首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Secondary calcite residing in open cavities in the unsaturated zone of Yucca Mountain has long been interpreted as the result of downward infiltration of meteoric water through open fractures. In order to obtain information on the isotopic composition (δD and δ18O) of the mineral-forming water we studied fluid inclusions from this calcite. Water was extracted from inclusions by heated crushing and the δD values were measured using a continuous-flow isotope-ratio mass spectrometry method. The δ18O values were calculated from the δ18O values of the host calcite assuming isotopic equilibrium at the temperature of formation determined by fluid-inclusion microthermometry.The δD values measured in all samples range between ? 110 and ? 90‰, similar to Holocene meteoric water. Coupled δ18O–δD values plot significantly, 2 to 8‰, to the right of the meteoric water line. Among the various processes operating at the topographic surface and/or in the unsaturated zone only two processes, evaporation and water–rock exchange, could alter the isotope composition of percolating water. Our analysis indicates, however, that none of these processes could produce the observed large positive δ18O-shifts. The latter require isotopic interaction between mineral-forming fluid and host rock at elevated temperature (>100 °C), which is only possible in the deep-seated hydrothermal environment. The stable isotope data are difficult to reconcile with a meteoric origin of the water from which the secondary minerals at Yucca Mountain precipitated; instead they point to the deep-seated provenance of the mineral-forming waters and their introduction into the unsaturated zone from below, i.e. a hypogene origin.  相似文献   

2.
D/H fractionation factors between serpentine (clinochrysotile) and water were experimentally determined to be: 1000 In αser-w = 2.75 × 10 7/T2 ? 7.69 × 104/T + 40.8 in the temperature range from 100 to 500°C. The present results do not support the semi-empirical fractionation factors employed by Wenner and Taylor [1] for the interpretation of δD values of natural serpentines. About 100 serpentines from the Japanese Islands have δD values from ?110 to ?40‰ SMOW, with antigorite being from ?40 to ?60‰. The results are in accord with the two conclusions by Wenner and Taylor [1,2], that is, the presence of a latitude ?δD correlation and the more uniform and higher δD values of antigorite than chrysotile and lizardite.According to the present fractionation factors, almost none of the continental lizardite-chrysotile serpentines could have formed at a temperature below 500°C under equilibrium with fluids of δD values similar to the present-day local meteoric waters. The fluid responsible for oceanic serpentinization could be either a mixture of oceanic and magmatic water or oceanic water alone. However, full interpretation of the δD values of natural serpentines should wait until kinetic behaviors of hydrogen isotopes in serpentinization are better understood.  相似文献   

3.
The chemical and isotopic compositions (δDH2O, δ18OH2O, δ18OCO2, δ13CCO2, δ34S, and He/N2 and He/Ar ratios) of fumarolic gases from Nisyros, Greece, indicate that both arc-type magmatic water and local seawater feed the hydrothermal system. Isotopic composition of the deep fluid is estimated to be +4.9±0.5‰ for δ18O and ?11±5‰ for δD corresponding to a magmatic water fraction of 0.7. Interpretation of the stable water isotopes was based on liquid–vapor separation conditions obtained through gas geothermometry. The H2–Ar, H2–N2, and H2–H2O geothermometers suggest reservoir temperatures of 345±15 °C, in agreement with temperatures measured in deep geothermal wells, whereas a vapor/liquid separation temperature of 260±30 °C is indicated by gas equilibria in the H2O–H2–CO2–CO–CH4 system. The largest magmatic inputs seem to occur below the Stephanos–Polybotes Micros crater, whereas the marginal fumarolic areas of Phlegeton–Polybotes Megalos craters receive a smaller contribution of magmatic gases.  相似文献   

4.
We characterize the precipitation and groundwater in a mountainous (peaks slightly above 3000 m a.s.l.), semi‐arid river basin in SE Spain in terms of the isotopes 18O and 2H. This basin, with an extension of about 7000 km2, is an ideal site for such a study because fronts from the Atlantic and the Mediterranean converge here. Much of the land is farmed and irrigated both by groundwater and runoff water collected in reservoirs. A total of approximately 100 water samples from precipitation and 300 from groundwater have been analysed. To sample precipitation we set up a network of 39 stations at different altitudes (800–1700 m a.s.l.), with which we were able to collect the rain and snowfall from 29 separate events between July 2005 and April 2007 and take monthly samples during the periods of maximum recharge of the aquifers. To characterize the groundwater we set up a control network of 43 points (23 springs and 20 wells) to sample every 3 months the main aquifers and both the thermal and non‐thermal groundwater. We also sampled two shallow‐water sites (a reservoir and a river). The isotope composition of the precipitation forms a local meteoric water line (LMWL) characterized by the equation δD = 7·72δ18O + 9·90, with mean values for δ18O and δD of − 10·28‰ and − 69·33‰, respectively, and 12·9‰ for the d‐excess value. To correlate the isotope composition of the rainfall water with groundwater we calculated the weighted local meteoric water line (WLMWL), characterized by the equation δD = 7·40δ18O + 7·24, which takes into account the quantity of water precipitated during each event. These values of (dδD/dδ18O)< 8 and d‐excess (δD–8δ18O)< 10 in each curve bear witness to the ‘amount effect’, an effect which is more manifest between May and September, when the ground temperature is higher. Other effects noted in the basin were those of altitude and the continental influence. The isotopic compositions of the groundwater are represented by the equation δD = 4·79δ18O − 18·64. The groundwater is richer in heavy isotopes than the rainfall, with mean values of − 8·48‰ for δ18O and − 59·27‰ for δD. The isotope enrichment processes detected include a higher rate of evaporation from detrital aquifers than from carbonate ones, the effects of recharging aquifers from irrigation return flow and/or from reservoirs' leakage and enrichment in δ18O from thermal water. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

5.

The Tieluping silver deposit, located in the NE-trending faults within the metamorphic basement of the Xiong'er Mountain, is a typical altered fracture type deposit. Its ore-forming process includes three stages with temperatures concentrated at 373°C, 223°C and 165°C respectively. With δD=90‰,\(\delta ^{13} C_{CO_2 } \)=2.0‰ and δ{si18}O=8094‰, the early stage fluid was generated from reworking and metamorphism of the carbonate rich formation; the late one, with δD=−70‰,\(\delta ^{13} C_{CO_2 } \)=-1.2‰, δ18O=1.89‰, was meteoric hydrothermal solution; and the middle. δD=−109‰,\(\delta ^{13} C_{CO_2 } \)=0.1‰, δ18O=1.79‰, might be a hybrid mixed by reworking-metamorphic fluid and meteoric hydrothermal solution. Crystallized rapidly in the condition of fluid-boiling and fluid-mixing, the middle stage minerals have far more fluid inclusions with higher content of ions, higher ratios of H2O/CO2 and KN/MC. Consequently, they have much more ore elements such as gold compared with those of the early and late stages. It was the northward intracontinental subduction along the Machaoying fault during the Mesozoic collision between the South China and North China paleocontinents that intrigued large-scale fluidization and magmatism and led to the appearance of more than 10 large and medium hydrothermal deposits, including the Tieluping silver deposit. The study on ore-forming fluidization of the Tieluping silver deposit proves the CPMF model.

  相似文献   

6.
Stable isotopic composition of precipitation as preserved in continental proxy climate archives (e.g., ice cores, lacustrine sediments, tree rings, groundwater, and organic matter) can sensitively record fluctuations in local meteorological variables. These are important natural climatic tracers to understand the atmospheric circulation patterns and hydrological cycle and to reconstruct past climate from archives. Precipitation was collected at Dokriani Glacier to understand the response of glaciers to climate change in the Garhwal Central Himalaya, Upper Ganga Basin. The local meteoric water line deviates from the global meteoric water line and is useful for the identification of moisture source in the region. The data suggest different clusters of isotopic signals, that is, summer (June–September) and winter (November–April); the mean values of δ18O, δD, and d ‰ during summer are ?13.03‰, ?84.49‰, and 19.78 ‰, respectively, whereas during winter, the mean values of δ18O, δD, and d ‰ are ?7.59‰, ?36.28‰, and 24.46 ‰, respectively. Backward wind trajectory analysis ascertains that the major source of precipitation during summer is from the Indian Summer Monsoon and during winter from the westerlies. Regression analysis has been carried out in order to establish interrelationship between the precipitation isotopic signatures and meteorological variables such as air temperature, relative humidity, and precipitation. Temperature and precipitation have good correlation with the isotopic signatures of precipitation with R2 values >.5, suggesting that both temperature and amount effects prevail in the study region. Multiple regression analysis found strong relationships for both the seasons. The relationship of deuterium excess with δ18O, relative humidity, and precipitation are significant for the winter season. No significant relationships of deuterium excess were found with other meteorological variables such as temperature and radiation. The correlation and regression analysis performed are significant and valuable for interpretation of processes in the hydrological cycle as well as for interpretation of palaeoclimate records from the region.  相似文献   

7.
The local meteoric water line (LMWL), the functional relationship between locally measured values of δ18O and δ2H in precipitation, represents the isotopic composition of water entering hydrologic systems. The degree to which the LMWL departs from the global meteoric water line (GMWL), moreover, can reveal important information about meteoric sources of water (e.g. oceanic or terrestrial) and atmospheric conditions during transport. Here we characterize the isotopic composition of precipitation within an experimental watershed in the Western US that is subject to large topographic and seasonal gradients in precipitation. Interpreting the hydrometeorologic and spatial controls on precipitation, we constructed a seasonally weighted LMWL for southwestern Idaho that is expressed by the equation δ2H = 7.40 × δ18O ? 2.17. A seasonally weighted LMWL that is based on weighting isotopic concentrations by climatic precipitation volumes is novel, and we argue better represents the significant seasonality of precipitation in the region. The developed LMWL is considerably influenced by the semiarid climate experienced in southwest Idaho, yielding a slope and y‐intercept lower than the GMWL (δ2H = 8 × δ18O + 10). Moderate to strong correlations exist between the isotopic composition of precipitation from individual events and surface meteorologic variables, specifically surface air temperature, relative humidity, and precipitation amount. A strong negative correlation exists between the annual average isotopic composition of precipitation and elevation at individual collection sites, with a lapse rate of ?0.22‰/100 m. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

8.
The primary δD values of the biotites and hornblendes in granitic batholiths are remarkably constant at about ?50 to ?85, identical to the values in regional metamorphic rocks, marine sediments and greenstones, and most weathering products in temperate climates. Therefore the primary water in these igneous rocks is probably not “juvenile”, but is ultimately derived by dehydration and/or partial melting of the lower crust or subducted lithosphere. Most granitic rocks have δ18O = +7.0 to +10.0, probably indicating significant involvement of high-18O metasedimentary or altered volcanic rocks in the melting process; such an origin is demanded for many other granodiorites and tonalites that have δ18O = +10 to +13. Gigantic meteoric-hydrothermal convective circulation systems were established in the epizonal portions of all batholiths, locally producing very low δ18O values (particularly in feldspars) during subsolidus exchange. Some granitic plutons in such environments also were emplaced as low-18O magmas probably formed by melting or assimilation of hydrothermally altered roof rocks. However, the water/rock ratios were typically low enough that over wide areas the only evidence for meteoric water exchange in the batholiths is given by low D/H ratios (δD as low as ?180); for example, because of latitudinal isotopic variations in meteoric waters, as one moves north through the Cordilleran batholiths of western North America an increasingly higher proportion of the granitic rocks have δD values lower than ?120. The lowering of δD values commonly correlates with re-setting of K-Ar ages, and in the Idaho batholith two broad zones (10,000 km2) can be defined where δD biotite <?100 and K-Ar “ages” have all been re-set to values less than 60 m.y., suggesting that the Ar loss was caused by the meteoric-hydrothermal circulation systems. In certain Precambrian batholiths, a much different type of very low-temperature, regional alteration by surface-derived waters took place over an extended period long after emplacement, producing “brick-red” feldspars and markedly discordant Rb-Sr isochron “ages”.  相似文献   

9.
Characterization of spatial and temporal variability of stable isotopes (δ18O and δ2H) of surface waters is essential to interpret hydrological processes and establish modern isotope–elevation gradients across mountainous terrains. Here, we present stable isotope data for river waters across Kyrgyzstan. River water isotopes exhibit substantial spatial heterogeneity among different watersheds in Kyrgyzstan. Higher river water isotope values were found mainly in the Issyk‐Kul Lake watershed, whereas waters in the Son‐Kul Lake watershed display lower values. Results show a close δ18O–δ2H relation between river water and the local meteoric water line, implying that river water experiences little evaporative enrichment. River water from the high‐elevation regions (e.g., Naryn and Son‐Kul Lake watershed) had the most negative isotope values, implying that river water is dominated by snowmelt. Higher deuterium excess (average d = 13.9‰) in river water probably represents the isotopic signature of combined contributions from direct precipitation and glacier melt in stream discharge across Kyrgyzstan. A significant relationship between river water δ18O and elevation was observed with a vertical lapse rate of 0.13‰/100 m. These findings provide crucial information about hydrological processes across Kyrgyzstan and contribute to a better understanding of the paleoclimate/elevation reconstruction of this region.  相似文献   

10.
Abstract

The paper discusses aspects of the isotopic composition (tritium and stable isotopes) of precipitation, which was monitored from 2000 to 2003 at 12 stations in Syria. The seasonal variations in δ18O are smaller at the western stations than at the eastern ones due to low seasonal temperature variations. A good correlation between δ2H and δ18O was obtained for each station, and the slopes of the local meteoric water lines are significantly lower than the Global Meteoric Water Line. Values of d-excess decrease from 19‰ at the western stations to 13‰ at the eastern ones, indicating the influence of precipitation generated by air masses coming from the Mediterranean Sea. A reliable altitude effect represented by depletion of heavy stable isotopes (δ18O and δ2H), of about??0.21‰ and??1.47‰ per 100 m elevation, respectively, was observed. Monthly tritium contents in precipitation, and seasonal variations, are less at the western stations than at the eastern ones. The weighted mean tritium values are between 3 and 9 TU, and increase with distance from the Syrian coast by 1 TU/100 km.

Citation Al Charideh, A. R. & Abou Zakhem, B. (2010) Distribution of tritium and stable isotopes in precipitation in Syria. Hydrol. Sci. J. 55(5), 832–843.  相似文献   

11.
The Tieluping silver deposit, located in the NE-trending faults within the metamorphic basement of the Xiong'er Mountain, is a typical altered fracture type deposit. Its ore-forming process includes three stages with temperatures concentrated at 373°C, 223°C and 165°C respectively. With δD=90‰,\(\delta ^{13} C_{CO_2 } \)=2.0‰ and δ{si18}O=8094‰, the early stage fluid was generated from reworking and metamorphism of the carbonate rich formation; the late one, with δD=?70‰,\(\delta ^{13} C_{CO_2 } \)=-1.2‰, δ18O=1.89‰, was meteoric hydrothermal solution; and the middle. δD=?109‰,\(\delta ^{13} C_{CO_2 } \)=0.1‰, δ18O=1.79‰, might be a hybrid mixed by reworking-metamorphic fluid and meteoric hydrothermal solution. Crystallized rapidly in the condition of fluid-boiling and fluid-mixing, the middle stage minerals have far more fluid inclusions with higher content of ions, higher ratios of H2O/CO2 and KN/MC. Consequently, they have much more ore elements such as gold compared with those of the early and late stages. It was the northward intracontinental subduction along the Machaoying fault during the Mesozoic collision between the South China and North China paleocontinents that intrigued large-scale fluidization and magmatism and led to the appearance of more than 10 large and medium hydrothermal deposits, including the Tieluping silver deposit. The study on ore-forming fluidization of the Tieluping silver deposit proves the CPMF model.  相似文献   

12.
Marble has a great potential to understand a history of various geological events occurring during tectonic processes. In order to decode metamorphic–metasomatic records on C–O isotope compositions of marble at mid-crustal conditions, we conducted a C–O–Sr isotope study on upper amphibolite-facies marbles and a carbonate–silicate rock from the Hida Belt, which was once a part of the crustal basement of the East Asian continental margin. Carbon and oxygen isotope analyses of calcite from marbles (Kamioka area) and a carbonate–silicate rock (Wadagawa area) show a large variation of δ13C [VPDB] and δ18O [VSMOW] values (from −4.4 to +4.2 ‰ and +1.6 to +20.8 ‰, respectively). The low δ13C values of calcites from the carbonate–silicate rock (from −4.4 to −2.9 ‰) can be explained by decarbonation (CO2 releasing) reactions; carbon–oxygen isotope modeling suggests that a decrease of δ13C strongly depends on the amount of silicate reacting with carbonates. The occurrence of metamorphic clinopyroxene in marbles indicates that all samples have been affected by decarbonation reactions. All δ18O values of calcites are remarkably lower than the marine-carbonate values. The large δ18O variation can be explained by the isotope exchange via interactions between marble, external fluids, and/or silicates. Remarkably low δ18O values of marbles that are lower than mantle value (~+5 ‰) suggest the interaction with meteoric water at a later stage. Sr isotope ratios (87Sr/86Sr = 0.707255–0.708220) might be close to their protolith values. One zircon associated with wollastonite in a marble thin-section yields a U–Pb age of 222 ± 3 Ma, which represents the timing of the recrystallization of marble, triggered by H2O-rich fluid infiltration at a relatively high-temperature condition. Our isotope study implies that the upper amphibolite-facies condition, like the Hida Belt, might be appropriate to cause decarbonation reactions which can modify original isotope compositions of marble if carbonates react with silicates.  相似文献   

13.
Increasing groundwater salinity and depletion of the aquifers are major concerns in the UAE. Isotopes of oxygen, hydrogen, and carbon concentrations in groundwater were used to estimate evaporation loss using the isotopes of oxygen and hydrogen, and using a carbon isotope to trace inorganic carbon cycling in two main aquifers in the eastern part of the United Arab Emirates. The δD‐δ18O of groundwater samples plotted on a line given by: δD = 4 δ18O + 4 ·4 (r2 = 0·4). In comparison, the local meteoric water line (LMWL) has been defined by the line: δD = 8 δ18O + 15. In order to better understand the system investigated, samples were separated into two groups based on the δD‐δ18O relationship. These are (1) samples that plot above the LMWL (δD = 6·1 δ18O + 12·4, r2 = 0·8) and which are located predominantly in the north of the study area, and (2) samples that plot below the LMWL (δD = 5·6 δ18O + 6·2, r2 = 0·8) and which are mostly distributed in the south. Slopes for both the groups are similar and lower than that for LMWL indicating potential evaporation of recharging water. However, the y‐intercept, which differs between the two groups, suggests evaporation of return flow and evapotranspiration in the unsaturated zone to be more significant in the south. This is attributed to intense agricultural activities in the region. Samples from the eastern Gravel Plain aquifer have δ13C and dissolved inorganic carbon (DIC) values in the range from ? 10 to 17‰, and 12–100 mg C/l, respectively, while the range for those from the Ophiolite aquifer is from ? 11 to ? 16.4‰, and 16–114 mg C/l respectively. This suggests the control of C‐3 and C‐4 plants on DIC formation, an observation supported by the range δ13C of soil organic matter (from ? 18·5 to ? 22·1‰.) Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

14.
This paper reports a detailed geochemical study of thermal occurrences as observed in the edifice and on the flanks of Mendeleev Volcano, Kunashir Island in August and September 2015. We showed that three main types of thermal water are discharged there (neutral chloride sodium, acid chloride sulfate, and acid sulfate types); these waters exhibit a zonality that is typical of volcano-hydrothermal island arc systems. Spontaneous and solfataric gases have relatively low 3He/4He ratios, ranging between 5.4Ra and 5.6Ra, and δ13C-CO2 between –4.8‰ and –3.1‰, and contain a light isotope of carbon in methane (δ13C ≈ –40‰). Gas and isotope geothermometers yield relatively low temperatures around 200°C. The isotope compositions in all types of water are similar to that of local meteoric water. The distribution of microcomponents varies among different types. The isotope composition of dissolved Sr varies considerably, from 0.7034 as observed in Kunashir rocks on an average to 0.7052 in coastal springs, which may have resulted from admixtures of seawater. The total hydrothermal transport rates of magmatic Cl and SO4, as observed for Mendeleev Volcano, are 7.8 t/d and 11.6 t/d, respectively. The natural outward transport of heat by the volcano’s hydrothermal system is estimated as 21 MW.  相似文献   

15.
High‐salinity paleowater from low‐permeability aquitards in coastal areas can be a major threat to groundwater resources; however, such water has rarely been studied. The chemical and isotopic compositions of porewater extracted from a 200‐m‐thick Quaternary sedimentary sequence in the western coastal plain of Bohai Bay, China, were analyzed to investigate the salinity origin and chemical evolution of porewater in aquitards. Porewater samples derived at depths shallower than 32 m are characterized by Cl‐Na type saline water (total dissolved solids [TDS], 10.9–84.3 g/L), whereas those at depths greater than 32 m comprise Cl·SO4‐Na type brackish water (TDS, 2.2–6.3 g/L). Saline porewater is interpreted as evaporated seawater prior to halite saturation, as evidenced by Cl‐Br relationships. Although substantial dilution of saline porewater with meteoric water is supported by a wider Cl? range and δ2H‐δ18O covariance, the original marine waters were not completely flushed out. The deeper brackish porewater is determined to be a mixture of fresher porewater and brine groundwater and had a component of old brine of less than 10%, as indicated by a mixing model defined using δ2H and Cl? tracers. Porewater δ2H‐δ18O relationships and negative deuterium excess ranging from ?25.9‰ to ?2.9‰ indicate the existence of an arid climate since Late Pleistocene in Tianjin Plain. The aquitard porewaters were chemically modified through water‐rock interactions due to the long residence time.  相似文献   

16.
During 1979–1989, variations were observed in the oxygen composition of the water contained in the geothermal reservoir at Vulcano Island, Italy.The reservoir water, that has a magmatic origin, showed an oxygen composition of +1.0±0.5‰ δ18O during periods without local tectonic earthquakes, and an oxygen composition of +3.4±0.5‰ δ18O after the highest-energy seismic activity that occurred recently near the island. A slight increase of the δ18O value in the reservoir water was also observed after a low-energy sequence of tectonic earthquakes that occurred at very shallow depth just beneath Vulcano Island. These 18O variations in the reservoir water are consistent with earthquake-induced increases in the contribution from high-temperature δ18O-rich magmatic condensate to the geothermal reservoir, and with subsequent decreases in the δ18O value due to 18O exchanges at the temporarily increased reservoir temperature during reactions between the highly reactive magmatic condensate and the local rocks.Only minor changes in the deuterium composition of the reservoir water occurred with time, as the δD value in the magmatic condensate released from the magma after major local earthquakes quickly approached the δD value of the water contained in the geothermal reservoir.Also the chloride concentration in the reservoir water appears to be linked to the contribution from the magmatic fluid. This chloride content seems not to have undergone major changes with time, as it may be buffered by temporary increases in the reservoir temperature up to values >300°C induced by major local earthquakes. This mechanism may possibly occur also in other magmatic–hydrothermal systems.  相似文献   

17.
Mineralogical and hydrogen isotopic studies have been made on clay minerals occurring in the Ohnuma geothermal area, northeastern Japan. Here, clay minerals such as smectite, kaolinite, dickite, sericite, and chlorite were formed by hydrothermal alteration of Miocene rocks. A chemical equilibrium can be assumed to be attained from the fact that the amount of expandable layer in the interstratified chlorite/smectite decreases and the polytype of sericite changes from 1M to 2M1 with increasing depth and temperature. The hydrogen isotopic composition (D/H) of the clay minerals is lighter than that of the geothermal and local meteoric waters by about 20–40‰. The hydrogen isotopic fractionation factors αmineral-water are as follows: 0.972–0.985 for kaolinite and dickite, 0.973–0.977 for sericite, and 0.954–0.987 for chlorite. In the temperature range from 100 to 250°C, the hydrogen isotopic fractionation factors between these minerals and water are not sensitive to the temperature. αchlorite-water depends on the kind of octahedrally coordinated cations which lie close to the hydroxyl groups; it becomes large with an increase of Mg content of chlorite.  相似文献   

18.
Abstract The Solund‐Stavfjord ophiolite complex (SSOC) in western Norway represents a remnant of the Late Ordovician oceanic lithosphere, which developed in an intermediate‐ to fast‐spreading Caledonian back‐arc basin. The internal architecture and magmatic features of its crustal component suggest that the SSOC has a complex, multistage sea floor spreading history in a supra‐subduction zone environment. The youngest crustal section associated with the propagating rift tectonics consists of a relatively complete ophiolite pseudostratigraphy, including basaltic volcanic rocks, a transition zone between the sheeted dyke complex and the extrusive sequence, sheeted dykes, and high‐level isotropic gabbros. Large‐scale variations in major and trace element distributions indicate significant remobilization far beyond that which would result from magmatic processes, as a result of the hydrothermal alteration of crustal rocks. Whereas K2O is strongly enriched in volcanic rocks of the extrusive sequence, Cu and Zn show the largest enrichment in the dyke complex near the dyke–volcanic transition zone or within this transition zone. The δ18O values of the whole‐rock samples show a general depletion structurally downwards in the ophiolite, with the largest and smallest variations observed in volcanic rocks and the transition zone, respectively. δ18O values of epidote–quartz mineral pairs indicate 260–290°C for volcanic rocks, 420°C for the transition zone, 280–345°C for the sheeted dyke complex and 290–475°C for the gabbros. The 87Sr/86Sr isotope ratios show the widest range and highest values in the extrusive rocks (0.70316–0.70495), and generally the lowest values and the narrowest range in the sheeted dyke complex (0.70338–0.70377). The minimum water/rock ratios calculated show the largest variations in volcanic rocks and gabbros (approximately 0–14), and generally the lowest values and range in the sheeted dyke complex (approximately 1–3). The δD values of epidote (?1 to ?12‰), together with the δ18O calculated for Ordovician seawater, are similar to those of present‐day seawater. Volcanic rocks experienced both cold and warm water circulation, resulting in the observed K2O‐enrichment and the largest scatter in the δ18O values. As a result of metal leaching in the hot reaction zone above a magma chamber, Zn is strongly depleted in the gabbros but enriched in the sheeted dyke complex because of precipitation from upwelling of discharged hydrothermal fluids. The present study demonstrates that the near intact effect of ocean floor hydrothermal activity is preserved in the upper part of the SSOC crust, despite the influence of regional lower greenschist facies metamorphism.  相似文献   

19.
Snow and glaciers are known to be important sources for freshwater; nevertheless, our understanding of the hydrological functioning of glacial catchments remains limited when compared with lower altitude catchments. In this study, a temperate glacial region located in the southeast margin of the Tibetan Plateau is selected to analyse the characteristics of δ18O and δD in different water sources and the contribution of glacier–snow meltwater to streamflow. The results indicate that the δ18O of river water ranges from ?16.2‰ to ?10.2‰ with a mean of ?14.1‰ and that the δD values range from ?117.0‰ to ?68.0‰ with a mean of ?103.1‰. These values are more negative than those of glacier–snow meltwater but less negative than those of precipitation. The d ‐excess values are found to decrease from meltwater to river to lake/reservoir water as a result of evaporation. On the basis of hydrograph separation, glacier–snow meltwater accounts for 51.5% of river water in the Baishui catchment in the melting season. In the Yanggong catchment, snow meltwater contributes 47.9% to river water in the premonsoon period, and glacier meltwater contributes only 6.8% in the monsoon period. The uncertainty in hydrograph separation is sensitive to the variation of tracer concentrations of streamflow components. The input of meltwater to a water system varies with local climate and glacier changes. The results confirm that hydrograph separation using water isotopes is valuable for evaluating the recharge sources of rivers, especially in ungauged glacial regions. This study provides insights into the hydrological processes of glacial catchments on the Tibetan Plateau, which is important for water resource management.  相似文献   

20.
M. Z. Iqbal 《水文研究》2008,22(23):4609-4619
Oxygen and deuterium isotopes in precipitation were analysed to define local isotopic trends in Iowa, US. The area is far inland from an oceanic source and the observed averages of δ18O and δ D are ? 6·43‰ and ? 41·35‰ for Ames, ? 7·53‰ and ? 51·33‰ for Cedar Falls, and ? 6·01‰ and ? 38·19‰ for Iowa City, respectively. Although these data generally follow global trends, they are different when compared to a semi‐arid mid‐continental location in North Platt, Nebraska. The local meteoric water lines of Iowa are δ D = 7·68 δ18O + 8·0 for Ames, δ D = 7·62 δ18O + 6·07 for Cedar Falls, and δ D = 7·78 δ18O + 8·61 for Iowa City. The current Iowa study compares well with a study conducted in Ames, Iowa, 10 years earlier. The differences between Iowa and Nebraska studies are attributed to a variable climate across the northern Great Plains ranging from sub‐humid in the east to semi‐arid in the west. Iowa being further east in the region is more strongly influenced by a moist sub‐humid to humid climate fed by the tropical air stream from the Gulf of Mexico. The average d‐excess values are 10·06‰ for Ames, 8·92‰ for Cedar Falls and 9·92‰ for Iowa City. Eighty seven percent of the samples are within the global d‐excess range of 0‰ and 20‰. The results are similar to previous studies, including those by National Atmospheric Deposition Programs and International Atomic Energy Agency. It appears that the impact of recycled water or secondary evaporation on δ18O values of area precipitation is minimal. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号