首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 218 毫秒
1.
用稳定流承压含水层公式对半承压含水层求参数时,计算出的导水系数“T”比非稳定流计算出的要大,影响半径R与经验系数相比普通偏小.用水位恢复法计算也同样.原因在于半承压含水层中地下水受潜水垂向越流补给及水平径向补给,因而用稳定流承压含水层法计算时,或者修改公式,或者用非稳定流计算.  相似文献   

2.
王安 《地下水》2018,(6):109-112
以天津市陆家嘴广场项目工程抽水试验数据为基础,为查明场地地基土渗透性和富水性,测定含水层的渗透系数、影响半径等水文地质参数,运用完整井非稳定流抽水试验资料的数学模型,利用迭代法、解析法和图解法计算含水层的渗透系数及影响半径。计算结果表明:试验及计算方法正确,所得结果可靠,所用方法可为类似工程含水层水文地质参数计算提供参考。  相似文献   

3.
刘惠阳  邱锦安  张荣 《地下水》2023,(6):148-150
基岩裂隙水水文地质参数是研究海岛地区地下水运动及计算地下水资源量的重要参数。本文以广东省珠海市横琴新区大横琴岛单孔稳定流抽水试验数据为基础,使用裘布依公式与吉哈尔特经验公式,通过迭代法计算海岛地区基岩裂隙含水层渗透系数K和影响半径R。结果可知:稳定流抽水试验较为成功,试验数据可信,所采用的计算方法可用,所得结果较为可信、可靠。证明这是一种简单、有效、可行的方法,对于海岛地区基岩裂隙含水层水文地质参数的求取具有一定参考意义。  相似文献   

4.
潜水含水层井损计算方法探讨   总被引:1,自引:0,他引:1  
本文根据潜水含水层稳定流多落程抽水试验所取得的△hw2~f(Q)关系曲线,推导出了潜水含水层中井损计算公式或并结合实例阐述了潜水含水层中稳定流抽水试验井损的计算方法;对利用稳定流抽水试验准确求解水文地质参数具有一定参考意义。  相似文献   

5.
Dupuit稳定井流模型和公式自1863年提出,至今已有一百多年了,时间横跨3个世纪。由于其原理的简单及公式的简洁,人们仍在使用。而人们对Dupuit模型以及有关概念的认识,仍然存在很大的差异和误区。通过分析Dupuit稳定流模型及公式,指出Dupuit模型及公式中本身就不含有影响半径的概念。将Thiem提出的影响半径的概念理解为含水层的一个参数,一个不变的常数,并试图寻求一个具有代表性的平均影响半径是没有理论依据的。   相似文献   

6.
张熟  田文法 《地下水》1994,16(4):148-150
本文就如何充分利用潜水完整井单孔稳定流抽水试验资料、计算含水层渗透系数及水位变动带的给水度等问题,进行了简要分析对比,认为消除水跃值后单孔稳定流计算结果,与利用非稳定流方法和用带观测孔的稳定流方法计算结果相近。  相似文献   

7.
利用非稳定流抽水试验资料求解水文地质参数的新方法   总被引:3,自引:0,他引:3  
针对目前利用非稳定流抽水试验资料求解水文地质参数所存在的问题,通过对泰斯非稳定流计算公式中井函数的优化拟合,建立了一个二元线性回归方程,利用求解回归方程中的待定常数反求含水层的水文地质参数的新方法,与传统的其它计算方法比较,本文方法具有计算简捷,不依赖图表,求解精度高等优点.  相似文献   

8.
任鸿飞  曾文青  王小涣 《地下水》2009,31(3):31-31,35
利用矿区抽水试验资料,稳定流和非稳定流方法分别计算含水层渗透系数;结合矿区实际,对两种计算所得参数进行分析,确定切合实际的参数,为矿山涌水量设计提供依据.  相似文献   

9.
陇东盆地水资源短缺,严重制约着经济发展,近年来探明白垩系洛河组地层赋存巨厚深层地下淡水。含水层水文地质参数的求解是深层地下水资源评价的关键,用抽水试验确定深层承压含水层水文地质参数是水文地质勘查研究的一项重要的内容。根据单孔、多孔、干扰抽水试验资料,采用稳定流、非稳定流多种方法求解陇东盆地深层含水层水文地质参数,避免了单一方法的偶然性、随意性,计算结果可信。最后探讨了抽水试验场地水文地质条件与所选取公式理论条件的差异对计算结果的影响。   相似文献   

10.
为确定潜水含水层的渗透系数,施工了一个主抽水井和两个观测井,采用了潜水含水层稳定流完整井多孔、单孔抽水试验的公式法、非稳定流的完整井的半对数直线图解法和基于抽水试验资料处理软件的纽曼模型求参法三种方法进行计算,结果发现各计算方法的结果相差不大,能够相互验证。最后,选取半对数直线图解法的计算结果作为最终计算结果。该研究对潜水含水层渗透系数的计算有一定的参考价值。  相似文献   

11.
Influence radius of a pumping well is a crucial parameter for hydrogeologists and engineers. Knowing the radius of influence for a designed drawdown enables one to calculate the pumping rate required to layout a project foundation that may need lowering of groundwater level to a certain depth due to dewatering operation. In addition, this is important for hydrogeologists to determine ground water contamination flow paths and contributing recharge area for domestic water supply and aquifer management purposes. Empirical formulas that usually neglect vital parameters to determine the influence radius accurately have been traditionally utilized due to lack of adequate methods. In this study, a physically based method, which incorporates aquifer hydraulic gradient for determining the influence radius of a pumping well in steady-state flow condition, was developed. It utilizes Darcy and Dupuit laws to calculate the influence radius, where Darcy's law and Dupuit equation, in steady-state condition, represent the inflow and the outflow of the pumping well, respectively. In an untraditional manner, this method can be also used to determine aquifer hydraulic conductivity as an alternative to other pumping test methods with high degree of accuracy. The developed method is easy to use; where a simple mathematical calculator may be used to calculate the influence radius and the pumping rate or hydraulic conductivity. By comparing the results from this method with the MODFLOW numerical model outputs with different simulated scenarios, it is realized that this method is much superior and more advantageous than other commonly used empirical methods.  相似文献   

12.
工程建设中当距离抽水井r=rb处水位基本没有变化或不受抽水影响时,或当此处存在止水帷幕时,含水层系统视为侧向有限延伸,rb为有限半径。为此,构建更加符合工程实际的侧向有限延伸的典型弱透水层-承压水层系统中非完整井非稳定流计算模型,同时考虑井径和井储效应的影响,应用Laplace变换和分离变量法得到了水位降深在拉氏空间下的解析解,并应用拉氏数值逆变换Stehfest法得到真实空间下的水位降深。新建立的解析解可以进一步退化为诸多已有解,并进一步将其与已知解和有限元数值解进行对比,验证了所得解的正确性和可靠性。基于新建解重点分析了侧向边界和井的完整性对承压水层水位降深的影响。结果表明:含水层系统的侧向有限边界仅对抽水后期的水位降深影响明显,含水层系统侧向无限延伸情况下的水位降深要大于情形1(在r=rb处为定水头边界)且明显小于情形2(在r=rb处为不透水边界)下的水位降深,rb越小,两者之间的误差越大;抽水井的完整性对整个抽水期间不同情形下的水位降深均有明显的影响,承压含水层顶板处的水位降深随着抽水井滤管的长度和埋深的增加而减小。  相似文献   

13.
A vulnerability-based approach for delineating groundwater protection zones around springs in fractured media has been developed to implement Swiss water-protection regulations. It takes into consideration the diversity of hydrogeological conditions observed in fractured aquifers and provides individual solutions for each type of setting. A decision process allows for selecting one of three methods, depending on the spring vulnerability and the heterogeneity of the aquifer. At the first stage, an evaluation of spring vulnerability is required, which is essentially based on spring hydrographs and groundwater quality monitoring. In case of a low vulnerability of the spring, a simplified method using a fixed radius approach (“distance method”) is applied. For vulnerable springs, additional investigations must be completed during a second stage to better characterize the aquifer properties, especially in terms of heterogeneity. This second stage includes a detailed hydrogeological survey and tracer testing. If the aquifer is assessed as slightly heterogeneous, the delineation of protection zones is performed using a calculated radius approach based on tracer test results (“isochrone method”). If the heterogeneity is high, a groundwater vulnerability mapping method is applied (“DISCO method”), based on evaluating discontinuities, protective cover and runoff parameters. Each method is illustrated by a case study.  相似文献   

14.
This paper presents new findings in interpreting analytical solutions of steady radial flow to a well in a semi-confined aquifer (overlain by a phreatic aquifer and aquitard), and demonstrates that 95% of pumped water is derived from leakage water within a radius of 4 times the leakage factor. The travel times of the leakage water from the radii of influence to the well are usually much longer than those derived from the travel time criteria currently used to delineate the well protection areas. The delineation of well protection zones based on the travel time criteria will not properly protect the source of water to the well. Therefore, the percentage of leakage water to the well is used as a new criterion to define the well protection areas. Within each well protection area, the mean residence time is used as an indicator of the renewable period of the aquifer system. Leakage-rate weighted residence times are used to calculate the mean residence time. For the safety and sustainability of drinking water supplies, groundwater in the phreatic aquifer within the radius of influence should be protected.  相似文献   

15.
基于地下水流数值模型的改进DRASTIC方法   总被引:1,自引:0,他引:1       下载免费PDF全文
地下水脆弱性评价作为地下水资源保护和地下水开发利用规划的一个重要工具,被广泛的应用于实际工作中。尝试利用地下水数值模型为改进的DRASTIC方法提供数据支持,并以北京市平原区为例探讨地下水脆弱性评价方法。评价结果与传统方法在高值区和低值区具有很好的对应性,而基于模型的方法在地下水水位计算、含水层介质和水力传导系数确定上较传统方法更具优势,如地下水位的计算上较传统方法更为客观地体现含水介质对地下水运动的影响,且能够方便地获得模拟期内任意时间的流场数据;经由模型调试后的含水层参数数据,较传统方法更为准确。评价结果分区之间的变化较传统方法更为平滑,更符合水文地质条件渐变的特性。  相似文献   

16.
本文以q/s曲线长度A和单位涌水量q、水位降深s之间关系,用达西渗透公式诱导和假设建立了求地下水向井q/s曲线及q/s曲线段间渗流速度公式,并用q/s曲线段间渗流速度Rs求得含水层渗透系数K,又用渗透系数K建立了反求影响半径R的假设公式。所建立的公式只适用于稳定流抽水试验中计算含水层的K和R的水文地质参数。  相似文献   

17.
A general model for time‐dependent saturated–unsaturated waterflow caused by a single well with a given radius is presented. The storage capacity of the well tube is taken into account. The inflow into the well (with drainage) is modeled using the Signorini boundary condition. The nonconforming mixed finite element method on a multilevel adaptive grid is used for the solution of the radial symmetric, time dependent problem. Finally, van Genuchten parameters of an aquifer are determined from field measurements by inverse computations.  相似文献   

18.
由含水层底部向上施工疏放水孔(井)进行疏水降压是保证煤矿安全开采的重要措施之一,该类疏放水孔与地面抽水井的渗流特征具有显著差别。为了研究井下疏放水孔的渗流特征,以非承压含水层底部单井疏放水孔为例,采用数值模拟的方法对其渗流特征进行研究。研究结果表明,当疏放水井的井长lw小于临界长度lc时,即lwc,疏放水井上部含水层孔隙水压力大于0,且由下而上呈先增加后减小的分布规律,渗流量与井长呈指数函数关系增加;当lw ≥ lc时,疏放水非完整井的渗流特征及渗流量与完整井相同;渗流量随井半径增加呈指数关系增加,且指数小于1;将s+lw代替水位降深s对裘布依(Dupuit)潜水完整井计算公式进行修正,当lwc时,采用修正的Dupuit潜水完整井计算公式计算疏放水非完整井渗流量更精确。该研究结果对认识井下疏放水井上部孔隙水压力分布特征及合理布置疏放水井具有重要的借鉴意义。   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号