首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
In this paper we present petrographic and geochemical data of sulfate mineral deposits in northeast Nakhon Sawan, central Thailand, and provide new constraints on their age. The deposits are made up mainly of strongly deformed nodular and massive gypsum in the upper part, and less deformed layered anhydrite in the lower part. They are intruded by andesitic dikes that contain Middle Triassic zircons (ca 240 Ma). These dikes are probably part of the regional magmatic activity of the Sukhothai Arc during the Early to Middle Triassic. Sulfur (δ34S) and strontium (87Sr/86Sr) isotopic compositions of the sulfates range from 15.86 ‰ to 16.26 ‰ and from 0.70810 to 0.70817, respectively. Comparisons with the Phanerozoic seawater isotopic evolution curve indicate that those values are best explained by precipitation of the sulfates from Carboniferous seawater, in particular seawater of late Mississippian age (ca 326 Ma), and this would be consistent with previous studies of calcareous fossils in the limestones that crop out around this site. Our interpretation is that evaporitic gypsum was originally precipitated from hypersaline seawater on a shallow lagoon or shelf on the Khao Khwang Platform during the Serpukhovian, and that this gypsum changed to anhydrite during early burial. The anhydrite was then cut by andesitic dikes during the Middle Triassic, and more recently the upper part of which was rehydrated during exhumation to form secondary gypsum near the surface.  相似文献   

2.
Rocks of the Miocene Macquarie Island ophiolite, south of New Zealand, have oxygen and carbon isotopic compositions comparable to those of seafloor rocks. Basalt glass and weathered basalts have δ18O values at 5.8–6.0‰ and 7.9–9.5‰, respectively, similar to drilled seafloor rocks including samples from the Leg 29 DSDP holes near Macquarie Island. Compared to the basalt glass, the greenschist to amphibolite facies metaintrusives are depleted in18O (δ18O=3.2–5.9‰) similar to dredged seafloor samples, whereas the metabasalts are enriched (δ18O=7.1–9.7‰). Although the gabbros are only slightly altered in thin-section they have exchanged oxygen with a hydrothermal fluid to a depth of at least 4.5 km. There is an approximate balance between18O depletion and enrichment in the exposed ophiolite section. The carbon isotopic composition of calcite in the weathered basalts (δ13C=1.0–2.0‰) is similar to those of drilled basalts, but the metamorphosed rocks have low δ13C values (?14.6 to 0.9‰).These data are compatible with two seawater circulation regimes. In the upper regime, basalts were weathered by cold seawater in a circulation system with high water/rock ratios (?1.0). Based on calcite compositions weathering temperatures were less than 20°C and the carbon was derived from a predominantly inorganic marine source. As previously suggested for the Samail ophiolite, it is postulated that the lower hydrothermal regime consisted of two coupled parts. At the deeper levels, seawater circulating at low water/rock ratios (0.2–0.3) and high temperatures (300–600°C) gave rise to18O-depleted gabbro and sheeted dikes via open system exchange reactions. During reaction the seawater underwent a shift in oxygen isotopic composition (δ18O=1.0–5.0‰) and subsequently caused18O enrichment of the overlying metabasalts. In the shallower part of the hydrothermal regime the metabasalts were altered at relatively high water/rock ratios (1.0–10.0) and temperatures in the range 200–300°C. The relatively low water/rock ratios in the hydrothermal regime are supported by the low δ13C values of calcite, interpreted as evidence of juvenile carbon in contrast to the inorganic marine carbon found in the weathered basalts.  相似文献   

3.
El Misti is a 5822 m strato volcano in southern Peru. The mineralogy of the fumaroles is essentially sulfur, anhydrite, gypsum and ralstonite which are precipitated by acid vapors at 100°C–125°C. There are 2 to 6 parts per thousand chloride concentrations and several parts per million sodium, potassium, magnesium, calcium, iron and zinc concentrations in the condensed vapors. Elemental ratios indicate near complete leaching of the wall rock by the vapors. Arsenic and selenium are contaminants of the sulfur but are absent from the other minerals. Both the gypsum and anhydrite contain strontium and lead and show no tendency to fractionate these metals. The anhydrite alone contains significant thallium and bismuth. Bromine, strontium, thallium and lead are present in the ralstonite. The average δ D and δ O18 ratios from the fumarolic condensates are ?31.4 ‰ and +4.8 ‰ respectively. A marine contaminated heavy water source at depth is indicated as the parent water for the vapors.  相似文献   

4.
Study Area is located in the southwestern part of Bangalore South Taluk, Bangalore district, Karnataka state between 12°48??24.52?? to 12°53??59.85?? North latitude and 77°24??59.95?? to 77°30??6.72?? East Longitude. The major hydro-chemical facies that predominates in the study area is Ca2+-Mg2+-HCO 3 ? type during both pre- and post-monsoon seasons of the year 2007, could be as a result of dissolution of carbonate minerals like calcite and dolomite prevailing in the study area. However, cation-exchange processes could be responsible for the formation of the Ca2+-Mg2+-Cl?-SO 4 2? water type (??32%) from the CaSO4, MgCO3 and NaCl type that are formed due to the dissolution of anhydrite, gypsum, magnesite and halite. Besides, suitability of water for irrigation is evaluated based on sodium adsorption ratio, residual sodium carbonate, sodium percent, salinity hazard and USSL diagram. Hydrogeochemical speciation model calculations carried out using WATEQ4F program showed similar seasonal variation in the concentration of saturation indices of specific mineral phases, majority of the samples kinetically saturated with carbonate minerals (viz., aragonite, calcite and dolomite) indicating the influence of carbonate mineral phases on the chemistry of groundwater. On one hand, the samples were significantly oversaturated with Florapatite while on the other, they were undersaturated with respect to with anhydrite, gypsum and fluorite with halite being highly undersaturated. The Gibbs plots also gave an indication that there exists an interaction between rock and the percolating water into the subsurface by means of mineral dissolution. Factor analysis determined two factors mainly responsible for water quality during pre- and post-monsoon seasons, accounting to 52.84% and 51.09% of total variance respectively. Q-mode HCA Cluster analysis grouped the sampling stations into three clusters based on the similarity of water quality while R-mode HCA grouped analyzed parameters into two groups based on the effects of factors in the hydrochemistry.  相似文献   

5.
Abstract

The Complex Terminal (CT) and Plio-Quaternary (P-Q) aquifers in the Chott Gharsa plain in southwestern Tunisia have been investigated with the aid of chemical and isotopic tools. It has been demonstrated that groundwater from the CT is mainly of palaeo-origin, especially in the western and central parts of the plain where the most negative values of δ18O and δ2H were observed (between??8.1 and??7.6‰ for δ18O, and??60 to??57‰ for δ2H), combined with low concentrations of radiocarbon (6.8–7.5 pmc) and absence of tritium. Modern recharge of the aquifer occurs only in the eastern part of the system where younger waters were observed, as indicated by their stable isotope composition, relatively high radiocarbon content and presence of tritium. Groundwater from the P-Q multi-layer aquifer represents mixtures of ascending deep CT waters and modern water recharging the P-Q aquifer system. Isotope mass balance was used to quantify mixing proportions. The calculations showed that the contribution of deep CT groundwater to the P-Q aquifer system reaches about 75% in the western and central parts of the plain where the CT aquifer remains strongly artesian. This contribution decreases to about 15% towards the eastern part of the plain, as a consequence of significant reduction of artesian pressure in this area of the CT aquifer. Chemical data suggest that mineralization of the studied groundwater systems is controlled mainly by dissolution of evaporative minerals (halite, anhydrite and gypsum) and cation exchange reactions with the matrix, possibly enhanced by recent anthropogenic disturbance of the system caused by lowering of the water table due to heavy exploitation and return flow of saline irrigation water into the P-Q aquifer.

Editor D. Koutsoyiannis; Associate editor E. Custodio

Citation Yangui, H., Abidi, I., Zouari, K., and Rozanski, K., 2012. Deciphering groundwater flow between the Complex Terminal and Plio-Quaternary aquifers in Chott Gharsa plain (southwestern Tunisia) using isotopic and chemical tools. Hydrological Sciences Journal, 57 (5), 967–984.  相似文献   

6.
87Sr/86Sr ratios of three hydrothermal waters collected on the East Pacific Rise at 21°N define a mixing line between seawater and a hydrothermal end-member at 0.7030 which is derived by seawater-basalt interaction at ca. 350°C and water/rock ratio of about 1.5. Sr concentrations are not affected in the process while Mg uptake from seawater is almost complete. Up to2/3 of this hydrothermal component is involved in anhydrite precipitation while the Sr isotopic ratio in sulfides (chalcopyrite + sphalerite) cannot be distinguished from that of sulfate. It is estimated that ca. 1 × 1010 moles of strontium are yearly cycled in the hydrothermal systems of mid-oceanic ridges, thereby affecting the87Sr/86Sr budget of seawater. Mass balance between river runoff, limestone precipitation and ridge basalt alteration suggests that the87Sr/86Sr ratios of the river runoff are in the range 0.7097–0.7113, and are largely dominated by limestone alteration.  相似文献   

7.
Interiors of manganese nodules from siliceous ooze beneath the Pacific equatorial high-productivity region, when examined by scanning electron microscopy (SEM) and electron microprobe, display post-depositional recrystallization textures and metalliferous oxide bands (diameter 1–10 μm, 30–40 wt.% Mn, 4–5% Ni, 3–4% Cu). SEM has revealed biogenic siliceous matter in all stages of degradation and dissolution within nodule interiors, creating cavities and voids. Often these miniature vugs contain authigenic phillipsite crystallites which are coated with delicate clusters of crystalline Mn-Fe oxides (todorokite) containing significant amounts of Ni and Cu. We postulate the following diagenetic processes and mechanism of uptake of transition metals inside manganese nodules: (1) palagonite + biogenic silica + pelagic clay → phillipsite + montmorillonite; (2) biogenic matter + amorphous FeOOH or δ-MnO2 → Feaq2+ and/or MnIIMnIV oxide (todorokite); (3) aerated seawater or δ-MnO2 + Feaq2+ → FeOOH and/or todorokite (deposited on phillipsite); (4) (NiII and CuII) organic chelates (adsorbed on clays, etc.) + amorphous FeOOH or δ-MnO2 → Ni-Cu-todorokite + phillipsite, etc.This mechanism explains the well-known positive Mn-Ni-Cu and negative Fe-Ni, Fe-Cu correlations in nodules. By analogy with terrestrial todorokites, which require about 8 wt.% Mn to be in the divalent state to stabilize the crystal structure, as much as 8 wt.% (Ni + Cu) could be accommodated in todorokite-bearing deep-sea manganese nodules. However, although such nodules beneficiate Ni and Cu with respect to marine sediments and seawater, they remain undersaturated in these divalent cations.  相似文献   

8.
High‐salinity paleowater from low‐permeability aquitards in coastal areas can be a major threat to groundwater resources; however, such water has rarely been studied. The chemical and isotopic compositions of porewater extracted from a 200‐m‐thick Quaternary sedimentary sequence in the western coastal plain of Bohai Bay, China, were analyzed to investigate the salinity origin and chemical evolution of porewater in aquitards. Porewater samples derived at depths shallower than 32 m are characterized by Cl‐Na type saline water (total dissolved solids [TDS], 10.9–84.3 g/L), whereas those at depths greater than 32 m comprise Cl·SO4‐Na type brackish water (TDS, 2.2–6.3 g/L). Saline porewater is interpreted as evaporated seawater prior to halite saturation, as evidenced by Cl‐Br relationships. Although substantial dilution of saline porewater with meteoric water is supported by a wider Cl? range and δ2H‐δ18O covariance, the original marine waters were not completely flushed out. The deeper brackish porewater is determined to be a mixture of fresher porewater and brine groundwater and had a component of old brine of less than 10%, as indicated by a mixing model defined using δ2H and Cl? tracers. Porewater δ2H‐δ18O relationships and negative deuterium excess ranging from ?25.9‰ to ?2.9‰ indicate the existence of an arid climate since Late Pleistocene in Tianjin Plain. The aquitard porewaters were chemically modified through water‐rock interactions due to the long residence time.  相似文献   

9.
Clay mineral formation in DSDP Leg 34 basalt   总被引:1,自引:0,他引:1  
A blue-green smectite (iron-rich saponite) and green mica (celadonite) are the dominant sheet silicates in veins within the 10.5 m of basalt cored during DSDP Leg 34, Site 321, in the Nazca plate. Oxygen isotopic analyses of these clays, and associated calcite, indicate a formation temperature of≤25°C.Celadonite contains appreciable Fe2O3, K2O and SiO2, intermediate MgO, and very little Al2O3. Celadonite is commonly associated with goethite and hematite, which suggests that this phase formed by precipitation within a dominantlyoxygenated environment of components leached from basalt and provided by seawater. A mass balance estimate indicates that celadonite formation can remove no more than 15% of the K annually transported to the oceans by rivers. In contrast, iron-rich saponite containing significant Al2O3 appears to have precipitated from anon-oxidizing, distinctly alkaline fluid containing a high Na/K ratio relative to unmodified seawater.Seawater-basalt interaction at low temperatures, resulting in the formation of celadonite and smectite may explain chemical gradients observed in interstitial waters of sediments overlying basalts.  相似文献   

10.
The physico-chemical and hydrochemical characteristics of run-off of the Neglinka River Basin (northwest Russia) monitored for a year are different for the upstream and downstream sections. The river known hydrologically as the Neglinka, consists hydrochemically of two different streams: one represented by the upstream part of the basin, and the other one by the downstream. The upstream water is characterized by low mineralization (water hardness 0.08–0.43 mmol L?1) and low δ53Cr values (+0.30 to +0.42‰), whereas the lower part is characterized by high mineralization (water hardness 0.37–3.46 mmol L?1) and high δ53Cr values (+0.92 to +1.73‰). The difference in chemical composition of the upstream and downstream waters could be due to the underground discharge input. Aqueous chromium (Cr) mobilized from weathering profiles may have been reduced from soluble Cr(VI) to insoluble Cr(III) during the riverine transportation. Partial removal of Cr from the water balance resulted in a decrease in Cr concentration and an increase in δ53Cr values.  相似文献   

11.
Oxygen isotope exchange between anhydrite and water was studied from 100 to 550°C, using the partial equilibrium method. The exchange rate was extremely low in NaCl solution. In the lower-temperature range, acid solutions were used to produce sufficient reaction to determine the oxygen isotope fractionation factors. The fractionation factors obtained in the present study are definitely different from those given by Lloyd [8]. They are similar to those for the HSO4?-water system studied by Mizutani and Rafter [19], and are consistently 2‰ higher than those of the barite-water system by Kusakabe and Robinson [5]. The temperature dependence of the oxygen isotope fractionation factors was calculated by the least squares method in which the weight was taken to be inversely proportional to the experimental error. The fractionation is given by:103lnαanhydrite-water=3.21×(103/T)2?4.72Available δ18O values of natural anhydrite were used to test the validity of this expression. It is shown that this newly revised geothermometer can be successfully applied to natural hydrothermal anhydrite.  相似文献   

12.
Calculated univariant equilibria and oxygen isotope compositions of silicates and carbonates support the proposal that the “Mottled Zone Event” is a low-pressure (1–25 atm), high-temperature (200° < T < 1300°C) metamorphism of calcareous siliceous sediments in which the thermal energy is provided by combustion of organic matter. δ18O of silicates decreases systematically with increasing metamorphic grade from averages of 18.1‰ in protolith shales, to 16.6‰ in grossular-diopside-zeolite rocks, 15.6‰ in wollastonite and anorthite-diopside-gehlenite-grossular fels, 14.1‰ in spurrite-brownmillerite marbles and 11.7‰ in the highest-grade larnite-gehlenite-brownmillerite assemblages. Decarbonation is the principal mechanism influencing the oxygen isotope compositions. The progressive decrease of δ18O in silicates can be modelled as a Rayleigh distillation of CO2 approximately 16‰ enriched in 18O relative to whole rock assemblages i.e., of initial isotopic composition 8.5‰ heavier than the parent carbonates. The mineral assemblage of one sample with an unusual granoblastic texture is in apparent isotopic equilibrium at a temperature of 540°C.  相似文献   

13.
The Tieluping silver deposit, located in the NE-trending faults within the metamorphic basement of the Xiong'er Mountain, is a typical altered fracture type deposit. Its ore-forming process includes three stages with temperatures concentrated at 373°C, 223°C and 165°C respectively. With δD=90‰,\(\delta ^{13} C_{CO_2 } \)=2.0‰ and δ{si18}O=8094‰, the early stage fluid was generated from reworking and metamorphism of the carbonate rich formation; the late one, with δD=?70‰,\(\delta ^{13} C_{CO_2 } \)=-1.2‰, δ18O=1.89‰, was meteoric hydrothermal solution; and the middle. δD=?109‰,\(\delta ^{13} C_{CO_2 } \)=0.1‰, δ18O=1.79‰, might be a hybrid mixed by reworking-metamorphic fluid and meteoric hydrothermal solution. Crystallized rapidly in the condition of fluid-boiling and fluid-mixing, the middle stage minerals have far more fluid inclusions with higher content of ions, higher ratios of H2O/CO2 and KN/MC. Consequently, they have much more ore elements such as gold compared with those of the early and late stages. It was the northward intracontinental subduction along the Machaoying fault during the Mesozoic collision between the South China and North China paleocontinents that intrigued large-scale fluidization and magmatism and led to the appearance of more than 10 large and medium hydrothermal deposits, including the Tieluping silver deposit. The study on ore-forming fluidization of the Tieluping silver deposit proves the CPMF model.  相似文献   

14.
D/H fractionation factors between serpentine (clinochrysotile) and water were experimentally determined to be: 1000 In αser-w = 2.75 × 10 7/T2 ? 7.69 × 104/T + 40.8 in the temperature range from 100 to 500°C. The present results do not support the semi-empirical fractionation factors employed by Wenner and Taylor [1] for the interpretation of δD values of natural serpentines. About 100 serpentines from the Japanese Islands have δD values from ?110 to ?40‰ SMOW, with antigorite being from ?40 to ?60‰. The results are in accord with the two conclusions by Wenner and Taylor [1,2], that is, the presence of a latitude ?δD correlation and the more uniform and higher δD values of antigorite than chrysotile and lizardite.According to the present fractionation factors, almost none of the continental lizardite-chrysotile serpentines could have formed at a temperature below 500°C under equilibrium with fluids of δD values similar to the present-day local meteoric waters. The fluid responsible for oceanic serpentinization could be either a mixture of oceanic and magmatic water or oceanic water alone. However, full interpretation of the δD values of natural serpentines should wait until kinetic behaviors of hydrogen isotopes in serpentinization are better understood.  相似文献   

15.

The Tieluping silver deposit, located in the NE-trending faults within the metamorphic basement of the Xiong'er Mountain, is a typical altered fracture type deposit. Its ore-forming process includes three stages with temperatures concentrated at 373°C, 223°C and 165°C respectively. With δD=90‰,\(\delta ^{13} C_{CO_2 } \)=2.0‰ and δ{si18}O=8094‰, the early stage fluid was generated from reworking and metamorphism of the carbonate rich formation; the late one, with δD=−70‰,\(\delta ^{13} C_{CO_2 } \)=-1.2‰, δ18O=1.89‰, was meteoric hydrothermal solution; and the middle. δD=−109‰,\(\delta ^{13} C_{CO_2 } \)=0.1‰, δ18O=1.79‰, might be a hybrid mixed by reworking-metamorphic fluid and meteoric hydrothermal solution. Crystallized rapidly in the condition of fluid-boiling and fluid-mixing, the middle stage minerals have far more fluid inclusions with higher content of ions, higher ratios of H2O/CO2 and KN/MC. Consequently, they have much more ore elements such as gold compared with those of the early and late stages. It was the northward intracontinental subduction along the Machaoying fault during the Mesozoic collision between the South China and North China paleocontinents that intrigued large-scale fluidization and magmatism and led to the appearance of more than 10 large and medium hydrothermal deposits, including the Tieluping silver deposit. The study on ore-forming fluidization of the Tieluping silver deposit proves the CPMF model.

  相似文献   

16.
Flooding associated with tropical storms can cause extreme perturbations in riverine and coastal ecosystems. Measuring isotope variability of tropical storm events can help investigate the impacts of flooding. We measured the water isotope composition (δD and δ18O) of rain and associated floodwater collected during two storms and subsequent major and minor flooding events in the subtropical coast of eastern Australia. Compared with baseline regional rainfall isotope values of ?15.0 ± 1.9‰ for δD and ?3.3 ± 0.2‰ for δ18O, floodwater had lower values with ?33.8 ± 2.5‰ δD and ?5.1 ± 0.4‰ δ18O for the major flood and ?29.4 ± 1.0‰ δD and ?4.6 ± 0.1‰ δ18O for the minor flood. The low isotope composition of the floodwater was associated with the transport of large quantities of suspended sediments, with sediment loads 30 to 70 times larger than during base flow conditions. Floods carried up to 35% of the annual phosphorus and up to 208% of the currently calculated average annual nitrogen load of the Brisbane River. The dramatic changes caused by a rapid increase in discharge from 2 to 2015 m3 s?1 over 2 days in the major flood would have major consequences in riverine and coastal ecosystems of the region. These changes could potentially be traced using the isotope composition of the floodwaters. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

17.
δ18O values for 87 chert samples from the 3.4-b.y.-old Onverwacht Group, South Africa, range from +9.4 to +22.1‰. δ-values for cherts representing early silicified carbonates and evaporites, and possible primary precipitates range from +16 to +22‰ and are distinctly richer in18O than silicified volcaniclastic debris and cherts of problematical origin. The lower δ-values for the latter two chert types are caused by isotopic impurities such as sericite and feldspar, and/or late silicification at elevated temperature during burial. Cherts with δ-values below +16‰ are thus not likely to yield geochemical data relevant to earth surface conditions.Fine-grained chert is less than 0.7‰ depleted in18O relative to coexisting coarse drusy quartz. Because coarse quartz preserves its isotopic composition with time, the maximum amount of post-depositional lowering of the δ-values of cherts by long-term isotopic exchange with meteoric groundwaters does not exceed 0.7‰ in 3.4 b.y. In response to metamorphism the δ-values of Onverwacht cherts appear to remain unchanged or to have increased by as much as 4‰. Neither metamorphism nor long-term isotopic exchange with groundwaters can explain why Onverwacht cherts are depleted in18O relative to their Phanerozoic counterparts.Meteoric waters with a δ18O range of at least 3‰ appear to have been involved in Onverwacht chert diagenesis. δ-values for possible primary cherts or cherts representing silicified carbonates and evaporites are compatible with the depositional and diagenetic environments deduced from field and petrographic evidence. Onverwacht cherts appear to have formed with δ-values at least 8‰ lower than Phanerozoic cherts.The new Onverwacht data combined with all published oxygen isotope data for cherts suggest a secular trend similar to that initially suggested by Perry (1967) in which younger cherts are progressively enriched in18O. However, Precambrian cherts appear to be richer in18O than Perry's original samples and can be reasonably interpreted in terms of declining climatic temperatures from ~70°C at 3.4 b.y. to present-day values, as initially suggested by Knauth and Epstein (1976). This surface temperature history is compatible with existing geological, geochemical, and paleontological evidence.  相似文献   

18.
The chemical and isotopic compositions (δDH2O, δ18OH2O, δ18OCO2, δ13CCO2, δ34S, and He/N2 and He/Ar ratios) of fumarolic gases from Nisyros, Greece, indicate that both arc-type magmatic water and local seawater feed the hydrothermal system. Isotopic composition of the deep fluid is estimated to be +4.9±0.5‰ for δ18O and ?11±5‰ for δD corresponding to a magmatic water fraction of 0.7. Interpretation of the stable water isotopes was based on liquid–vapor separation conditions obtained through gas geothermometry. The H2–Ar, H2–N2, and H2–H2O geothermometers suggest reservoir temperatures of 345±15 °C, in agreement with temperatures measured in deep geothermal wells, whereas a vapor/liquid separation temperature of 260±30 °C is indicated by gas equilibria in the H2O–H2–CO2–CO–CH4 system. The largest magmatic inputs seem to occur below the Stephanos–Polybotes Micros crater, whereas the marginal fumarolic areas of Phlegeton–Polybotes Megalos craters receive a smaller contribution of magmatic gases.  相似文献   

19.
Graeme L. Scott 《Island Arc》2004,13(2):370-386
Abstract The influence of major active faults on rock alteration and stable isotope geochemistry is described for the Tongonan geothermal field, Leyte, the Philippines. In the Pliocene, acid alteration with characteristic iron enrichment (3 g/100 g) and calcium depletion (2 g/100 g) occurred along a Riedel shear fault in the Malitbog sector, and initial minor acid alteration also occurred along a similar shear in the Mahiao sector. Later, sodium metasomatism (5 g/100 g) coincided with the highest aquifer chloride (10 000 mg/kg) as a result of dissociation of saline magmatic fluids discharging through the reservoir rocks in the Upper Mahiao. The incursion of magmatic fluids (possibly δD 35‰, δ18O +7‰) set up a vigorous convection cell of meteoric water, which focused around low‐angle (L) shears centered in the Sambaloran sector. Meteoric water (δD ?35 to ?40‰, δ18O ?6 ± 1‰) depleted the reservoir in silica (6 g/100 g) and potassium (1–2 g/100 g). It also completely exchanged oxygen isotopes rapidly (within months) at high temperatures (300–400°C), and now does so continuously with fractured isotopically fresh or incompletely altered rock at small scales (centimeters or less) exposed by a 2 cm/year creep around the L shears to form a new component called geothermal water. Geothermal water mixes with meteoric water at lower temperatures (<300°C) to create the characteristic shift in δ18O of 6‰ at near constant δD (?35 ± 5‰). The 10‰ variation in δD is due to groundwater recharge derived from rain falling on steep terrain (5‰) and to enrichment of deuterium in boiling saline solutions (5‰); it is not due to two‐component mixing of meteoric with magmatic water. The low (~1) isotopic water/rock (W/R) ratios calculated from oxygen isotopes in previously published reports are meaningless, because the water contains four components (predominantly geothermal and meteoric water; <10% magmatic and rock water). W/R ratios of up to 1500 calculated from spring and rock chemistry are more realistic and, with a flow rate of approximately 50 L/s through a 30 km3 reservoir, can account for the estimated 3 My age of the system.  相似文献   

20.
The Flin Flon Belt of Canada contains Paleoproterozoic volcanic–sedimentary sequences that are related to the Trans‐Hudson Orogeny. The sequences include island arc volcanic and volcaniclastic rocks (Amisk Group) that are unconformably overlain by subaerial sedimentary rocks (Missi Group), and younger deep facies sediments. In the Flin Flon area, several north–south trending faults divide the sequences into blocks and obscure the depositional environment of the deep facies sediments. Locally, within the Flin Flon area, the Embury Lake Formation is in fault contact with island arc volcanic–sedimentary sequences of the Amisk and Missi Groups. To identify the depositional environment of the Embury Lake Formation, we used lithologic and geochemical approaches. Here, we report carbon isotopic values in organic matter (δ13Corg) and sulfur isotopes (δ34S), as well as total organic carbon and total sulfur measurements for the black shale in the formation. Samples were taken from a drill core that contains alternating bands of sandstone and black shale. Pyrite in the black shale is divided into four textural types: euhedral, vein‐type, elliptical, and microcrystalline. Microcrystalline pyrite is typically generated by microbially mediated sulfate reduction. An extremely low S/C ratio (avg. = 0.04) is consistent with lacustrine deposition. The ranges of δ13Corg (?36 ‰ to ?27 ‰) and δ34S (+3.0 ‰ to +7.7 ‰) values can be explained by bacterial photosynthesis that involved Calvin cycle and acetyl CoA pathways, and sulfate reduction in a low‐sulfate environment. Considering the depositional age reported in a previous study of < 1.84 Ga, the Embury Lake Formation was likely emplaced in a lacustrine setting during the Trans‐Hudson Orogeny.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号