首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The study presents a fast imaging technique for the very low‐frequency data interpretation. First, an analytical expression was derived to compute the vertical component of the magnetic field at any point on the Earth's surface for a given current density distribution in a rectangular block on the subsurface. Current density is considered as exponentially decreasing with depth, according to the skin depth rule in a particular block. Subsequently, the vertical component of the magnetic field due to the entire subsurface was computed as the sum of the vertical component of the magnetic field due to an individual block. Since the vertical component of the magnetic field is proportional to the real part of very low‐frequency anomaly, an inversion program was developed for imaging of the subsurface conductors using the real very low‐frequency anomaly in terms of apparent current density distribution in the subsurface. Imaging results from the presented formulation were compared with other imaging techniques in terms of apparent current density and resistivity distribution using a standard numerical forward modelling and inversion technique. Efficacy of the developed approach was demonstrated for the interpretation of synthetic and field very low‐frequency data. The presented imaging technique shows improvement with respect to the filtering approaches in depicting subsurface conductors. Further, results obtained using the presented approach are closer to the results of rigorous resistivity inversion. Since the presented approach uses only the real anomaly, which is not sensitive to very small isolated near‐surface conducting features, it depicts prominent conducting features in the subsurface.  相似文献   

2.
The electrical properties of the weathered layer were investigated by means of Geonics VLF-EM 16/16R equipment in two areas of the Andhra Pradesh State. The resistivity and thickness of the weathered layer were found to be variable even over a small survey area. In the area underlain by Precambrian granite-gneiss, most of the recorded VLF-EM anomalies were caused by variations in the resistivity of the weathered layer. Changes in thickness were well reflected in the VLF-EMR curves. The second area was underlain by Cretaceous basalts and dolerites. Quantitative interpretation of the VLF-EMR data with a simple one-dimensional model yielded considerable detail about the weathered layer. For the granitic area, a prior estimate of at least one resistivity parameter of the ground is required. If this is not already available, a limited amount of direct-current resistivity surveying can provide the required information. A study of the EMR data from the basaltic area revealed the presence of a thin, highly conductive layer between the weathered layer and the bedrock. The parameters of this layer were found to be variable, making it necessary to use a set of diagrams for quantitative interpretation. Due to the presence of this highly conductive layer, the EMR data contain little information on the bedrock resistivity. Our field studies suggest that the VLF-EMR method can be used as a fast and inexpensive tool for mapping of the weathered layer in tropical regions with hard rock geology. Such mapping is of considerable importance because the weathered layer is an important source of groundwater.  相似文献   

3.
The processing of magnetotelluric data involves concepts from electromagnetic theory, time series analysis and linear systems theory for reducing natural electric and magnetic field variations recorded at the earth's surface to forms suitable for studying the electrical properties of the earth's interior.The electromagnetic field relations lead to either a scalar transfer impedance which couples an electric component to an orthogonal magnetic component at the surface of a plane-layered earth, or a tensor transfer impedance which couples each electric component to both magnetic components in the vicinity of a lateral inhomogeneity.A number of time series spectral analysis methods can be used for estimating the complex spectral coefficients of the various field quantities. These in turn are used for estimating the nature of the transfer function or tensor impedance. For two dimensional situations, the tensor impedance can be rotated to determine the principal directions of the electrical structure.In general for real data, estimates of the apparent resistivity are more stable when calculated from the tensor elements rather than from simple orthogonal field ratios (Cagniard estimates), even when the fields are measured in the principal coordinates.  相似文献   

4.
本文根据视电阻率定义的原则,以及用不同的场量定义的视电阻率效果不同这一事实,提出一种新的全波视电阻率定义.在全区同时用均匀大地上电磁场的三个分量来分区定义祝电阻率.在远区视电阻率由磁场的水平分量求出,在近区由磁场的垂直分量或其实分量定义,而在过渡区则由电场的水平分量确定.用这种方法定义的视电阻率为电磁响应的单值函数,它随频率变化的曲线显著改善,能直观地反映地层电阻率随深度的变化,数值比较接近地层的真电阻率值,假极值效应明显压低.在计算中用切比雪夫多项式分段拟合均匀大地电磁响应的反函数,并给出一套系数,由此算出的视电阻率误差小于1%.  相似文献   

5.
Very low frequency electromagnetic (EM) methods using VLF transmitters have found many applications in subsurface geophysical investigations. Surface measurements involving both the vertical component of the magnetic field (VLF-EM or VLF-Z) and of the apparent resistivity (VLF-R) are increasingly common. Although extensive VLF data sets have been successfully used for mapping purposes, modelling and interpretation techniques which asess the third (i.e. depth) dimension appear limited.Given a profile of VLF-R measurements the main purpose of the present study is to demonstrate an automatic method for the construction of a resistivity cross-section. The technique used is one of a new generation of regularised inversion methods. These techniques attempt to overcome the problem of equivalence/non-uniqueness in EM sounding data by constructing the resistivity distribution with the minimum amount of structure that fits the data.VLF data represent a special case of plane-wave EM sounding in that they conform, in practice, to a single-frequency technique. This fact imposes a limitation in the amount of vertical resolution that we can expect using such data. In the case of two-dimensional modelling and inversion, resolution through the cross-section is a resultant attribute from both vertical and lateral resistivity gradients within the subsurface. In order to provide insight into the practical application of regularised inversion techniques to VLF data, both synthetic and field examples are considered. Both sets of examples are primarily concerned with VLF data applied to near-surface fault mapping where the main aim is to assess the location, dip and depth extent of conductive subsurface features.  相似文献   

6.
On the basis of the dispersion relations of MT field, the necessity and applied prospects of the joint inversions using a pair of MT response functions which are correlative with the dispersion relations, are infered. A filter coefficient algorithm is made, with which the corresponding impedance phase data can be estimated using a set of apparent resistivities. The tests for the observed MT data show that when comparing the impedance phase estimated using the dispersion relation with the ob served phase, it can be checked whether the dispersion relation between observed apparent resistivity and phase data is satisfied or not, and that the use of the phase data corrected using the dispersion relation in the joint inversion is advantageous to obtain more confident results. It is shown that joint inversions are more advantageous than single parameter inversions, and that in the most case the joint inversion using the apparent resistivities of impedance real and imaginary parts is more advantageous than the jointinversion using the normal apparent resistivity and impedance phase. The existence of the dipersion relations between the ratio apparent resistivity and corresponding impedance phase of the orthogonal electric and magnetic field horizontal Components in the frequency EM sounding with horizontal electric dipole(FEMS) are discussed, the better effect of the joint inversion using the pair of EM response functions is obtained. The problems on the one-dimensional joint inversion for the MT and FEMS apparent resistivities, for which the observed frequency bands partly overlape each other, are studied. It is shown that this joint inversion is applicable and effective:the joint inversions of the practical data for two kinds of EM methods at two sites give the results well corresponding to the drilling data. The simulated MT inversions for the data of two kinds of EM methods are made, and more confident results also are obtained.  相似文献   

7.
This paper describes how, using a surface linear array of equally spaced electrodes, potential data can be obtained for use in electrical resistivity imaging. The aim is to collect a complete data set which contains all linearly independent measurements of apparent resistivity on such an array using two-, three- or four-electrode configurations. From this primary data set, it is shown that any other value for apparent resistivity on the array can be synthesized through a process of superposition. Numerical tests show that such transformations are exact within the machine error for calculated data but that their use with real field data may lead to noise amplification.  相似文献   

8.
The very low frequency-electromagnetic (VLF-EM) technique was used to delineate two sub-parallel lava tubes, faults and dikes in Umm El-Quttein area, NE Jordan. The investigation of the lava tubes was conducted through 22 VLF-EM profiles across lava strike; the length of profiles ranged from 700 to 1700 m. The lava tubes outcrop at two sites: Azzam cave and Al-Howa tunnel, characterized by slightly weathered basalt, columnar joints and fissure zones; qualitative interpretation of Fraser and Karous-Hjelt maps differentiate those zones as linear, elongated and circular anomalous zones. The 2-D tipper inversion of VLF-EM data and resistivity imaging had the potential to screen out three anomalous zones of likely resistivity contrast: the lava tube body with resistivity over 2500 Θ·m, the fractured zones with resistivity less than 500 Θ·m, and the host vesicular basalt with resistivity of 1500 Θ·m. The strike of lava tubes varied from SW to NE direction with depth less than 20 m and width from 10 to 30 m.  相似文献   

9.
Near-surface inhomogeneities (NSIs) can lead to severe problems in the interpretation of apparent resistivity pseudosections because their effects significantly complicate the image aspect. In order to carry out a more efficient and reliable interpretation process, these problematic features should be removed from field data. We describe a filtering scheme using two-sided half-Schlumberger array data. The scheme was tested on synthetic data, generated from a simple 2D resistivity model contaminated by NSIs, and is shown to be suitable for eliminating such contaminations from apparent resistivity data. Furthermore, the original model without NSIs can be recovered satisfactorily from the inversion of filtered apparent resistivity data. The algorithm is also applied efficiently to a real data set collected at Nsimi, in southern Cameroon, along a 200-m shallow depth profile crossing a complex transitional zone. For this case, the filtering scheme provides accurate structural and behavioural interpretations of both the geometry of the major soil constituents and the groundwater partitioning.  相似文献   

10.
CSAMT单分量数据解释方法   总被引:3,自引:1,他引:2       下载免费PDF全文
可控源音频大地电磁法(CSAMT)一直沿用大地电磁法(MT)的办法,通过计算电场分量与磁场分量的比值,求取卡尼亚视电阻率.而CSAMT场源已知,电场分量和磁场分量都与地下电阻率存在一定的关系,可以单独采用CSAMT电场分量或者磁场分量提取地下介质的视电阻率.本文通过分析电场分量与磁场分量的数据特性,提出利用CSAMT电场单分量数据进行视电阻率的计算,用改进的广义逆矩阵反演方法,使初始模型中的地电层数等于频道个数,克服了以往反演计算中层数较少的问题;实现全场区电场分量视电阻率曲线的拟合反演.同时对单分量视相位计算方法进行分析,结合山西大同地区积水采空区探测及数据解释结果,论证本文提出的单分量解释方法的有效性.  相似文献   

11.
The magnetotelluric method employs co‐located surface measurements of electric and magnetic fields to infer the local electrical structure of the earth. The frequency dependent ‘apparent resistivity’ curves can be inaccurate at long periods if input data are contaminated – even when robust remote reference techniques are employed. Data despiking prior to processing can result in significantly more reliable estimates of long period apparent resistivities. This paper outlines a two‐step method of automatic identification and replacement for spike‐like contamination of magnetotelluric data; based on the simultaneity of natural electric and magnetic field variations at distant sites. This simultaneity is exploited both to identify windows in time when the array data are compromised as well as to generate synthetic data that replace observed transient noise spikes. In the first step windows in data time series that contain spikes are identified according to an intersite comparison of channel ‘activity’– such as the variance of differenced data within each window. In the second step, plausible data for replacement of flagged windows are calculated by Wiener filtering coincident data in clean channels. The Wiener filters – which express the time‐domain relationship between various array channels – are computed using an uncontaminated segment of array training data. Examples are shown where the algorithm is applied to artificially contaminated data and to real field data. In both cases all spikes are successfully identified. In the case of implanted artificial noise, the synthetic replacement time series are very similar to the original recording. In all cases, apparent resistivity and phase curves obtained by processing the despiked data are much improved over curves obtained from raw data.  相似文献   

12.
The interpretation of vertical electrical sounding data can be facilitated by the application of the reciprocal geoelectric section. If an apparent resistivity field curve has a descending right end, the apparent resistivity curve of the reciprocal geoelectric section can be obtained by the application of linear filter theory; from this the total transverse resistance of the geoelectric section can be calculated without having to interpret the field curve. In addition, Orellana's auxiliary point method can now be extended to interpret three and four layer apparent resistivity curves of all types. This paper summarizes the properties of the resistivity transform curve, the apparent resistivity curve, and the apparent resistivity curve of the reciprocal geoelectric section, with several new applications.  相似文献   

13.
Apparent resistivity is a useful concept for initial quickscan interpretation and quality checks in the field, because it represents the resistivity properties of the subsurface better than the raw data. For frequency‐domain soundings several apparent‐resistivity definitions exist. One definition uses an asymptote for the field of a magnetic dipole in a homogeneous half‐space and is useful only for low induction numbers. Another definition uses only the amplitude information of the total magnetic field, although this results in a non‐unique apparent resistivity. To overcome this non‐uniqueness, a complex derivation using two different source–receiver configurations and several magnetic field values for different frequencies or different offsets is derived in another definition. Using the latter theory, in practice, this means that a wide range of measurements have to be carried out, while commercial systems are not able to measure this wide range. In this paper, an apparent‐resistivity concept is applied beyond the low‐induction zone, for which the use of different source–receiver configurations is not needed. This apparent‐resistivity concept was formerly used to interpret the electromagnetic transients that are associated with the turn‐off of the transmitter current. The concept uses both amplitude and phase information and can be applied for a wide range of frequencies and offsets, resulting in a unique apparent resistivity for each individual (offset, frequency) combination. It is based on the projection of the electromagnetic field data on to the curve of the field of a magnetic dipole on a homogeneous half‐space and implemented using a non‐linear optimization scheme. This results in a fast and efficient estimation of apparent resistivity versus frequency or offset for electromagnetic sounding, and also gives a new perspective on electromagnetic profiling. Numerical results and two case studies are presented. In each case study the results are found to be comparable with those from other existing exploration systems, such as EM31 and EM34. They are obtained with a slight increase of effort in the field but contain more information, especially about the vertical resistivity distribution of the subsurface.  相似文献   

14.
Koefoed has given practical procedures of obtaining the layer parameters directly from the apparent resistivity sounding measurements by using the raised kernel function H(λ) as the intermediate step. However, it is felt that the first step of his method—namely the derivation of the H curve from the apparent resistivity curve—is relatively lengthy. In this paper a method is proposed of determining the resistivity transform T(λ), a function directly related to H(λ), from the resistivity field curve. It is shown that the apparent resistivity and the resistivity transform functions are linearily related to each other such that the principle of linear electric filter theory could be applied to obtain the latter from the former. Separate sets of filter coefficients have been worked out for the Schlumberger and the Wenner form of field procedures. The practical process of deriving the T curve simply amounts to running a weighted average of the sampled apparent resistivity field data with the pre-determined coefficients. The whole process could be graphically performed within an quarter of an hour with an accuracy of about 2%.  相似文献   

15.
Analytical solutions of vertical electrical soundings (VES) have mostly been applied to groundwater exploration and monitoring groundwater quality on terrains of fairly simple geology and geomorphology on which the electrode arrays are symmetrical (e.g. Schlumberger or Wenner configurations). The sounding interpretation assumes flat topography and horizontally stratified layers. Any deviations from these simple situations may be impossible to interpret analytically. The recently developed GEA-58 geoelectrical instrument can make continuous soundings along a profile with any colinear electrode configuration. This paper describes the use of finite-difference and finite-element methods to model complex earth resistivity distributions in 2D, in order to calculate apparent resistivity responses to any colinear current electrode distribution in terrains in which the earth resistivities do not vary along the strike. The numerical model results for simple situations are compared with the analytical solutions. In addition, a pseudo-depth section of apparent resistivities measured in the field with the GEA-58 is compared with the numerical solution of a real complex resistivity distribution along a cross-section. The model results show excellent agreement with the corresponding analytical and experimental data.  相似文献   

16.
Very low frequency (VLF) military communications systems provide a primary field that can be used for shallow geophysical surveys to locate ground water contamination and vertical geologic contacts. Useful properties that can be easily obtained from the interaction of the earth and the primary field are the magnitude of the vertical secondary magnetic field, the surface impedence, and the phase angle between the electrical and magnetic horizontal components. The variations in the secondary magnetic field can be related to vertical geologic contacts, such as the edges of landfill trenches. The surface impedence yields an apparent terrain conductivity, which can be used to locate low-resistivity anomalies often associated with contaminated ground water. The phase angle gives information on vertical variations in resistivity, phase angles less than 45° indicating increasing resistivity with depth. The depth of penetration of the VLF field is about one skin depth. For a frequency of 20 kHz, the skin depth in meters is approximately equal to 3.67 where p is terrain resistivity in ohmmeters.  相似文献   

17.
The technique of digital linear filtering is used for transformation of apparent resistivity data from one electrode configuration into another. Usually filter spectra are determined via the discrete Fourier transforms of input and output functions: the filter characteristic is the quotient of the spectra of the output function and input function. In this paper, the transformation of the apparent resistivities is presented for four electrode configurations (Wenner, the two-electrode, Schlumberger, and dipole configurations). In our method, there is no need to use the discrete Fourier transform of the input and output functions in order to determine the filter spectrum for converting apparent resistivity in one electrode configuration to any other configuration. Sine responses for determination of the derivative of apparent resistivities are given in analytical form. If the filter spectrum for converting the apparent resistivity to the resistivity transform for one electrode configuration is known, the filter spectra for transforming the apparent resistivity to the resistivity transform for any electrode configurations can be calculated by using newly derived expressions.  相似文献   

18.
Summary The finite element method, with triangular elements, is used to study the effect of a two-dimensional sloping contact on the surface electromagnetic fields. It is found in the case ofH-polarization and small slopes that the electric field and the apparent resistivity near the contact, on the conductive side, are higher than their asymptotic values. In the case ofE-polarization the apparent resistivity and phase values on the conductive side fall off less rapidly to their asymptotic values with decreasing slope resulting in higher apparent resistivity and phase values on the conductive side, than those expected for a vertical contact. The peak in the amplitude and phase of the normalized vertical magnetic field shifts from the resistive side for a vertical contact to the conductive side for a sloping contact. Far from the sloping contact, on the conductive side, higher values are observed for the normalized vertical magnetic field than in the case of a vertical contact.  相似文献   

19.
A method to calculate the resistivity transform of Schlumberger VES curves has been developed. It consists in approximating the field apparent resistivity data by utilizing a linear combination of simple functions, which must satisfy the following requirements: (i) they must be suitable for fitting the resistivity data; (ii) once the fitting function has been obtained they allow the kernel to be determined in an analytic way. The fitting operation is carried out by the least mean squares method, which also accomplishes a useful smoothing of the field curve (and therefore a partial noise filtering). It gives the possibility of assigning different weights to the apparent resistivity values to be approximated according to their different reliability. For several examples (theoretical resistivity curves in order to estimate the precision of the method and with field data to verify the practicality) yield good results with short execution time independent of shape the apparent resistivity curve.  相似文献   

20.
We report on strong coast effect distortions observed for broadband marine magnetotelluric (MT) data collected on the forearc offshore northeastern Japan. Eight days of horizontal electric and magnetic fields recorded at eight seafloor stations and the horizontal magnetic fields from a land remote station were processed with a robust multiple-station algorithm, yielding good MT responses and inter-station transfer functions at periods of 7–10,000 s. Transverse electric (TE) mode responses have cusps in apparent resistivity and negative phases at periods around 1000 s, while the transverse magnetic (TM) mode responses are galvanically depressed below the TE responses. An analysis of inter-station transfer functions confirms that the apparent resistivity cusps are a magnetic field, rather than electric field, phenomenon, consisting of an amplitude minimum and rapid phase change around a characteristic frequency. Poynting vectors for a TE coast effect model study illustrate that the anomalous phases are associated with energy diffusing back up to the seafloor from below, after being turned around from its usual downward propagating trajectory by inductive coupling between the conductive ocean and the resistive seafloor along the continental margin. We show that the characteristic frequency and position of the TE mode apparent resistivity cusps are determined by a relatively simple combination of the electrical resistivity of the seafloor, the depth of the ocean, and the distance from the coastline. By including coastlines and bathymetry in 2D inversion, we recover the seafloor conductivity structure along the forearc, demonstrating that broadband data can constrain the thickness of conductive forearc sediments and the underlying high resistivity associated with the mantle wedge and subducting oceanic lithosphere.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号