to the tropical waters of the south Indian Ocean, while it takes approximately 132–138 h for Hs to propagate from the Roaring Forties to the tropical waters of the north Indian Ocean.  相似文献   

10.
The experimental investigation of unidirectional random wave slamming on the three-dimensional structure in the splash zone is presented. The experiment is conducted in the marine environment channel in the State Key Laboratory of Coastal and Offshore Engineering, Dalian University of Technology. The test wave is unidirectional irregular wave. The experiments are carried out with perpendicular random waves (β=0°) and oblique random waves (β=15°, 30°, 45°), the significant wave heights H1/3 ranging from 7.5 to 20 cm with 2.5 cm increment, the peak wave periods Tp ranging from 0.75 to 2.0 s with 0.25 s increment, and the clearance of the model with respect to the significant wave height s/H1/3 ranging from 0.0 to 0.5 with 0.1 increment. The statistical analysis results of different test cases are presented. The statistical distribution characteristics of the perpendicular irregular wave impact pressures are compared with that of the oblique irregular wave on the underside of the structure. The effect of the wave direction β on the wave impact forces on the underside of the structure is determined. The relation between the impact forces and the parameters such as the significant wave height, the relative structure width and the relative clearance of the structure is also discussed.  相似文献   

11.
《Coastal Engineering》1998,35(3):185-209
Two depth inversion algorithms (DIA) applicable to coastal waters are developed, calibrated, and validated based on results of computations of periodic waves shoaling over mild slopes, in a two-dimensional numerical wave tank based on fully nonlinear potential flow (FNPF) theory. In actual field situations, these algorithms would be used to predict the cross-shore depth variation h based on sets of values of wave celerity c and length L, and either wave height H or left–right asymmetry s2/s1, simultaneously measured at a number of locations in the direction of wave propagation, e.g., using video or radar remote sensing techniques. In these DIAs, an empirical relationship, calibrated for a series of computations in the numerical wave tank, is used to express c as a function of relative depth koh and deep water steepness koHo. To carry out depth inversion, wave period is first predicted as the mean of observed L/c values, and Ho is then predicted, either based on observed H or s2/s1 values. The celerity relationship is finally inverted to predict depth h. The algorithms are validated by applying them to results of computations for cases with more complex bottom topography and different incident waves than in the original calibration computations. In all cases, root-mean-square (rms)-errors for the depth predictions are found to be less than a few percent, whereas depth predictions based on the linear dispersion relationship—which is still the basis for many state-of-the-art DIAs—have rms-errors 5 to 10 times larger.  相似文献   

12.
To date the estimation of long-term wave energy production at a given deployment site has commonly been limited to a consideration of the significant wave height Hs and mean energy period Te. This paper addresses the sensitivity of power production from wave energy converters to the wave groupiness and spectral bandwidth of sea states. Linear and non-linear systems are implemented to simulate the response of converters equipped with realistic power take-off devices in real sea states. It is shown in particular that, when the converters are not much sensitive to wave directionality, the bandwidth characteristic is appropriate to complete the set of overall wave parameters describing the sea state for the purpose of estimating wave energy production.  相似文献   

13.
14.
New laboratory data are presented on the influence of free long waves, bound long waves and wave groups on sediment transport in the surf and swash zones. As a result of the very significant difficulties in isolating and identifying the morphodynamic influences of long waves and wave groups in field conditions, a laboratory study was designed specifically to enable measurements of sediment transport that resolve these influences. The evolution of model sand beaches, each with the same initial plane slope, was measured for a range of wave conditions, firstly using monochromatic short waves. Subsequently, the monochromatic conditions were perturbed with free long waves and then substituted with bichromatic wave groups with the same mean energy flux. The beach profile changes and net cross-shore transport rates were extracted and compared for the different wave conditions, with and without long waves and wave groups. The experiments include a range of wave conditions, e.g. high-energy, moderate-energy, low-energy waves, which induce both spilling and plunging breakers and different turbulent intensities, and the beaches evolve to form classical accretive, erosive, and intermediate beach states. The data clearly demonstrate that free long waves influence surf zone morphodynamics and promote increased onshore sediment transport during accretive conditions and decreased offshore transport under erosive conditions. In contrast, wave groups, which can generate both forced and free long waves, generally reduce onshore transport during accretive conditions and increase offshore transport under erosive conditions. The influence of the free long waves and wave groups is consistent with the concept of the relative fall velocity, H/wsT, as a dominant parameter controlling net beach erosion or accretion. Free long waves tend to reduce H/wsT, promoting accretion, while wave groups tend to increase the effective H/wsT, promoting erosion.  相似文献   

15.
Airy waves have a sinusoidal profile in deep water that can be modeled by a time series at any point x and time t, given by η(x,t) = (Ho/2) cos[2πx/Lo − 2πt/Tw], where Ho is the deepwater height, Lo is the deepwater wavelength, and Tw is the wave period. However, as these waves approach the shore they change in form and dimension so that this equation becomes invalid. A method is presented to reconstruct the wave profile showing the correct wavelength, wave height, wave shape, and displacement of the water surface with respect to the still water level for any water depth.  相似文献   

16.
17.
In this note the effect of changes in sea-state, as measured by the significant wave heigh Hs, on the joint distribution of individual wave height and period are considered. Wave data, obtained from a Waverider buoy during the growth phase of a storm, are used in the analysis. It is found that, by correctly scaling the individual heights and periods, the form of the joint distribution does not depend on Hs, but is dependent on the bandwidth of the spectrum. The results obtained also give some indication of the period of individual, high zero-upcrossing waves.  相似文献   

18.
X-波段雷达近海海浪频谱反演的神经网络模型   总被引:2,自引:1,他引:1  
X-波段雷达作为国内海浪观测的一种新工具,在海浪频谱获取和有效波高反演方面仍存在较多问题.本文利用非线性回归方法,将现场实测浮标数据频谱和雷达一维图像谱分别与标准频谱模型进行拟合,发现浮标频谱和一维图像谱具有标准频谱的特征,能够较准确地获取相应的谱参数.提出了建立由雷达一维图像谱参数反演海浪频谱参数的神经网络模型,同时在模型中加入影像序列信噪比,进而反演有效波高,并将反演结果与现场实测数据和传统算法(建立影像序列信噪比与有效波高之间的线性回归方程)进行了对比,结果表明,获取谱参数的误差和反演有效波高的平均误差在20%以内,而传统算法计算有效波高平均误差在20%以上.  相似文献   

19.
Estimates of the tropospheric lapse rate γ and analysis of its relation to the surface temperature T s in the annual cycle and interannual variability have been made using the global monthly mean data of the NCEP/NCAR reanalysis (1948–2001). The tropospheric lapse rate γ is about 6.1 K/km in the Northern Hemisphere (NH) as a whole and over the ocean and about 6.2 K/km over the continents. The value of γ decreases from 6.5 K/km at low latitudes to 4.5 K/km at polar latitudes. The values of dγ/dT s, the parameter of sensitivity of γ to the variation of T s for the NH in the interannual variability, are found to be about 0.04 km?1 (0.041 km?1 for the NH as a whole, 0.042 km?1 over the ocean, and 0.038 km?1 over the continents). This corresponds to an increase in γ of approximately 0.7% when the surface temperature of the NH is increased by 1 K. Estimates of dγ/dT s vary from about 0.05 km?1 in the subtropics to 0.10 km?1 at polar latitudes. When dγ/dT s is positive, the surface and tropospheric warming means a temperature decrease above a certain critical level H cr. The height of the level H cr with constant temperature, which is defined by the inverse value (dγ/dT s)?1, is about 25 km for the NH as a whole, i.e., above the tropopause. In the subtropics, H cr is about 20 km. At polar latitudes, H cr decreases to about 10 km. Positive values of dγ/dT s characterize a positive climatic feedback through the lapse rate and indicate a general decrease in the static stability of the troposphere during global warming. Along with a general tendency of γ to increase with rising T s, there are regional regimes with the opposite tendency, mainly over the ocean. The negative correlation of γ with T s is found over the oceanic tropics and midlatitudes, in particular, over the oceanic belt around Antarctica.  相似文献   

20.
《Marine Geology》2007,236(1-2):15-26
The South American coast between Brazil and Venezuela is affected by longshore migrating mud banks derived from the fine-grained Amazon sediment discharge. Onshore mud migration prevails over shallow ‘bank’ areas alternating alongshore with deeper ‘inter-bank’ areas. The transport on the inner shelf, and attachment to the shoreline, of this migrating mud has been attributed mainly to wind waves. However, the lack of in situ data on waves hampers understanding of the relationship between waves and mud dynamics. A 44-yr record (1960–2004) of the ERA-40 wave dataset generated by the European Centre for Medium-Range Weather Forecasts (ECMWF) was used, in conjunction with field investigations in French Guiana, to define both event-scale and longer-term patterns of mud mobilisation induced by waves. The ratio H03 / T2, combining wave height H and period T, and the angle of wave incidence α, were singled out as the most relevant parameters for describing wave forcing. Typical ‘bank’ and ‘inter-bank’ profiles and corresponding mud densities, and a 3-month record of changes in the thickness of the fluid mud layer in an estuarine navigation channel were monitored by echo-sounding from October 2002 to January 2003. An 80-day record of bed-level changes in the intertidal zone was obtained from August to November 2004 using a pressure transducer. The results on the wave regime of French Guiana confirm a distinctly seasonal pattern, and highlight an increase in H03 / T2 over the 44-yr period related to an increase in trade-wind velocities determined from corresponding trends in Atlantic wind pseudo-stress off the South American coast. Wave forcing over bank areas leads to the liquefaction of a 1–3 m-thick layer of mud that is transported onshore (and alongshore by the longshore component of wave energy). The episodic nature of high wave energy events generally results in the formation of mud bar features from the shoreward mobilisation of gel-like fluid mud. The effect of waves on mud is particularly marked following long periods of low energy, and especially at the onset of the high wave energy season (October to May), when even moderate wave energy events can lead to significant mobilisation of mud.Significant phases of increased wave energy are attended by higher long-term (annual) rates of longshore mud bank migration but the correlation is rather poor between the wave forcing parameter H03 / T2 and migration rates because stronger wave forcing is generally associated with low angles of wave incidence. This suggests a complementary role of other hydrodynamic mechanisms, such as geostrophic and tidal currents, in longshore mud bank migration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号