首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In the present study, a digital waveform dataset of 216 local earthquakes recorded by the Egyptian National Seismic Network (ENSN) was used to estimate the attenuation of seismic wave energy in the greater Cairo region. The quality factor and the frequency dependence for Coda waves and S-waves were estimated and clarified. The Coda waves (Q c) and S-waves (Q d) quality factor were estimated by applying the single scattering model and Coda Normalization method, respectively, to bandpass-filtered seismograms of frequency bands centering at 1.5, 3, 6, 12, 18 and 24?Hz. Lapse time dependence was also studied for the area, with the Coda waves analyzed through four lapse time windows (10, 20, 30 and 40?s). The average quality factor as function of frequency is found to be Q c?=?35?±?9f 0.9±0.02 and Q d?=?10?±?2f 0.9±0.02 for Coda and S-waves, respectively. This behavior is usually correlated with the degree of tectonic complexity and the presence of heterogeneities at several scales. The variation of Q c with frequency and lapse time shows that the lithosphere becomes more homogeneous with depth. In fact, by using the Coda Normalization method we obtained low Q d values as expected for a heterogeneous and active zone. The intrinsic quality factor (Q i ?1 ) was separated from the scattering quality factor (Q s ?1 ) by applying the Multiple Lapse Time Domain Window Analysis (MLTWA) method under the assumption of multiple isotropic scattering with uniform distribution of scatters. The obtained results suggest that the contribution of the intrinsic attenuation (Q i ?1 ) prevails on the scattering attenuation (Q s ?1 ) at frequencies higher than 3?Hz.  相似文献   

2.
—Measurements of seismic attenuation (Q ?1) can vary considerably when made from different parts of seismograms or using different techniques, particularly at high frequencies. These discrepancies may be methodological, or may reflect earth processes. To investigate this problem, we compare body wave with coda Q ?1 results utilizing three common techniques i) parametric fit to spectral decay, ii) coda normalization of S waves, and iii) coda amplitude decay with lapse time. Q ?1 is measured from both body and coda waves beneath two mountain ranges and one platform, from recordings made at seismic arrays in the Caucasus and Kopet Dagh over paths ≤ 4° long. If Q is assumed frequency independent, spectral decay fits show Q s and Q coda near 700–800 for both mountain paths and near 2100–2200 for platform paths. Similar values are determined with the coda normalization technique. However, frequency-dependent parameterizations fit the data significantly better, with Q s ?(1 Hz) and Q coda?(1 Hz) near 200–300 for mountain paths and near 500–600 for platform paths. Lapse decay measurements are close to the frequency-dependent values, showing that both spectral and lapse decay methods can give similar results when Q has comparable parameterizations. Above 6 Hz, coda measurements suggest some enrichment relative to body waves, perhaps due to scattering, but intrinsic absorption appears to dominate at lower frequencies. All approaches show sharp path differences between the Eurasian platform and adjacent mountains, and all are capable of resolving spatial variations in Q.  相似文献   

3.
—Instantaneous frequency matching has been used to compute differential t* values for seismic reflection data from the Great Lakes International Multidisciplinary Program on Crustal Evolution (GLIMPCE) experiment. The differential attenuation values were converted to apparent Q ?1 models by a fitting procedure that simultaneously solves for the interval Q ?1 values using non-negative least squares. The bootstrap method was then used to estimate the variance in the interval Q ?1 models. The shallow Q ?1 structure obtained from the seismic reflection data corresponds closely with an attenuation model derived using instantaneous frequency matching on seismic refraction data along the same transect. This suggests that the effects of wave propagation and scattering on the apparent attenuation are similar for the two data sets. The Q ?1 model from the reflection data was then compared with the structural interpretation of the reflectivity data. The highest interval Q ?1 values (>0.01) were found near the surface, corresponding to the sedimentary rock sequence of the upper Keweenawan. Low Q ?1 values (<0.0006) are found beneath the Midcontinent rift’s central basin. In addition to structural interpretation, seismic attenuation models derived in this way can be used to correct reflection data for dispersion, frequency and amplitude effects, and allow for improved imaging of the subsurface.  相似文献   

4.
The attenuation properties of the crust in the Chamoli region of Himalaya have been examined by estimating the frequency-dependent relationships of quality factors for P waves (Qα) and for S waves (Qβ) in the frequency range 1.5–24 Hz. The extended coda normalization method has been applied on the waveforms of 25 aftershocks of the 1999 Chamoli earthquake (M 6.4) recorded at five stations. The average value of Qα is found to be varied from 68 at 1.5 Hz to 588 at 24 Hz while it varies from 126 at 1.5 Hz to 868 at 24 Hz for Qβ. The estimated frequency-dependent relations for quality factors are Qα = (44 ± 1)f(0.82±.04) and Qβ = (87 ± 3)f(0.71±.03). The rate of increase of Q(f) for P and S waves in the Chamoli region is comparable with the other regions of the world. The ratio Qβ/Qα is greater than one in the region which along with the frequency dependence of quality factors indicates that scattering is an important factor contributing to the attenuation of body waves in the region. A comparison of attenuation relation for S wave estimated here (Qβ = 87f0.71) with that of coda waves (Qc = 30f1.21) obtained by Mandal et al. (2001) for the same region shows that Qc > Qβ for higher frequencies (>8 Hz) in the region. This indicates a possible high frequency coda enrichment which suggests that the scattering attenuation significantly influences the attenuation of S waves at frequencies >8 Hz. This observation may be further investigated using multiple scattering models. The attenuation relations for quality factors obtained here may be used for the estimation of source parameters and near-source simulation of earthquake ground motion of the earthquakes, which in turn are required for the assessment of seismic hazard in the region.  相似文献   

5.
The characteristic of seismic coda wave attenuation in Yunnan area in 7 frequency-bands range from 1 Hz to 20 Hz was estimated by using the local earthquake's waveform data recorded from 22 Yunnan digital seismic stations.Coda attenuation Q-c1 of each station was firstly calculated by single scattering method. Then, mean free path Le and seismic albedo Bo of each station were calculated, and scattering attenuation Q-1s and intrinsic attenuation Q-1i were separated from total attenuation Q-1t by multiple lapse time window analysis based on the multiple scattering model in uniform random isotropic scattering medium. The attenuating characteristics in Yunnan show that most value of Le are in 10~30 km, with maximal within 2~6 Hz;Bo are about 0.5 at 1~2 Hz, but less than 0.5at other frequency-bands, which means Q-1i is comparable with Q-1s at 1~2 Hz, and after 1~2 Hz, Q-1i is greater than Q-1s and dominates the attenuation process. Q-1c is close to Q-1i at other frequency bands except 1~2 Hz.Results show that Q-1 especially Qs-1 varies spatially, Q-1 in eastern Yunnan zone is a bit higher than in northwestern Yunnan zone;northwestern Yunnan zone higher than southwestern Yunnan zone. Comparing with other results in global, Qs-1 in Yunnan is lower than the global average value among these results, Q-1i is higher than the global average value, and Q-1t lies the middle among these results.  相似文献   

6.
Attenuation of seismic waves, quantified by the seismic quality factor Q, holds important information for seismic interpretation, due to its sensitivity to rock and fluid properties. A recently published study of Q, based on surface seismic reflection data, used a modified spectral ratio approach (QVO), but both source and receiver responses were treated as isotropic, based on simple raypath arguments. Here, this assumption has been tested by computing apparent attenuation generated by frequency-dependent directivity of typical marine source and receiver arrays and acquisition geometries. Synthetic wavelet spectra were computed for reflected rays, summed over the first Fresnel zone, from the base of a single interval, 50–3000 m thick and velocity 2000 m/s, overlying a 2200 m/s half-space, and for offsets of 71–2071 m. The source and receiver geometry were those of an actual survey. The modelled spectra are clearly affected by directivity, most strongly because of surface ghosts. In general, the strong high-frequency component, produced by the array design, leads to apparently negative attenuation in individual reflection events, though this is dependent on offset and target depth. For shallow targets (less than 400–500 ms two-way traveltime (TWT) depth), apparent Q-values as extreme as ?50 to ?100 were obtained. For deeper target depths, the directivity effect is far smaller. The implications of the model study were tested on real data. QVO was applied to 20 true-spectrum-processed CMPs, in a shallow (405–730 ms TWT) and a deeper (1000–1300 ms TWT) interval, firstly using a measured far-field source signature (effectively isotropic), and secondly using computed directivity effects instead. Mean interval Q?1-values for the deeper interval, 0.029 ± 0.011 and 0.027 ± 0.018 for conventional and directional processing, respectively, suggested no directivity influence on attenuation estimation. For the shallow interval (despite poor spectral signal-to-noise ratios and hence scattered attenuation estimates), directional processing removed directivity-generated irregularities from the spectral ratios, resulting in an improvement from Q?1int = ?0.036 ± 0.130 to a realistic Q?1int = 0.012 ± 0.030: different at 94% confidence level. Equivalent Q-values are: for the deeper interval, 35 and 37 for conventional and directional processing, respectively, and ?28 and 86 for the shallow interval. These results support the conclusions of the model studies, i.e. that source/receiver directivity has a negligible effect except for shallow targets (e.g. TWT depth ≤ 500 ms) imaged with conventional acquisition geometry. In such cases directivity corrections to spectra are strongly recommended.  相似文献   

7.
Average shear-velocity models for the upper mantle have been derived by controlled Monte Carlo inversion of global average Rayleigh wave group velocity (GAGV) data for periods between 50 and 300 seconds. GAGV data have been corrected for attenuative dispersion using a method based on the theory of Liu, Anderson and Kanamori. Two types of model bounds have been used with one- or two-layer low-velocity zones beginning at depths of 70 and 100 km. All models fitting GAGV data within one standard deviation have low-velocity zones in the 100–200 km depth range. Models with low-velocity zones beginning at 70 km, as well as 100 km, fit GAGV data within one standard deviation, so the average thickness of the lithosphere (taken as the depth to the top of the low-velocity zone) cannot be determined with precision.Global average models for shear-wave attenuation (Q?1β) have been derived from global average Rayleigh wave attenuation coefficients for periods between 50 and 300 s and average shear-velocity models. Zones of high Q?1β coincide with the low-velocity zones of all shear-velocity models, however, models with low-velocity zones beginning at a depth of 70 km have the highest-attenuation layer in the lower half of the low-velocity zone. Resolution kernels for these attenuation models show that parameters for layers shallower than the lower part of the low-velocity-high-attenuation zone are strongly coupled but are distinct from the lower part of this zone. This suggests that the deeper part of the low-velocity-high-attenuation zone is the most mobile part of the zone or that on the average, the top of the zone is deeper than 70 km.The average Qβ of the lithosphere, low-velocity zone, and sub-low-velocity layer (asthenosphere) are approximately 200, 85–110 and 170–200, respectively.  相似文献   

8.
The fundamental mode Love and Rayleigh waves generated by ten earthquakes and recorded across the Tibet Plateau, at QUE, LAH, NDI, NIL, KBL, SHL, CHG, SNG and HKG are analysed. Love- and Rayleigh-wave attenuation coefficients are obtained at time periods of 5–120 s using the spectral amplitudes of these waves for 23 different paths. Love wave attenuation coefficient varies from 0.0021 km?1, at a period of 10 s, to 0.0002 km?1 at a period of 90 s, attaining two maxima at time periods of 10 and 115 s, and two minima at time periods of 25 and 90 s. The Rayleigh-wave attenuation coefficient also shows a similar trend. The very low value for the dissipation factor, Qβ, obtained in this study suggests high dissipation across the Tibetan paths. Backus-Gilbert inversion theory is applied to these surface wave attenuation data to obtain average Qβ?1 models for the crust and uppermost mantle beneath the Tibetan Plateau. Independent inversion of Love- and Rayleigh-wave attenuation data shows very high attenuation at a depth of ~50–120 km (Qβ ? 10). The simultaneous inversion of the Love and Rayleigh wave data yields a model which includes alternating regions of high and low Qβ?1 values. This model also shows a zone of high attenuating material at a depth of ~40–120 km. The very high inferred attenuation at a depth of ~40–120 km supports the hypothesis that the Tibetan Plateau was formed by horizontal compression, and that thickening occurred after the collision of the Indian and Eurasian plates.  相似文献   

9.
The relative contribution of scattering (Q s –1 ) and intrinsic (Q i –1 ) attenuation to the totalS-wave attenuation for the frequencies of 1.5, 3.0, 6.0 and 12.0 Hz has been studied by applying the radiative energy transfer theory, Data of local earthquakes which occurred in northern Greece and were recorded by the permanent telementered network of the Geophysical Laboratory of the University of Thessaloniki have been used. The results show that in this area the scattering attenuation is dominant over all frequencies while intrinsic attenuation is significantly lower. The estimatedQ s –1 andQ i –1 values have frequency dependences off –0.72 andf –0.45, respectively. The frequency dependence ofQ s –1 is the same as that of the codaQ c –1 , obtained by applying the single scattering model, which probably implies that the frequency dependence of the coda wave attenuation is attributed to the frequency dependence of the scattering attenuation.Q c –1 values are very close to scattering attenuation for short lapse times, (10–20 sec), and intermediate between scattering and intrinsic attenuation for the longer lapse times, (50–100 sec). This difference is explained as the result of the depth-dependent attenuation properties and the multiple scattering effects.  相似文献   

10.
A total number of 46 local earthquakes (2.0≤ML≤4.0) recorded in the period 2000–2011 by the Egyptian seismographic network (ENSN) were used to estimate the total (Qt−1), intrinsic (Qi1) and scattering attenuation (Qsc1) in Cairo metropolitan area, Egypt. The multiple lapse time window analysis (MLTWA) under the assumption of multiple isotropic scattering with uniform distribution of scatters was firstly applied to estimate the pair of Le1, the extinction length inverse, and B0, the seismic albedo, in the frequency range 3–24 Hz. To take into account the effect of a depth-dependent earth model, the obtained values of B0 and Le1 were corrected for an earth structure characterized by a transparent upper mantle and a heterogeneous crust. The estimated values of Qt−1, Qsc1 and Qi1 exhibited frequency dependences. The average frequency-dependent relationships of attenuation characteristics estimated for the region are found to be: Qt1=(0.015±0.008)f (−1.02±0.02), Qsc−1=(0.006±0.001)f (−1.01±0.02), and Qi1=(0.009±0.008)f (−1.03±0.02); showing a predominance of intrinsic absorption over scattering attenuation. This finding implies that the pore-fluid contents may have great effect on the attenuation mechanism in the upper crust where the River Nile is passing through the study area. The obtained results are comparable with those obtained in other tectonic regions.  相似文献   

11.
The attenuation characteristics of Indian lithosphere and its comparison with different tectonic settings in the world are determined from the observations of the Q for Lg(QLg)-, and S(QS)-waves in the 1-30 Hz frequency range. The scattering is approximated with a Gaussian distribution of spherical scatterers. To approximate single scattering, we use Dainty's [Geophy. Res. Lett. 8 (11) (1981) 1126] model that attenuation is given by 1/Q(ω) = 1/Qi + g(ω)v/ω, where Qi is intrinsic Q due to anelastic attenuation, v is shear wave velocity, ω is angular frequency, g = ∫n(a)σ da is the total scattering coefficient for S-to-S scattering, n(a) da is the number of scattering spheres of radius a per unit volume, and σ is the scattering cross-section for the sphere. We find that if n(a) is described by a simple two parameter (a0 and c) Gaussian of amplitude c and standard deviation and mean a0, the attenuation data for different regions of the world are well approximated over the frequency band of seismic observations. Our major findings are: (1) the maximum effect of scattering on attenuation occurs at 0.84 Hz or a wavelength of 4.16 km; (2) the values of g are frequency dependent. Values of g are of the order of 10−3 km−1 at 1-30 Hz, varying from 0.0031 to 0.01 and 0.001 to 0.0083 km−1 for tectonically active and stable regions, respectively; (3) regions of active tectonics and seismicity generally have lower Qi values (1000) than that in stable regions (2000); and (4) regions of high Qi value exhibit low intensity of scattering.  相似文献   

12.
Short-period seismograms are synthesized for PKP phases in anelastic Earth models. The synthetics were constructed using a synthetic technique valid at grazing incidence, a source-time function appropriate for deep-focus earthquakes, and an instrument response for either a short-period WWSSN or SRO seismograph. The agreement between predicted and observed amplitudes and spectral ratios requires neither a low-Qα zone at 0.2–2 Hz nor a low or negative P-velocity gradient at the bottom of the outer core. Thin low-Qα zones beneath the inner core boundary fit spectral ratio data that sample the upper 200 km of the inner core but fail to fit data that sample the lower inner core. Only a model having Qα?1?[0.003, 0.004] at 0.2–2 Hz, nearly constant with depth in the inner core, satisfies all of the spectral ratio and amplitude data. The assumption of a bulk viscosity of 10-103 Pa s for the liquid phase of a partially molten inner core combined with the observation of low shear attenuation in the inner core at frequencies less than 0.005 Hz limit the physical parameters associated with two possible attenuation mechanisms: (1) fluid flow and viscous relaxation due to ellipsoidally shaped inclusions of melt, and (2) the solid-liquid phase transformation induced by the stress change during the passage of a seismic wave. Both mechanisms require an order of 0.1% partial melt to reproduce the observed Qα?1. In the outer core, the time constant of the mechanism of phase transformation is predicted to be 104–106 s. Confirmation of small shear attenuation in the inner core in the frequency band of seismic body waves would favor the mechanism of phase transformation.  相似文献   

13.
Pure-path averages for group velocities and specific attenuation have been calculated from individual observations and from path averages for two regionalizations; one original to this study and the other previously devised by Wu. Both are based on four upper-mantle provinces: ocean basin, continent, island arc and mid-ocean ridge. Pure-path group velocities and specific attenuation have also been calculated for combinations of regions and provide well separated regional measurements for such composite regions.Shear-velocity models for pure and combined regions have been derived by a controlled Monte Carlo inversion procedure and indicates that a low-velocity zone is required beneath the oceans, but is not required beneath continents. Models have been produced for pure and combined ocean, ocean-ridge, continent and continent-arc provinces.Q?1R determined from pure-path average group velocities and attenuation coefficients has been regionalized successfully for 2- and 3-region combinations. The resulting pure-path Q?1R for continents is much lower than that for ocean basins and ocean-ridge provinces. Inversion of Q?1R for ocean-ridge provinces shows that the average Qβ for the upper 200 km of these regions is between 85 and 100.  相似文献   

14.
Variability of the Earth’s structure makes a first-order impact on attenuation measurements which often does not receive adequate attention. Geometrical spreading (GS) can be used as a simple measure of the effects of such structure. The traditional simplified GS compensation is insufficiently accurate for attenuation measurements, and the residual GS appears as biases in both Q 0 and η parameters in the frequency-dependent attenuation law Q(f) = Q 0 f η . A new interpretation approach bypassing Q(f) and using the attenuation coefficient χ(f) = γ + πf/Q e(f) resolves this problem by directly measuring the residual GS, denoted γ, and effective attenuation, Q e. The approach is illustrated by re-interpreting several published datasets, including nuclear-explosion and local-earthquake codas, Pn, and synthetic 50–300-s surface waves. Some of these examples were key to establishing the Q(f) concept. In all examples considered, χ(f) shows a linear dependence on the frequency, γ ≠ 0, and Q e can be considered frequency-independent. Short-period crustal body waves are characterized by positive γ SP values of (0.6–2.0) × 10?2 s?1 interpreted as related to the downward upper-crustal reflectivity. Long-period surface waves show negative γ LP ≈ ?1.9 × 10?5 s?1, which could be caused by insufficient modeling accuracy at long periods. The above γ values also provide a simple explanation for the absorption band observed within the Earth. The band is interpreted as apparent and formed by levels of Q e ≈ 1,100 within the crust decreasing to Q e ≈ 120 within the uppermost mantle, with frequencies of its flanks corresponding to γ LP and γ SP. Therefore, the observed absorption band could be purely geometrical in nature, and relaxation or scattering models may not be necessary for explaining the observed apparent Q(f). Linearity of the attenuation coefficient suggests that at all periods, the attenuation of both Rayleigh and Love waves should be principally accumulated at the sub-crustal depths (~38–100 km).  相似文献   

15.
This paper presents the results of a modified two-step inversion algorithm approach to find S wave quality factor Q β(f) given by Joshi (Bull Seis Soc Am 96:2165–2180, 2006). Seismic moment is calculated from the source displacement spectra of the S wave using both horizontal components. Average value of seismic moment computed from two horizontal components recorded at several stations is used as an input to the first part of inversion together with the spectra of S phase in the acceleration record. Several values of the corner frequency have been selected iteratively and are used as inputs to the inversion algorithm. Solution corresponding to minimum root mean square error (RMSE) is used for obtaining the final estimate of Q β(f) relation. The estimates of seismic moment, corner frequency and Q β(f) from the first part of inversion are further used for obtaining the residual of theoretical and observed source spectra which are treated as site amplification terms. The acceleration record corrected for the site amplification term is used for determination of seismic moment from source spectra by using Q β(f) obtained from first part of inversion. Corrected acceleration record and new estimate of seismic moment are used as inputs to the second part of the inversion scheme which is similar to the first part except for use of input data. The final outcome from this part of inversion is a new Q β(f) relation together with known values of seismic moment and corner frequency of each input. The process of two-step inversion is repeated for this new estimate of seismic moment and goes on until minimum RMSE is obtained which gives final estimate of Q β(f) at each station and corner frequency of input events. The Pithoragarh district in the state of Uttarakhand in India lies in the border region of India and Nepal and is part of the seismically active Kumaon Himalaya zone. A network of eight strong motion recorders has been installed in this region since March, 2006. In this study we have analyzed data from 18 local events recorded between March, 2006 and October, 2010 at various stations. These events have been located using HYPO71 and data has been used to obtain frequency-dependent shear-wave attenuation. The Q β(f) at each station is calculated by using both the north-south (NS) and east-west (EW) components of acceleration records as inputs to the developed inversion algorithm. The average Q β(f) values obtained from Q β(f) values at different stations from both NS and EW components have been used to compute a regional average relationship for the Pithoragarh region of Kumaon Himalaya of form Q β(f)?=?(29?±?1.2)f (1.1 ± 0.06).  相似文献   

16.
The frequency dependence of Qβ for seismic waves in a distance range with a maximum of 150 km from the epicentre of the Irpinia earthquake of November 23, 1980 has been sought using displacement spectral ratios computed from strong-motion accelerograms recorded in the region. The method has been applied to calculate the behaviour of Qβ as a function of frequency in the band 0.1–25 Hz, and to investigate whether azimuthal variations appear in seismic Qβ for the lithosphere in central southern Italy. The same result is obtained using data from stations in western south Italy as using data from eastern south Italy, namely,
Qβ(f) = 40f (Hz)
The linear relationship suggest that apparent Qβ depends more on the scale of heterogeneity of the lithosphere, affecting reflection and scattering mechanisms, than on intrinsic energy losses related to the anelasticity of the materials through which the seismic waves propagate.The existence of a peak in Qβ?1 has been investigated in the low-frequency band (0.1–2.5 Hz) using a higher resolution power. A stable result in this low-Qβ zone is not possible on the basis of the available data: only in six Qβ(f) profiles does an evident minimum exist, between 0.2 and 1 Hz, while in nine cases the curves are monotonically increasing from the lowest observable frequencies; a further nine cases appear of uncertain interpretation.  相似文献   

17.
In this study, the attenuation properties of the crust and the quality factor of S wave in eastern Anatolia (Turkey) were determined by local earthquakes for two different areas, Oltu and Erzurum. Seismic wave attenuation can be changed with high pressure or structural effects. Therefore, we argued that the estimation of attenuation coefficient in seismic active zones in Eastern Anatolia is a very useful tool to determine seismic activities. It uses regional waveform data set from two stations, OLT and ERZ, for 95 events that occurred in these regions between 2001 and 2005. The attenuation has been determined using the Chobra–Alexeev model based on the epicenter distance–amplitude relations. This model allows for investigation of the effects of variations in attenuation properties for different areas. We introduced a new magnitude formula for these areas using the amplitude normalization methods for reference values ML=4, so as to correct effects of the magnitudes. We also determined velocity of seismic waves. The average attenuation coefficient (α), average quality factor (Qs) and P and S waves velocities were obtained with normalized amplitude values for Erzurum (ERZ) and Oltu (OLT) as 0.0135 km−1, 37, 6.20 km/s and 3.38 km/s and 0.0151, 34, 6.13 and 3.48.  相似文献   

18.
Based on the scattering coda model by which local and regional earthquakes are interpreted (K. Aki, 1969), and using observational coda data of 68 aftershocks of the 1985 Luquan, Yunnan earthquake registered by the VGK seismographs installed at 12 stations in the Yunnan regional short-period network, theQ-values of coda waves are calculated respectively for 6 time intervals. It is observed that within the frequency range of 0.40–1.65 Hz of the observed data, theQ-values are closely related with the frequencies and the calculated codaQ ranges between 80–240 with the coefficient of frequency dependence η=0.45. The calculated source factorsB(f> p) of the coda waves which indicate the scattering strength are mostly within the order 10?23–10?24. Areas with lowQ-values present high scattering. It should be noted that by comparing data obtained before and after the Luquan earthquake, clear changes can be detected in theQ-values measured at stations close to the epicentral region, and that theQ-values of the aftershock coda are less than about one half of the pre-shock values. It may be mentioned that the time-dependent regional variations of theQ-values might possibly bring about practical significance in earthquake prediction. Moreover, aftershock focal parameters are determined. Through discussions on the quantitative relations between the focal parameters, we get: 1gE=1.59M L+ 11.335;E=(2.10 × 10?5)M 0; length of focal rupturea=0.40?0.80 km for 3.0≤M L<5.0 events; stress drop Δσ=(6.0–130) ×105 Pa. Through interpretation of the data, we have also learned the important characteristics that there is no linear relation between the stress drops and the earthquake magnitudes.  相似文献   

19.
The attenuation in the vicinity of the geothermal anomaly at Urach was determined by means of two near-vertical reflection profiles. The attenuation in the sediments and in the upper crust (3-4 km depth) was estimated by interpretation of the first (refracted) arrivals. For calculating the attenuation, the amplitude decay with respect to distance was used. Corrections for the spread factor, i.e. the geometric amplitude divergence was deduced from the traveltime curves. Below the anomaly, higher attenuation values (Q?1~ 0.008) were observed compared with those in the undisturbed crust (Q?1~ 0.002). This effect is probably due to the cracks and fissures in the upper part of the crystalline basement. The attenuation in the middle and lower crust was determined using near-vertical reflections from this depth interval. The use of the spectral ratio method leads to higher values of the effective attenuation Q?1eff below the heat flow anomaly compared to those of the‘ normal’crust. This zone of high Q?1eff coincides with the low velocity body below the heat flow anomaly. Both effects, the higher attenuation and the lower velocities, could be caused by high temperatures, cracks and fissures in the crust.  相似文献   

20.
Seismic coda wave attenuation ( $ Q_{\text{c}}^{ - 1} $ ) characteristics in the Garhwal region, northwestern Himalaya is studied using 113 short-period, vertical component seismic observations from local events with hypocentral distance less than 250?km and magnitude range between 1.0 to 4.0. They are located mainly in the vicinity of the Main Boundary Thrust (MBT) and the Main Central Thrust (MCT), which are well-defined tectonic discontinuities in the Himalayas. Coda wave attenuation ( $ Q_{\text{c}}^{ - 1} $ ) is estimated using the single isotropic scattering method at central frequencies 1.5, 3, 5, 7, 9, 12, 16, 20, 24 and 28?Hz using several starting lapse times and coda window lengths for the analysis. Results show that the ( $ Q_{\text{c}}^{ - 1} $ ) values are frequency dependent in the considered frequency range, and they fit the frequency power law ( $ Q_{\text{c}}^{ - 1} \left( f \right) = Q_{0}^{ - 1} f^{ - n} $ ). The Q 0 (Q c at 1?Hz) estimates vary from about 50 for a 10?s lapse time and 10?s window length, to about 350 for a 60?s lapse time and 60?s window length combination. The exponent of the frequency dependence law, n ranges from 1.2 to 0.7; however, it is greater than 0.8, in general, which correlates well with the values obtained in other seismically and tectonically active and highly heterogeneous regions. The attenuation in the Garhwal region is found to be lower than the Q c ?1 values obtained for other seismically active regions of the world; however, it is comparable to other regions of India. The spatial variation of coda attenuation indicates that the level of heterogeneity decreases with increasing depth. The variation of coda attenuation has been estimated for different lapse time and window length combinations to observe the effect with depth and it indicates that the upper lithosphere is more active seismically as compared to the lower lithosphere and the heterogeneity decreases with increasing depth.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号