首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8篇
  免费   2篇
地球物理   4篇
地质学   3篇
海洋学   1篇
天文学   2篇
  2021年   1篇
  2018年   1篇
  2015年   1篇
  2014年   1篇
  2009年   2篇
  2007年   1篇
  2004年   1篇
  2002年   1篇
  1999年   1篇
排序方式: 共有10条查询结果,搜索用时 46 毫秒
1
1.
We performed a comprehensive metaproteomic analysis of the dissolved organic matter (DOM) in Japanese coastal waters using liquid chromatography–tandem mass spectrometry and demonstrated that these proteomes were characterized by proteins with various functions, including metabolic enzymes, membranes, and photosynthetic proteins. The protein sources included cyanobacteria, heterotrophic bacteria, and eukaryotic phytoplankton. Most of the components were similar among samples and also similar to pelagic components. We also observed differences in the compositions of the microbial communities of origin among the different dissolved protein samples and differences in the relative abundance of specific dissolved protein types (e.g., cytoskeletal proteins), possibly indicating potential dynamics in the coastal DOM pool.  相似文献   
2.
Abstract: Major and rare earth element contents are reported for Late Archean banded iron formations (BIFs) in the Bababudan Group of the Dharwar Craton, South India. The BIFs are mostly composed of SiO2 (average1ρ = 54.88.1 wt%) and Fe2O3* (44.38.2 wt%). The Al2O3 and TiO2 contents are remarkably low, suggesting that detrital components were starved during the BIF deposition. The BIFs have a LREE-enriched pattern with a relatively high (La/Yb)N (6.644.07). Total REE concentrations (RE) vary from 5.2 to 65.3 ppm. The REE patterns are characterized by the presence of a very large negative Ce anomaly (Ce/Ce*: 0.13-0.83) and a positive Eu anomaly (Eu/Eu*: 0.96-2.45). The Eu/Eu* decreases and (La/Yb)N increases with a increase of RE. These correlations of REE indices are similar to those of modern hydrothermal iron-rich sediments near a mid-ocean ridge (MOR). Greenstones associated with the BIFs have MORB-like geochemical features. These geochemical and geological lines of evidence indicate that the depositional site of the BIFs was remote from a continent and/or island arc and that the BIFs were in situ hydrothermal sediments near a MOR. A striking negative Ce anomaly in the BIFs indicates that oxygenated deep-sea environments emerged at 2.9-2.7 Ga. The existence of contemporaneous Mn deposits in the Dharwar Craton supports this assertion. Our scenario of oxygen in the Earth's surface of the Late Archean is different from long-held notion that the atmosphere and ocean were persistently anoxic throughout the Archean.  相似文献   
3.
Marble has a great potential to understand a history of various geological events occurring during tectonic processes. In order to decode metamorphic–metasomatic records on C–O isotope compositions of marble at mid-crustal conditions, we conducted a C–O–Sr isotope study on upper amphibolite-facies marbles and a carbonate–silicate rock from the Hida Belt, which was once a part of the crustal basement of the East Asian continental margin. Carbon and oxygen isotope analyses of calcite from marbles (Kamioka area) and a carbonate–silicate rock (Wadagawa area) show a large variation of δ13C [VPDB] and δ18O [VSMOW] values (from −4.4 to +4.2 ‰ and +1.6 to +20.8 ‰, respectively). The low δ13C values of calcites from the carbonate–silicate rock (from −4.4 to −2.9 ‰) can be explained by decarbonation (CO2 releasing) reactions; carbon–oxygen isotope modeling suggests that a decrease of δ13C strongly depends on the amount of silicate reacting with carbonates. The occurrence of metamorphic clinopyroxene in marbles indicates that all samples have been affected by decarbonation reactions. All δ18O values of calcites are remarkably lower than the marine-carbonate values. The large δ18O variation can be explained by the isotope exchange via interactions between marble, external fluids, and/or silicates. Remarkably low δ18O values of marbles that are lower than mantle value (~+5 ‰) suggest the interaction with meteoric water at a later stage. Sr isotope ratios (87Sr/86Sr = 0.707255–0.708220) might be close to their protolith values. One zircon associated with wollastonite in a marble thin-section yields a U–Pb age of 222 ± 3 Ma, which represents the timing of the recrystallization of marble, triggered by H2O-rich fluid infiltration at a relatively high-temperature condition. Our isotope study implies that the upper amphibolite-facies condition, like the Hida Belt, might be appropriate to cause decarbonation reactions which can modify original isotope compositions of marble if carbonates react with silicates.  相似文献   
4.
Uncertainty in the estimation of hydrologic export of solutes has never been fully evaluated at the scale of a small‐watershed ecosystem. We used data from the Gomadansan Experimental Forest, Japan, Hubbard Brook Experimental Forest, USA, and Coweeta Hydrologic Laboratory, USA, to evaluate many sources of uncertainty, including the precision and accuracy of measurements, selection of models, and spatial and temporal variation. Uncertainty in the analysis of stream chemistry samples was generally small but could be large in relative terms for solutes near detection limits, as is common for ammonium and phosphate in forested catchments. Instantaneous flow deviated from the theoretical curve relating height to discharge by up to 10% at Hubbard Brook, but the resulting corrections to the theoretical curve generally amounted to <0.5% of annual flows. Calibrations were limited to low flows; uncertainties at high flows were not evaluated because of the difficulties in performing calibrations during events. However, high flows likely contribute more uncertainty to annual flows because of the greater volume of water that is exported during these events. Uncertainty in catchment area was as much as 5%, based on a comparison of digital elevation maps with ground surveys. Three different interpolation methods are used at the three sites to combine periodic chemistry samples with streamflow to calculate fluxes. The three methods differed by <5% in annual export calculations for calcium, but up to 12% for nitrate exports, when applied to a stream at Hubbard Brook for 1997–2008; nitrate has higher weekly variation at this site. Natural variation was larger than most other sources of uncertainty. Specifically, coefficients of variation across streams or across years, within site, for runoff and weighted annual concentrations of calcium, magnesium, potassium, sodium, sulphate, chloride, and silicate ranged from 5 to 50% and were even higher for nitrate. Uncertainty analysis can be used to guide efforts to improve confidence in estimated stream fluxes and also to optimize design of monitoring programmes. © 2014 The Authors. Hydrological Processes published John Wiley & Sons, Ltd.  相似文献   
5.
Acid‐neutralizing capacity (ANC) is an important index for streamwater acidification caused by external factors (i.e. chronic acid deposition) and internal factors such as soil acidification due to nitrification. In this study, the influence of forest clear‐cutting and subsequent regrowth on internal acidification was investigated in central Japan, where stream pH (near 7·0) and ANC (above 0·1 meq L?1) are high. pH, the concentrations of major cations (Na+, K+, Mg2+ and Ca2+), major anions (NO3?, Cl? and SO42?) and dissolved silica (Si), and ANC were measured in 33 watersheds of various stand ages, during 2002 to 2004. Only NO3? concentration decreased with stand age, whereas pH, ANC, and concentrations of the sum of base cations (BC) and Si were negatively correlated with the minimum elevation of the watershed. The correlation between the BC/Si ratio and minimum elevation suggested that factors contributing to acid neutralization changed at 1100 m above sea level. In watersheds at lower elevations (?1100 m), the relatively high contribution of soil water with longer soil contact times should result in higher ANC, and cation exchange reactions should be the dominant process for acid neutralization due to deposition of colluvial soils on the lower slope. In contrast, in higher‐elevation watersheds (≥1100 m), weathered residual soils are thin and the small contribution of deeper groundwater results in lower ANC. These results suggest that the local acid sensitivity is determined by the hydrological and geomorphologic factors generated by steep topography. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   
6.
Abstract: Boundaries between the cpx Zn-Pb ores of the Kamioka ore deposit and host clinopyroxene granitoid in the Hida metamorphic belt were examined to decipher the incipient stage of ore formation process. The boundaries are characterized by the compositional zoning of relic clinopyroxene with outward increase of XMg from 0. 5 to 0. 75 in the host rocks, and by the incline of XMg towards the ores, passing through the boundaries, reaching up to 0. 95. In the ores, relic clinopyroxene is rimmed by hedenbergite. Both clinopyroxenes show compositional zoning with outward decrease and increase of XMg and MnO, down to 0. 02 and to 3. 2 wt%, respectively. The presence of high magnesian clinopyroxene can be explained if hydrothermal fluid flow had leached hedenbergite component of relic clinopyroxene. The incline of XMg of clinopyroxene toward the ores was attributed to the degree of dissolution of clinopyroxene, and thus the total amounts of fluid to have passed. The outward decrease of XMg of clinopyroxenes in the ores was due to crystal-fluid fractionation during precipitation. These mineralogical changes at the boundaries indicate the time-integrated phenomena of hydrothermal ore forming process. Firstly, leaching of ore components by infiltrating fluid proceeded in host rocks, and enhanced the formation of a fluid channel. The condition of fluid changes through the fluid channel in P-T space, and hence ore forming minerals precipitate at a remote place from the leaching one. This in turn caused the physicochemical change of fluid condition anyhow, and accelerated the precipitation of the minerals. This leaching-precipitation sequence appears a basic process of hydrothermal ore-forming system, and characterizes the incipient stage of ore formation process of the Kamioka Zn-Pb ore deposit. Compositional zoning of clinopyroxenes defines Z-shaped compositional trend in the Di–Hd–Jo diagram, each arm of which corresponds to the leaching and the precipitation stages, and the secondary dissolution of precipitated clinopyroxene.  相似文献   
7.
High-energy emission from gamma-ray bursts (GRBs) is widely expected but had been sparsely observed until recently when the Fermi satellite was launched. If >TeV gamma-rays are produced in GRBs and can escape from the emission region, they are attenuated by the cosmic infrared background photons, leading to regeneration of ∼GeV–TeV secondary photons via inverse-Compton scattering. This secondary emission can last for a longer time than the duration of GRBs, and it is called a pair echo. We investigate how this pair echo emission affects spectra and light curves of high-energy afterglows, considering not only prompt emission but also afterglow as the primary emission. Detection of pair echoes is possible as long as the intergalactic magnetic field (IGMF) in voids is weak. We find (1) that the pair echo from the primary afterglow emission can affect the observed high-energy emission in the afterglow phase after the jet break and (2) that the pair echo from the primary prompt emission can also be relevant, but only when significant energy is emitted in the TeV range, typically     . Even non-detections of the pair echoes could place interesting constraints on the strength of IGMF. The more favourable targets to detect pair echoes may be the 'naked' GRBs without conventional afterglow emission, although energetic naked GRBs would be rare. If the IGMF is weak enough, it is predicted that the GeV emission extends to >30–300 s.  相似文献   
8.
Boninites are widely distributed along the western margin of the Pacific Plate extruded during the incipient stage of the subduction zone development in the early Paleogene period. This paper discusses the genetic relationships of boninite and antecedent protoarc basalt magmas and demonstrates their recycled ancient slab origin based on the T–P conditions and Pb–Hf–Nd–Os isotopic modeling. Primitive melt inclusions in chrome spinel from Ogasawara and Guam islands show severely depleted high‐SiO2, MgO (high‐silica) and less depleted low‐SiO2, MgO (low‐silica and ultralow‐silica) boninitic compositions. The genetic conditions of 1 346 °C at 0.58 GPa and 1 292 °C at 0.69 GPa for the low‐ and ultralow‐silica boninite magmas lie on adiabatic melting paths of depleted mid‐ocean ridge basalt mantle with a potential temperature of 1 430 °C in Ogasawara and of 1 370 °C in Guam, respectively. This is consistent with the model that the low‐ and ultralow‐silica boninites were produced by remelting of the residue of the protoarc basalt during the forearc spreading immediately following the subduction initiation. In contrast, the genetic conditions of 1 428 °C and 0.96 GPa for the high‐silica boninite magma is reconciled with the ascent of more depleted harzburgitic source which pre‐existed below the Izu–Ogasawara–Mariana forearc region before the subduction started. Mixing calculations based on the Pb–Nd–Hf isotopic data for the Mariana protoarc basalt and boninites support the above remelting model for the (ultra)low‐silica boninite and the discrete harzburgite source for the high‐silica boninite. Yb–Os isotopic modeling of the high‐Si boninite source indicates 18–30 wt% melting of the primitive upper mantle at 1.5–1.7 Ga, whereas the source mantle of the protoarc basalt, the residue of which became the source of the (ultra)low‐Si boninite, experienced only 3.5–4.0 wt% melt depletion at 3.6–3.1 Ga, much earlier than the average depleted mid‐ocean ridge basalt mantle with similar degrees of melt depletion at 2.6–2.2 Ga.  相似文献   
9.
10.
The changing XCO2 in fluids during the progressive metamorphism in Sanbagawa belt of the Cretaceous subduction zone, Japan, was estimated by a newly proposed method. The subduction zone meta-sediments are characterized commonly by four-phase assemblages in the CaO–NaAlO2–KAlO2–Al2O3 system with excess quartz and a CO2–H2O binary fluid phase. Using the common assemblage of calcite–albite–muscovite–clinozoisite, XCO2 of the fluid was estimated to be from about 0.0001–0.0005 (the lowest grade chlorite zone), through 0.004–0.01 (garnet zone), 0.01–0.05 (albite–biotite zone) to 0.06–0.2 (oligoclase–biotite zone).The paragenetic relationship of meta-sediments from the subduction zones was compared in a wide PT range to cover the stability fields of aragonite and jadeite. As a result, an excellent PT–XCO2 relationship was delineated to serve as a quantitative monitor for the evolving fluid composition during the progressive metamorphism in subduction zones.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号