首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 718 毫秒
1.
Concentrations of lead, uranium and thorium and isotopic compositions of lead are reported for twelve Cretaceous kimberlites and five Cretaceous nucleated autoliths. The samples are from Lesotho and from the area around Kimberley (Cape Province, South Africa). In the case of the autoliths potassium, rubidium and strontium concentrations and87Sr/86Sr ratios were also measured.Work reported on clinopyroxenes from mantle-derived xenoliths in kimberlites includes lead isotopes for twelve samples and strontium isotopes for nine of these.The autoliths have initial87Sr/86Sr ratios between 0.7035 and 0.7095. A large spread in initial lead isotope ratios (206Pb/204Pb: 17.6–20;208Pb/204Pb: 37.7–39.5) was found in the matrix kimberlites and autoliths. In the207Pb/204Pb vs.206Pb/204Pb plot, the initial lead isotope ratios of the kimberlite and autolith samples roughly define a slope of 0.10, corresponding to an age of 1575 m.y. With respect to the spread of initial ratios as well as with respect to this slope, the kimberlite and autolith lead isotopic pattern is comparable to patterns obtained from carbonatites and ocean island volcanics.The xenoliths studied include coarse-granular and porphyroclastic material from the Kimberley area and coarse-granular samples from Lesotho. Their87Sr/86Sr ratios are generally between 0.704 and 0.706 but a value of 0.713 was found in one sample. They show a surprisingly large spread in lead isotope ratios (206Pb/204Pb: 17.5–20;208Pb/204Pb: 37.3–39.4).The isotopic patterns of the xenolithic material and of the kimberlites and autoliths are considered to provide a strong indication that the upper mantle beneath Southern Africa is isotopically heterogeneous on a regional scale.  相似文献   

2.
Re–Os isotope compositions of syngenetic sulphide inclusions in both eclogite suite (E-type) and peridotite suite (P-type) parageneses in diamonds from the Koffiefontein mine, South Africa have been analysed using a technique capable of analysing single inclusion grains, or, in some cases multiple inclusions from the same diamonds. Sulphide inclusion Ni contents broadly correlate with Os abundances in that low-Ni (6.8–8.7% Ni), E-type sulphides have 4.7 to 189 ppb Os whereas the two high-Ni (25%), P-type sulphides have 5986 and 6097 ppb Os. Two P-type sulphides from the same diamond define the first mineral isochron obtained for a single diamond which has an age of 69±30 Ma with chondritic initial 187Os/188Os. This indicates that the sulphides, and hence the host diamond, crystallised close to the time of kimberlite emplacement (90 Ma), in the Mesozoic. This is supported by Pb isotopic measurements of a fragment from one of the sulphides, together with the absence of significant Type IaB nitrogen aggregation in the host diamond lattice. E-type sulphide inclusions have radiogenic Os isotopic compositions, 187Os/188Os 0.346 to 2.28, and Re–Os model ages from 1.1 to 2.9 Ga. They define an array on a Re–Os isochron diagram that may be interpreted as defining a single period of E-type sulphide growth at 1.05±0.12 Ga, with an elevated initial 187Os/188Os. Alternatively, two episodes of sulphide crystallisation, from a chondritic reservoir, may be invoked in the Archaean and in the Proterozoic. The results for both P- and E-type diamonds point to a spectrum of diamond crystallisation ages. High contents of both Re and Os, and the similarity of Re/Os ratios of sulphide inclusions in diamonds to whole rock eclogite and peridotite xenoliths indicate that small amounts of sulphides can dominate the mantle budget of both these elements during melting. Recent addition to the lithospheric mantle of high-Os material similar to that from which the P-type sulphides crystallised may explain the variable, sometimes young Os model ages seen in whole rock xenolith Re–Os data.  相似文献   

3.
Sub-micrometer inclusions in diamonds carry high-density fluids (HDF) from which the host diamonds have precipitated. The chemistry of these fluids is our best opportunity of characterizing the diamond-forming environment. The trace element patterns of diamond fluids vary within a limited range and are similar to those of carbonatitic/kimberlitic melts that originate from beneath the lithospheric mantle. A convecting mantle origin for the fluid is also implied by C isotopic compositions and by a preliminary Sr isotopic study (Akagi, T., Masuda, A., 1988. Isotopic and elemental evidence for a relationship between kimberlite and Zaire cubic diamonds. Nature 336, 665–667.). Nevertheless, the major element chemistry of HDFs is very different from that of kimberlites and carbonatites, varying widely and being characterized by extreme K enrichment (up to ~ 39 wt.% on a water and carbonate free basis) and high volatile contents. The broad spectrum of major element compositions in diamond-forming fluids has been related to fluid–rock interaction and to immiscibility processes.Elemental signatures can be easily modified by a variety of mantle processes whereas radiogenic isotopes give a clear fingerprint of the time-integrated evolution of the fluid source region. Here we present the results of the first multi radiogenic-isotope (Sr, Nd, Pb) and trace element study on fluid-rich diamonds, implemented using a newly developed off-line laser sampling technique. The data are combined with N and C isotope analysis of the diamond matrix to better understand the possible sources of fluid involved in the formation of these diamonds. Sr isotope ratios vary significantly within single diamonds. The highly varied but unsupported Sr isotope ratios cannot be explained by immiscibility processes or fluid-mineral elemental fractionations occurring at the time of diamond growth. Our results demonstrate the clear involvement of a mixed fluid, with one component originating from ancient incompatible element-enriched parts of the lithospheric mantle while the trigger for releasing this fluid source was probably carbonatitic/kimberlitic melts derived from greater depths. We suggest that phlogopite mica was an integral part of the enriched lithospheric fluid source and that breakdown of this mica releases K and radiogenic Sr into a fluid phase. The resulting fluids operate as a major metasomatic agent in the sub-continental lithospheric mantle as reflected by the isotopic composition and trace element patterns of G10 garnets.  相似文献   

4.
We report new Nd, Hf, Sr, and high-precision Pb isotopic data for 44 lava and tephra samples from Erebus volcano. The samples cover the entire compositional range from basanite to phonolite and trachyte, and represent all three phases of the volcanic evolution from 1.3 Ma to the present. Isotopic analyses of 7 samples from Mt. Morning and the Dry Valley Drilling Project (DVDP) are given for comparison. The Erebus volcano samples have radiogenic 206Pb/204Pb, unradiogenic 87Sr/86Sr, and intermediate 143Nd/144Nd and 176Hf/177Hf, and lie along a mixing trajectory between the two end-member mantle components DMM and HIMU. The Erebus time series data show a marked distinction between the early-phase basanites and phonotephrites, whose Nd, Hf, Sr, and Pb isotope compositions are variable (particularly Pb), and the current ‘phase-three’ evolved phonolitic lavas and bombs, whose Nd, Hf, Sr, and Pb isotope compositions are essentially invariant. Magma mixing is inferred to play a fundamental role in establishing the isotopic and compositional uniformity in the evolved phase-three phonolites. In-situ analyses of Pb isotopes in melt inclusions hosted in an anorthoclase crystal from a 1984 Erebus phonolite bomb and in an olivine from a DVDP basanite are uniform and identical to the host lavas within analytical uncertainties. We suggest that, in both cases, the magma was well mixed at the time melt inclusions were incorporated into the different mineral phases.  相似文献   

5.
The isotopic compositions of Sr, Nd and Pb together with the abundances of Rb, Sr, U and Pb have been determined for mafic and felsic potassic alkaline rocks from the young Virunga volcanic field in the western branch of the East African rift system.87Sr/86Sr varies from 0.7055 to 0.7082 in the mafic rocks and from 0.7073 to 0.7103 in the felsic rocks. The latter all come from one volcano, Sabinyo. Sabinyo rocks have negative εNdvalues ofεNd = ?10. Nd and Sr isotopic variations in the basic potassic rocks are correlated and plot between Sabinyo and previously reported [1] compositions (εNd = +2.5;87Sr/86Sr≈ 0.7047) for Nyiragongo nephelinites. The Pb isotopic compositions for Sabinyo rocks are nearly uniform and average206Pb/204Pb≈ 19.4,207Pb/204Pb= 15.79–15.84,208Pb/204Pb≈ 41.2. The basic potassic rocks have similar206Pb/204Pb values but range in207Pb/204Pb and208Pb/204Pb from the Sabinyo values to less radiogenic compositions.Excellent correlations of87Sr/86Sr with Rb/Sr, 1/Sr and207Pb/206Pb for Sabinyo rocks suggest these to be members of a hybrid magma series. However, the nearly uniform Pb compositions for this series points to radiogenic growth of87Sr in the magma source region following an event which homogenized the isotopic compositions but not Rb/Sr. The Rb-Sr age derived from the erupted Sabinyo isochron-mixing line is consistent with the ~500 Myr Pb-Pb age from Nyiragongo [1], which suggests that this event affected all Virunga magma sources. The event can again be traced in the Pb-Pb, Pb-Sr and Nd-Sr isotopic correlations for all Virunga rocks, including Nyiragongo, when allowances are made for radiogenic growth subsequent to this mixing or incomplete homogenization event. Inferred parent/daughter element fractionations point to a metasomatic event during which a mantle fluid invaded two lithospheric reservoirs: a +εNd reservoir sampled by the Nyiragongo nephelinites and suggested to be the subcontinental mantle and a ?εNd reservoir sampled by the mafic and felsic potasssic volcanism. Whether this ?εNd reservoir is the crust, continental crustal material in the mantle or anomalous mantle cannot be decided from the data. The simplest answer, that this reservoir is the continental crust, seems to be at variance with experimental evidence suggesting a subcrustal origin for basic potassic magmas. Partial melting of the ancient metasomatised lithospheric domains and ensuing volcanism seems to be entirely a response to decompression and rising geotherms during rifting and thinning of the lithosphere.  相似文献   

6.
Trace elements and isotopic compositions of whole rocks and mineral separates are reported for 15 spinel-bearing harzburgite and lherzolite xenoliths from southeastern Australia. These samples have an exceedingly large range in isotopic compositions, with87Sr/86Sr ranging from 0.70248 to 0.70834 and εNd values ranging from +12.7 to −6.3. This range in isotopic compositions can be found in xenoliths from a single locality. The isotopic compositions of clinopyroxene separates and their whole rocks were found to be different in some xenoliths. Samples containing small glass pockets, which replace pre-existing hydrous minerals, generally show only small differences in isotopic composition between clinopyroxene and whole rock. In a modally metasomatized peridotite, significant differences in the Sr and Nd isotopic compositions of a coexisting phlogopite-clinopyroxene pair are present. Coexisting clinopyroxenes and orthopyroxenes from an anhydrous lherzolite have Sr isotopic compositions that are significantly different (0.70248 versus 0.70314), and yield an apparent age of 625 Ma, similar to that found previously by Dasch and Green [1]. However, the Nd isotopic compositions of the clinopyroxene and orthopyroxene are identical indicating recent (within 40 Ma) re-equilibration of Nd.Sr and Nd concentrations in the whole rocks and clinopyroxenes show an excellent positive correlation, and have an average Sr/Nd ratio of 15. This ratio is similar to the primitive mantle value, as well as that found in primitive MORBs and OIBs, but is much lower than that measured in island arc basalts and what might be predicted for a subduction zone-derived fluid. This indicates that a significant proportion of the Sr and Nd in these peridotites is introduced as a basaltic melt with intraplate chemical characteristics.The isotopic compositions of the peridotites reflect long-term, small-scale heterogeneities in the continental lithospheric mantle, and are in marked contrast to the near uniform isotopic compositions of the host alkali basalts (87Sr/86Sr= 0.7038–0.7041andεNd = +3.6 to +2.9). A minimum of three evolutionary stages are identified in the growth of the continental lithospheric mantle: an early basalt depletion event, recording the initial development and stabilization of the lithospheric mantle, followed by at least two enrichment episodes. These observations are consistent with continental lithospheric mantle growth involving the underplating of refractory peridotite diapirs.  相似文献   

7.
We report Sr, Nd and Pb isotope ratios and parent and daughter element concentrations in 34 volcanic rocks from Samoa. The highly undersaturated post-erosional volcanics, which have erupted in Recent to Historic time along a 250-km-long fissure, have isotopic compositions that define fields distinct from those of the tholeiitic to alkalic lavas of the older Samoan shield volcanoes. Most shield lavas have206Pb/204Pb of 18.9–19.4,87Sr/86Sr of 0.7045–0.7055 and87Sr/86Sr (to 0.7075). In general, isotopic compositions of the shield lavas are similar to those of the Marquesas and Society Islands. Post-erosional samples have lower206Pb/204Pb and143Nd/144Nd and higher87Sr/86Sr than most shield lavas. The most striking feature of the post-erosional data is a negative correlation between207Pb/204Pb and206Pb/204Pb. This suggests that post-erosional lavas are derived from mixtures of the shield source and a high-207Pb/204Pb,87Sr/86Sr, low-206Pb/204Pb and143Nd/144Nd post-erosional source which may contain recycled ancient sediment. This enriched mantle domain may also underlie the Ontong-Java and Manihiki Plateaus to the north and west. Although both the Samoan shield and post-erosional lavas show chemical characteristics often associated with mantle plumes, only the shield volcanism can plausibly be related to a plume. The post-erosional eruptions appear to be the result of flexure and rifting due to plate bending at the northern termination of the Tonga Trench.  相似文献   

8.
Two discordant dunite channels in a polished slab were collected from a harzburgite layer in the Horoman orogenic lherzolite massif, Hokkaido, Japan. The dunite channels show extreme grain‐size variations, and include very large olivine megacrysts up to 1.6 m long. Spinel‐rich pyroxenite veins or veinlets occasionally cross‐cut the olivine megacrysts. Mineral compositions differ between channels, and the mineral compositions and textures of the dunite channels and the host harzburgite suggest a replacive origin for the dunites. The Sr and Nd isotopic ratios of clinopyroxene separates from the pyroxenite veins in two dunite channels are different, but these ratios are generally similar to those of mid‐ocean ridge basalts. Assuming the channels formed by the through‐flow of melts, then the trace element compositions of the melts estimated from the clinopyroxenes are broadly similar. The melts have similar features such as enriched in incompatible elements and depleted in heavy rare earth elements, but there are differences in the depletions in Ti and Ba, indicating melts that were different but of similar origins. A Rb–Sr crystallization age (~ 52 Ma) was obtained for clinopyroxene–orthopyroxene pairs in a dunite channel and its host harzburgite. The distinctive dunite channels with megacrysts formed as a result of the through‐flow of mafic magma(s), and those magmas had trace and minor element contents that are indicative of contributions of a melt derived from subducted oceanic lithosphere.  相似文献   

9.
Three fresh kimberlites are shown to have87/Sr86Sr ratios of 0.704; altered kimberlites yield87/Sr86Sr ratios of 0.707 and 0.708. All kimberlites previously analysed for Sr isotopes may in fact have been altered.  相似文献   

10.
Nd and Sr isotopic data on pargasite Iherzolite inclusions, kaersutite megacrysts and their host alkali basalts are presented here to clarify some questions regarding isotopic equilibration during mantle metasomatism and the role of metasomatism in basalt genesis. Five alkali basalts from Nunivak Island within the Aleutian back-arc basin, have87Sr/86Sr ratios of 0.70251–0.70330 and143Nd/144Nd ratios of 0.51289–0.51304. On a Nd versus Sr isotope composition diagram the basalts overlap the fields of MORB and ocean island basalts. Pargasites and mica separated from hydrous nodules found in these basalts have a range in87Sr/86Sr of 0.70256–0.70337 but identical143Nd/144Nd ratios of 0.51302. The metasomatic fluid represented by the pargasite is in isotopic equilibrium, both for Sr and Nd, with the dry mantle as represented by diopside. Eight alkali basalts from the Ataq diatreme, South Yemen, have87Sr/86Sr range of 0.70335–0.70426 and143Nd/144Nd range of 0.51252–0.51305. On a Nd versus Sr isotope composition diagram the basalts from Ataq plot in two distinct fields, (1) within the field of ocean island basalts, and (2) within the range of continental rift basalts but to the left of the Nd-Sr correlation line, somewhat similar to the Skye and Oslo rift basalts. Diopside and pargasite separated from three nodules at Ataq have a more complex history than those at Nunivak. Two nodules contain pargasite and diopside with identical87Sr/86Sr ratios but different143Nd/144Nd ratios. A third nodule contains diopside with a143Nd/144Nd ratio similar to that of other diopsides.The Nunivak basalts are derived from a source with a time-integrated light-REE depletion, in contrast to the light-REE-enriched nature of the basanites. This is best explained by a recent metasomatic event in the source region which increased the LIL element content of the peridotite thus accommodating higher degrees of melting. The Ataq volcanic rocks seem to tap different sources characterized by both light-REE enrichment and depletion, in contrast to the uniform source of the Nunivak basanites. Production of the Ataq basanites is believed to involve anataxis of metasomatically veined continental mantle where local mantle heterogeneities survived the melting event.  相似文献   

11.
Pb, Nd and Sr isotope compositions of oceanic basalts have been used to identify recycled components of continent derivation in the mantle. The isotopic compositions of Sr, Nd and Pb, together with U, Pb, Sm, Nd, Rb, and Sr abundances have been determined for back-arc basalt glasses from the Scotia Sea and Parece Vela and West Philippine Basins, in addition to basalts from South Sandwich Islands, Ascension, St. Helena and Tristan da Cunha. Comparisons made between the isotopic compositions of South Sandwich Islands basalts and Atlantic MORB glasses permit the identification of recycled components of continent derivation in the source of the island arc basalts. Recycled Sr of continent derivation is also recognisable in back-arc basalt glasses from the Scotia Sea and Parece Vela and West Philippine Basins. However, contemporary reinjection of material with the isotopic structures similar to those identified as a component of island arc and back-arc regions cannot be the sole or dominant influence on the fine structure observed in MORB glasses from the Atlantic Ocean, nor the isotopic compositions of Tristan da Cunha, St. Helena and Ascension basalts. Recycled materials are likely to have been responsible for the generation of these heterogeneities only if they have been stored in the mantle for periods of time exceeding 109 years.  相似文献   

12.
The nature and restricted range of Dupal-type Sr, Nd and Pb isotopic compositions of Cretaceous kimberlites, tuffaceous diatremes of kamafugitic affinity and carbonatite complexes which intrude the southwestern São Francisco craton margin in Brazil, indicate that these magmas either interacted extensively with, or were derived from, a light rare earth element (LREE) enriched homogeneous lithospheric mantle source isotopically similar to the “enriched mantle I” (EMI) component. The shallow-derived alkalic rocks contain a greater proportion of this EMI-like component, whereas the lower time-averaged Rb/Sr, Nd/Sm and Pb/U ratios of the kimberlites compared to the other rock types suggest mixing of the EMI-like mantle material with variable amounts of mantle with a high 238U/204Pb (HIMU-like) component. Systematic variations in rock types and geochemistry on a regional scale are believed to be indicative of vertical geochemical heterogeneities which are translated into lateral heterogeneities by different depths of melting. It is proposed that HIMU- and EMI-like signatures in particular, are concentrated in laterally extensive but vertically distinctive portions of the mantle beneath the São Francisco craton. The EMI-type signatures appear to be restricted to shallow-derived volcanism, whereas the HIMU-type signatures may originate from a source that started melting deeper in the mantle. The Nd signatures of the EMI-type volcanics follow the evolution path defined by the NeoProterozoic crustal sequences which overlie and flank the craton margin. This suggests that the source of the EMI-type mantle signatures might be related to the tectono-thermal processes which led to the formation and evolution of such crustal sequences. The isotopic similarity of the sources of the studied rocks and of the high-Ti basalts of the northern Paraná basin to those of some Ocean Island Basalts with Dupal signatures in the South Atlantic (viz. in Walvis Ridge) is ascribed to processes by which continental lithosphere became firstly delaminated, and then contaminated a zone of South Atlantic asthenosphere from which hotspot islands have been erupting.  相似文献   

13.
Constituent minerals from three alpine lherzolites (Beni Bouchera, Morocco; Lanzo, Italy; and Ronda, Spain) and a clinopyroxene from the Othris complex, Greece, reveal the following range in Sr isotopic composition: clinopyroxenes, 0.70228–0.70370; orthopyroxenes, 0.70265–0.70429; and olivines, 0.70290–0.70831. Collectively the data: (1) indicate that whole-rock lherzolites (weighted recalculations of 87Sr/86Sr= 0.7025–0.7028) have isotopic compositions which attest to a simple mantle origin and not the complex models proposed to date; (2) are incompatible with the published range for alpine peridotites 0.7063–0.7290; (3) reveal either similar or different isotopic compositions for coexisting minerals, the latter possibly being the result of Rb mobility and introduction of radiogenic Sr into the peridotite system; and (4) indicate the past existence of liquids with “alkalic” affinities within the lherzolite framework. The lherzolites are therefore believed to be residual, having experienced a small degree of partial melting.  相似文献   

14.
The magmatic system feeding the last eruption of the volcano La Fossa, Vulcano Island, Italy was studied. The petrogenetic mechanisms controlling the differentiation of erupted rocks were investigated through petrography, mineral chemistry, major, trace and rare earth element and Sr, Nd and Pb isotopic geochemistry. In addition, melt inclusion and fluid inclusion data were collected on both juvenile material and xenolithic partially melted metamorphic clasts to quantify the P-T conditions of the magma chamber feeding the eruption. A regular and continuous chemical zoning has been highlighted: rhyolites are the first erupted products, followed by trachytes and latites, whereas rhyolitic compositions were also found in the upper part of the sequence. The chemical and isotopic composition of the rhyolites indicates that they originated by fractional crystallization from latitic magmas plus the assimilation of crustal material; the trachytes represent hybrid magmas resulting from the mixing of latites and rhyolites, contaminated in the shallow magmatic system. The erupted products, primarily compositionally zoned from latites to rhyolites, are heterogeneous due to syn-eruptive mingling. The occurrence of magmacrust interaction processes, evidenced by isotopic variations (87Sr/86Sr=0.70474±3 to 0.70511±3; 143Nd/144Nd=0.512550±6 to 0.512614±8; 206Pb/204Pb=19.318–19.489; 207Pb/204Pb=15.642–15.782; 208Pb/204Pb=39.175–39.613), is confirmed by the presence of partially melted metamorphic xenoliths, with 87Sr/86Sr=0.71633±6 to 0.72505±2 and 143Nd/144Nd=0.51229±7, in rhyolites and trachytes. AFC calculations indicate a few percentage contribution of crustal material to the differentiating magmas. Thermometric measurements on melt inclusions indicate that the crystallization temperatures of the latites and trachytes were in the range of 1050–1100° C, whereas the temperature of the rhyolites appears to have been around 1000°C at the time of the eruption. Compositional data on melt inclusions reveal that the magmas involved in the eruption contained about 1–1.5 wt.% dissolved H2O in pre-eruptive conditions. Secondary fluid inclusions found in metamorphic xenoliths give low equilibration pressure data (30–60 MPa), giving the location of the higher portions of the chamber at around 1500–2000 m of depth.  相似文献   

15.
Late Miocene (7–9 Ma) basaltic rocks from the Monbetsu‐Kamishihoro graben in northeast Hokkaido have chemical affinities to certain back‐arc basin basalts (referred to herein as Hokkaido BABB). Pb‐, Nd‐ and Sr‐isotopic compositions of the Hokkaido BABB and arc‐type volcanic rocks (11–13 Ma and 4–4.5 Ma) from the nearby region indicate mixing between the depleted mantle and an EM II‐like enriched component (e.g. subducted pelagic sediment) in the magma generation. At a given 87Sr/86Sr, Hokkaido BABB have slightly lower 143Nd/144Nd and slightly less radiogenic 206Pb/204Pb compared with associated arc‐type lavas, but both these suites are difficult to distinguish solely on the basis of isotopic compositions. These isotopic data indicate that while generation of the Hokkaido BABB involves smaller amounts of the EM II‐like enriched component than do associated arc lavas, Hokkaido BABB are isotopically distinct from basalts produced at normal back‐arc basin spreading centers. Instead, northeast Hokkaido BABB are more similar to basalts erupted during the initial rifting stage of back‐arc basins. The Monbetsu‐Kamishihoro graben may have developed in association with extension that formed the Kurile Basin, suggesting that opening of the basin continued until late Miocene (7–9 Ma).  相似文献   

16.
Subsurface carbonatite at Elk Creek, Nebraska has been recognized in drill core taken from a depth interval of 630 to at least 950 ft. The core in this interval consists of carbonated breccia and phlogopite-bearing carbonate rock. Total REE, P2O5 and Nb2O5 data are consistent with “average” values for carbonatite.87Sr/86Sr ratios from the carbonate fraction range from 0.7030 to 0.7055 for fifteen of eighteen samples (total Sr varies from 300 to 3500 ppm;X= 1800ppm); the remaining three samples have87Sr/86Sr and total Sr values of 0.7085 : 40 ppm; 0.7064 : 92 ppm; 0.7067 : 252 ppm; these samples may be mixed with sedimentary carbonate and/or contaminated by other non-carbonatite material.The Elk Creek carbonatite is of special interest because of its position with respect to tectonic elements in basement rocks. It occurs in the center of gravity and magnetic anomalies over the approximate axis of the Nemaha anticline and is apparently aligned with the Riley County, Kansas, carbonatite-bearing kimberlites. It is far removed from the E-W-trending “38th parallel” lineament along which occur numerous kimberlites and carbonatites.  相似文献   

17.
Two groups of rhyolites have been recognized at San Vincenzo (Tuscany, Italy). Group A rhyolites are characterized by plagioclase, quartz, biotite, sanidine and cordierite mineral assemblages. They show constant MgO and variable CaO and Na2O contents. Initial87Sr/86Sr ratios in group A samples range between 0.71950 and 0.72535, whereas the Nd isotopic compositions are relatively constant (0.51215–0.51222). Group B rhyolites are characterized by orthopyroxene and clinopyroxene as additional minerals, and show textural, mineralogical and chemical evidence of interaction with more mafic magmas. The Sr and Nd isotopic ratios range between 0.71283–0.71542 and 0.51224–0.51227 respectively. Magmatic inclusions of variable size (1 mm to 10 cm) were found in groups B rhyolites. These inclusions consist mainly of diopsidic clinopyroxene and minor olivine and biotite. They are latitic in composition and represent blobs of hybrid intermediate magmas entrained in the rhyolitic melts. These magmatic inclusions have relatively high Sr contents (996–1529 ppm) and Sr and Nd isotope-ratios of 0.70807–0.70830 and 0.51245–0.51252 respectively.87Sr/87Sr data on minerals separated from both group A and B rhyolites and magmatic inclusions reveal strong isotopic disequilibria due to the presence of both restitic and newly crystallized phases in group A rhyolites and due to interaction of rhyolites with a mantle-de-rived magma in group B rhyolites. Isotopic data on whole rocks and minerals allow us to interpret the group A rhyolites as representative of different degrees of melting of an isotopically fairly homogeneous pelitic source; conversely, group B rhyolites underwent interactions with a mantle-derived magma. The crustal source as inferred from isotopic systematics would be characterized by87Sr/86Sr and143Nd/144Nd ratios close to 0.7194 and 0.51216 respectively. The sub-crustal magma would have Sr isotopic composition close to 0.7077 and a143Nd/144Nd ratio greater than or equal to 0.51252. These isotopic features are different from those reported for the parental magmas postulated for Vulsini and Alban Hills in the nearby Roman Magmatic Province, and are similar to those of the Vesuvius and Ischia magmas.  相似文献   

18.
Surface dissolution features on diamonds and Fourier Transform Infra Red spectroscopy (FTIR) of phenocrystal and xenocrystal olivines from kimberlites contain a record of magmatic fluid in kimberlite magmas. We investigated composition and behavior of kimberlitic fluid and the effect of volatiles on the eruption style and geology of kimberlites using microdiamonds and olivine concentrates from six kimberlite pipes with different lithologies and the character of diamond resorption (Ekati Diamond Mine, Northwest Territories, Canada). The study showed a clear correlation between the resorption style of diamond population of the kimberlites and the type of infrared (IR) spectra of their olivines. Four kimberlites have high quality diamonds with smooth regular surface features and high H2O content of the olivines indicating the presence of H2O-rich fluid during the emplacement. Fast ascent rates of fluid-rich magma can explain explosive eruption and filling the pipes with volcaniclastic kimberlite facies. Conversely, Grizzly and Leslie kimberlites have diamonds with complex sharp features diminishing diamond quality and indicating loss of the fluid. The slower ascent rates and less explosive eruption of the fluid-free magmas produced kimberlite pipes filled with magmatic facies kimberlite. Distinctive peaks in olivine IR spectra at 3356 and 3327 cm? 1 were found to correlate with the presence of hydrous magmatic fluid. Character of diamond morphology suggests that during the whole ascent of all six kimberlites, the magmatic fluid when present had a high H2O:CO2 ratio.  相似文献   

19.
Pb and Sr isotopic ratios have been determined for tholeiitic shield-building, alkalic cap, and post-erosional stage lavas from Haleakala Crater. Pb isotopic compositions of the tholeiites overlap those of the alkalic cap lavas, although87Sr/86Sr ratios of these two suites are distinct. Alkalic cap and post-erosional lavas appear to be indistinguishable on the basis of Sr and Pb isotopic composition.Sr and Pb isotopic ratios of Haleakala post-shield-building lavas are positively correlated. Such a trend is previously undocumented for any suite of Hawaiian lavas and contrasts with the general negative correlation observed for data from Hawaiian tholeiites. These relations are consistent with a three-component petrogenetic mixing model. Specifically, it is proposed that magma batches at individual Hawaiian volcanoes formed by: (1) mixing of melts generated from mantle plumes containing two isotopically distinct mantle components (primitive vs. enriched), and (2) subsequent variable degrees of interaction between these plume melts and a third (MORB signature) mantle reservoir prior to their emplacement in a crustal magma chamber. These observations and inferences provide new constraints on physical models of Hawaiian magmatism. Based on observed temporal isotopic variations of Haleakala lavas, it is suggested that the ratio of enriched: primitive mantle components in the Hawaiian plume source decreases during the waning stages of alkalic volcanism. Over the same time interval, both decreasing melt production and protracted residence of ascending melts within the upper mantle contribute to a systematic increase in the ratio of depleted vs. plume component.  相似文献   

20.
This paper reports geochemical and Pb-Sr-Nd isotopic compositions of the Indosinian Yangba (215 Ma),Nanyili (225 Ma) and Mopi granitoids from the Bikou block of the northwestern margin of the Yangtze plate. These granitoids are enriched in Al (Al2O3:14.56%―16.48%) and Sr (352 μg/g―1047 μg/g),and depleted in Y (<16 μg/g) and HREE (e.g. Yb<1.61 μg/g),resulting in high Sr/Y (36.3―150) and (La/Yb)N (7.8―36.3) ratios and strongly fractionationed REE patterns. The Indosinian granotoids show initial Sr isotopic ratios (ISr) from 0.70419 to 70752,εNd(t) values from-3.1 to -8.5,and initial Pb isotopic ratios 206Pb/204Pb=17.891-18.250,207Pb/204Pb=15.494-15.575,and 208Pb/204Pb=37.788-38.335. Their geochemi-cal signatures indicate that the granitoids are adakitic. However,they are distinct from some adakites,generated by partial melting of subducted oceanic slab and/or underplated basaltic lower crust,be-cause they have high K (K2O: 1.49%―3.84%) and evolved Nd isotopic compositions,with older Nd iso-topic model ages (TDM=1.06―1.83 Ga). Geochemical and Sr-Nd isotopic compositions suggest that the magmas of the Insoninian adakitic rocks in the Bikou block were derived from partial melting of thick-ened basaltic lower crust. Combined with regional analyses,a lithospheric delamination model after collision between the North China and South China plates can account for the Indosinian adakitic magma generation. On the other hand,based on the Pb-Sr-Nd isotopic probing to the magma sources of the adakitic rocks,it is suggested that there is an unexposed continent-type basement under the exposed Bikou Group volcanic rocks. This can constrain on the Bikou Group volcanic rocks not to be MORB-or OIB-type.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号