首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Northern Canadian Wetlands: Net Ecosystem CO2 Exchange and Climatic Change   总被引:3,自引:0,他引:3  
Northern Canadian peatlands represent a long term sink for atmospheric carbon dioxide (CO2), however there is concern they may become a net source of CO2 due to climatic change. Climatic change is expected to result in significant changes in regional hydrology in boreal and subarctic regions of Canada. A hydrologic model predicted a summer water table drop of 0.14 m in northern Canadian fens given an increase in summer temperature and rainfall of 3°C and 1 mm d-1, respectively. Moreover, surface peat temperature increased by 2.3°C. Net ecosystem exchange of CO2 was modelled using these modelled hydrologic and thermal changes with respiration:peat temperature and water table:net ecosystem production relationships developed from measurements at wetlands in northern Sweden and near Churchill, Manitoba. Model results indicate that the net atmospheric CO2 sink function of fens may be enhanced under future 2 × CO2 scenarios, while bogs may become a net source of atmospheric CO2. If the net ecosystem productivity response to the new hydrologic conditions was ignored then the model predicts a decrease in summer carbon storage for all peatland types.  相似文献   

2.
Most Precambrian Shield forested catchments have some wetland component. Even small riparian wetlands are important modifiers of stream chemistry. Dissolved organic matter (DOM) is one of the most important products exported by wetlands in streams. Stratigraphic control of hydraulic conductivity generally leads to decreasing conductivity with depth. Thus important flowpaths occur in the uppermost organic rich layers and are reflected in chemical profiles of dissolved organic carbon (DOC). Accumulation of DOC in peat porewaters is the net effect of production, consumption and transport. DOC profiles vary with degree of interaction with the surrounding upland catchment and distance from the edge of the wetland as well as internal processes within the wetland. In wetlands, DOM production is offset by flushing resulting in decreasing DOC concentrations with increasing flows. Despite old carbon (2,000 to 3,000 years) at relatively shallow depths, 14C activity in DOC exported from wetlands is mostly modern (recent carbon), consistent with shallow flowpaths and export of DOM from shallow organic rich horizons. In contrast, the source area for DOM in upland catchments with developed B horizon soils increases with antecedent soil moisture conditions resulting in increasing DOC concentrations with higher stream flows. Activity of 14C in stream DOC from upland catchments span a range from low activities (older carbon) similar to B horizon soil water during dry moisture conditions to values slightly less than modern (more recent carbon) during high moisture conditions. The more modern carbon activities reflect the increased contribution of the organic rich litter and A horizon soil layers in the area immediately bordering the stream under wet antecedent moisture conditions. Reduced hydrologic export or loss of wetlands under drier climatic conditions may result in in larger fluctuations in stream DOC concentrations and reduced DOM loads to lakes.  相似文献   

3.
半干旱草原温室气体排放/吸收与环境因子的关系研究   总被引:7,自引:0,他引:7  
静态箱—气相色谱法对内蒙古半干旱草原连续两年的实验观测研究结果表明,内蒙古草原是大气CO2和N2O的排放源,和CH4的汇。在植物生长不同季节,草原生态系统排放/吸收温室气体CO2、CH4和N2O的日变化形式各有不同,其中在植物生长旺季日变化形式最具特征。三种温室气体的季节排放/吸收高峰主要出现在土壤湿度较大的春融期和降雨较为集中时期。对所有草原植物生长季节,CO2净排放日变化形式均为白天出现排放低值,夜间出现排放高值。较高的温度有利于CO2排放,地上生物量决定着光合吸收CO2量值的高低。影响半干旱草原吸收CH4和排放N2O日变化形式的关键是土壤台水量和供氧状况,日温变化则主要影响日变化强度。吸收CH4和排放N2O的季节变化与土壤湿度季节变化分别呈线性反、正相关,相关系数均在0.4-0.6之间。自由放牧使CO2、N2O和CH4交换速率日较差降低,同时使N2O和CH4年度排放/吸收量减少和CO2年度排放量增加。  相似文献   

4.
冻融循环是影响土壤碳氮生物地球化学过程较为重要的因素。在全球变化背景下,冻融作用对冻土区土壤碳库稳定性及其关键生物地球化学过程影响研究是当前国际热点,尤其是冻融作用影响下多年冻土区泥炭地土壤有机碳矿化研究目前仍未明确。选取我国大兴安岭多年冻土区泥炭地表层(0~15 cm)和深层(15~30 cm)土壤,采用冻融试验及室内培养方法,探索分析了冻融作用影响下泥炭地土壤有机碳矿化特征,并从土壤活性碳和土壤酶活性角度阐述了影响机制。结果表明在短期的培养中,土壤有机碳矿化量在483~2836 mg/kg间波动,而冻融循环均显著降低了表层和深层土壤有机碳矿化量,并且对深层土壤有机碳的矿化抑制作用更为明显,高达76%。值得注意的是,冻融循环却明显促进了CH4的排放,尤其是表层土壤,高达145%。冻融循环作用也显著增加了土壤可溶性有机碳(DOC)含量,但却降低了土壤微生物量碳(MBC)以及土壤纤维素酶、淀粉酶和蔗糖酶活性。冻融作用下低的土壤酶活性以及相对低质量碳是抑制土壤有机碳矿化的原因。全球变暖背景下,与单纯温度增加所导致的土壤有机碳矿化释放量相比,冻融循环作用能降低大兴安岭泥炭地活动层中土壤有机碳在短期内碳的释放。  相似文献   

5.
半干旱草原温室气体排放/吸收与环境因子的关系研究   总被引:13,自引:3,他引:10  
静态箱一气相色谱法对内蒙古半干旱草原连续两年的实验观测研究结果表明,内蒙古草原是大气CO2和N2O的排放源,而是CH4的汇.在植物生长不同季节,草原生态系统排放/吸收温室气体CO2,CH4和N2O的日变化形式各有不同,其中在植物生长旺季日变化形式最具特征.3种温室气体的季节排放/吸收高峰主要出现在土壤湿度较大的春融和降雨较为集中时期.所有草原植物生长季节CO2净排放日变化形式均为白天出现排放低值,夜间出现排放高值.较高的温度有利于CO2排放,地上生物量决定着光合吸收CO2量值的高低.影响半干旱草原吸收CH4和排放N2O日变化形式的关键是土壤含水量和供氧状况,日温变化则主要影响日变化强度.吸收CH4和排放N2O的季节变化与土壤湿度季节变化分别呈线性反、正相关,相关系数均在0.4~0.6之间.自由放牧使CO2、N2O和CH4交换速率日较差降低,同时使N2O和CH4年度排放/吸收量减少和CO2年度排放量增加.  相似文献   

6.
中国城市固体废弃物甲烷排放研究   总被引:2,自引:0,他引:2  
The greenhouse effect of methane (CH4) is only inferior to that of carbon dioxide (CO2). As an important anthropogenic emission source, the calculation of the emission amount of CH4 from waste treatment in landfills plays an important role in compiling greenhouse gases inventory and in estimating the climate change effects caused by increasing of greenhouse gases. Based on the previous work, and according to the sampling and analysis on municipal solid waste (MSW) in typical cities, the degradable organic carbon (DOC) percentile was identified in typical cities in recent years. According to the IPCC greenhouse gases inventory guideline and default method of CH4 emission from MSW landfills, and in light of MSW managing situation in different regions, the amount of CH4 emission was calculated. The results show that the amount of CH4 emission decreases geographically from east to west and it increases temporally from 1994 to 2004 in China.  相似文献   

7.
Scenarios indicate that the air temperature will increase in high latitude regions in coming decades, causing the snow covered period to shorten, the growing season to lengthen and soil temperatures to change during the winter, spring and early summer. To evaluate how a warmer climate is likely to alter the snow cover and soil temperature in Scots pine stands of varying ages in northern Sweden, climate scenarios from the Swedish regional climate modelling programme SWECLIM were used to drive a Soil-Vegetation-Atmosphere Transfer (SVAT)-model (COUP). Using the two CO2 emission scenarios A and B in the Hadley centres global climate model, HadleyA and HadleyB, SWECLIM predicts that the annual mean air temperature and precipitation will increase at most 4.8°C and 315 mm, respectively, within a century in the study region. The results of this analysis indicate that a warmer climate will shorten the period of persistent snow pack by 73–93 days, increase the average soil temperature by 0.9–1.5°C at 10 cm depth, advance soil warming by 15–19 days in spring and cause more soil freeze–thaw cycles by 31–38%. The results also predict that the large current variations in snow cover due to variations in tree interception and topography will be enhanced in the coming century, resulting in increased spatial variability in soil temperatures.  相似文献   

8.
Philip Camill 《Climatic change》2005,68(1-2):135-152
Permafrost covers 25% of the land surface in the northern hemisphere, where mean annual ground temperature is less than 0°C. A 1.4–5.8 °C warming by 2100 will likely change the sign of mean annual air and ground temperatures over much of the zones of sporadic and discontinuous permafrost in the northern hemisphere, causing widespread permafrost thaw. In this study, I examined rates of discontinuous permafrost thaw in the boreal peatlands of northern Manitoba, Canada, using a combination of tree-ring analyses to document thaw rates from 1941–1991 and direct measurements of permanent benchmarks established in 1995 and resurveyed in 2002. I used instrumented records of mean annual and seasonal air temperatures, mean winter snow depth, and duration of continuous snow pack from climate stations across northern Manitoba to analyze temporal and spatial trends in these variables and their potential impacts on thaw. Permafrost thaw in central Canadian peatlands has accelerated significantly since 1950, concurrent with a significant, late-20th-century average climate warming of +1.32 °C in this region. There were strong seasonal differences in warming in northern Manitoba, with highest rates of warming during winter (+1.39 °C to +1.66 °C) and spring (+0.56 °C to +0.78 °C) at southern climate stations where permafrost thaw was most rapid. Projecting current warming trends to year 2100, I show that trends for north-central Canada are in good agreement with general circulation models, which suggest a 4–8 °C warming at high latitudes. This magnitude of warming will begin to eliminate most of the present range of sporadic and discontinuous permafrost in central Canada by 2100.  相似文献   

9.
基于GTAP8数据库,构建了2004年和2007年全球多区域投入产出(MRIO)表,测算了中国、美国、欧盟和日本基于生产端和消费端的碳排放量,对比了中、美、欧、日各自对外贸易隐含碳特征,分析了中美、中欧、中日双边贸易中的隐含碳特点。结果表明:2004和2007年,中国基于生产端的碳排放高出消费端15%以上,而美、欧、日则低5%左右;中国是隐含碳净出口国,而美、欧、日则属于隐含碳净进口国;中国出口隐含碳最高的前三个行业依次是设备制造业、纺织服装业和其他制造业;美、欧出口隐含碳最多的行业则是设备制造业、交通业和石化工业,日本的出口隐含碳高度集中于设备制造业。  相似文献   

10.
We examined the annual exchange of CO2 between the atmosphere and moist tussock and dry heath tundra ecosystems (which together account for over one-third of the low arctic land area) under ambient field conditions and under increased winter snow deposition, increased summer temperatures, or both. Our results indicate that these two arctic tundra ecosystems were net annual sources of CO2 to the atmosphere from September 1994 to September 1996 under ambient weather conditions and under our three climate change scenarios. Carbon was lost from these ecosystems in both winter and summer, although the majority of CO2 evolution took place during the short summer. Our results indicate that (1) warmer summer temperatures will increase annual CO2 efflux from both moist and dry tundra ecosystems by 45–55% compared to current ambient temperatures; (2) deeper winter snow cover will increase winter CO2 efflux in both moist and dry tundra ecosystems, but will decrease net summer CO2 efflux; and (3) deeper winter snow cover coupled with warmer summer temperatures will nearly double the annual amount of CO2 emitted from moist tundra and will result in a 24% increase in the annual CO2 efflux of dry tundra. If, as predicted, climate change alters both winter snow deposition and summer temperatures, then shifts in CO2 exchange between the biosphere and atmosphere will likely not be uniform across the Arctic tundra landscape. Increased snow deposition in dry tundra is likely to have a larger effect on annual CO2 flux than warmer summer temperatures alone or warmer temperatures coupled with increased winter snow depth. The combined effects of increased summer temperatures and winter snow deposition on annual CO2 flux in moist tundra will be much larger than the effects of either climate change scenario alone.  相似文献   

11.
内蒙古草原温室气体排放日变化规律研究   总被引:11,自引:0,他引:11  
采用静态值-气相色谱法研究内蒙古草原温室气体N2O、CO2、CH4与大气交换的日变化规律。CO2日排放变化形式基本相同,和大气交换的总结果是向大气排放,影响草原N2O排放日变化形式的关键是土壤含水量和表层土壤理化特性,日温变化主要影响其日变化强度;影响草原CH4日变化形式的关键因子是土壤水分和供氧状况,而温度和植物的生长状况则影响吸收强度,利用内蒙古草原温室气候排放相对固定的日变化形式,可以对相同生产季内每周1次的观测结果进行矫正。  相似文献   

12.
In this paper,the RIEMS 2.0 model,source emission in 2006 and 2010 are used to simulate the distributions and radiative effects of different anthropogenic aerosols over China.The comparison between the results forced by source emissions in 2006 and 2010 also reveals the sensitivity of the radiative effects to source emission.The results are shown as follows:(1) Compared with those in 2006,the annual average surface concentration of sulfate in 2010 decreased over central and eastern China with a range of-5 to 0 μg/m~3;the decrease of annual average aerosol optical depth of sulfate over East China varied from 0.04 to 0.08;the annual average surface concentrations of BC,OC and nitrate increased over central and eastern China with maximums of 10.90,11.52 and 12.50μg/m~3,respectively;the annual aerosol optical depths of BC,OC and nitrate increased over some areas of East China with extremes of 0.006,0.007 and 0.008,respectively.(2)For the regional average results in 2010,the radiative forcings of sulfate,BC,OC,nitrate and their total net radiative forcing at the top of the atmosphere over central and eastern China were-0.64,0.29,-0.41,-0.33 and-1.1 W/m~2,respectively.Compared with those in 2006,the radiative forcings of BC and OC in 2010 were both enhanced,while that of sulfate and the net radiative forcing were both weakened over East China mostly.(3)The reduction of the cooling effect of sulfate in 2010 produced a warmer surface air temperature over central and eastern China;the maximum value was 0.25 K.The cooling effect of nitrate was also slightly weakened.The warming effect of BC was enhanced over most of the areas in China,while the cooling effect of OC was enhanced over the similar area,particularly the area between Yangtze and Huanghe Rivers.The net radiative effect of the four anthropogenic aerosols generated the annual average reduction and the maximum reduction were-0.096 and-0.285 K,respectively,for the surface temperature in 2006,while in 2010 they were-0.063 and-0.256 K,respectively.In summary,the change in source emission lowered the cooling effect of anthropogenic aerosols,mainly because of the enhanced warming effect of BC and weakened cooling effect of scattering aerosols.  相似文献   

13.
成都平原稻田甲烷排放的实验研究   总被引:9,自引:0,他引:9  
根据1996~1999年四个稻季的观测资料,分析了成都平原单季稻甲烷排放的季节变化和年际变化特征.结果表明:在水稻生长季节甲烷排放通量变化很大,在分蘖期和成熟期一般会出现峰值.年际间的通量变化也很大,其年均排放通量的变化范围在2.35~33.95mg m-2 h-1之间.4年的平均排放通量为12 mg m-2 h-1,与四川乐山的7年平均值30mg m-2 h-1相比,存在着明显的地区差异.同时分析讨论了温度、施肥、水稻品种、土壤氧化还原电位(Eh)以及稻田水位等诸多因素对稻田甲烷排放的影响.结果表明:在成都平原水稻生长季节的平均气温对CH4的平均排放通量影响不大;而气温对CH4排放的日变化有相对重要的影响,但气温对甲烷排放日变化的影响与水稻植物体的生长阶段有关;发现了水稻植物体(根、茎、叶)重量对CH4排放的重要作用.讨论了合理使用肥料和施肥量,控制水位和Eh值对稻田CH4的减排作用,提出优化组合诸影响因子,以充分发挥其减排潜力.  相似文献   

14.
New data on the diurnal variability of methane emission in summer (2013-2014) from West Siberia peatland ecosystems are presented. It is demonstrated that diurnal variations in methane emission differ much depending on a peatland ecosystem under study. Diurnal variations in methane emission in the fens and hollows of the ridge-hollow complex (RHC) are revealed as well as their reproducibility in 2013-2014. The maximum emission is registered in the daytime, and the minimum is observed at night. There is no diurnal variation in methane emission in ryams (pine bogs) and ridges of RHC. It is revealed that in the upper layer of peat (at the depth up to 10 cm for hollows and at the depth of 2 and 5 cm for fens) the contribution of temperature variability to methane emission variations in fens and hollows is 15-20%. The multiple linear regression with peat temperature at several depths allows explaining 44-54% of the variability of methane flux from peatlands. No significant correlation between methane fluxes and the temperature of peat and air was identified in the diurnal cycle in ryams and ridges.  相似文献   

15.
应用初步建立的全球二维大气化学模式,对工业革命以来甲烷的长期变化进行了模拟研究。模式将CH4、CO和NOx排放源方案进行了参数化。在考虑了CH4排放源以及对OH浓度有重要影响的CO和NOx排放源的长期变化的基础上,模拟了CH4和OH浓度自1840年到20世纪90年代的长期变化趋势。结果表明,工业革命前的大气甲烷体积分数和年排放总量分别为760×10-9和280Tg,1991年大气甲烷的体积分数和年排放总量分别为1611.9×10-9和533.9Tg。而对流层中OH的数密度则由1840年的7.17×105cm-3变化到1991年的5.79×105cm-3,下降了19%。如果CH4、CO及NOx这三种排放源继续按给定的方案增长,那么到2020年大气甲烷的体积分数和年排放总量将增加为2090.7×10-9和966.2Tg,而OH的数密度将为5.47×105cm-3,比1840年降低24%。  相似文献   

16.
Field measurements were made from June 2001 to May 2002 to evaluate the effect of crop residue application and temperature on CO2, CH4, and N2O emissions within an entire rice-wheat rotation season.Rapeseed cake and wheat straw were incorporated into the soil at a rate of 2.25 t hm-2 when the rice crop was transplanted in June 2001. Compared with the control, the incorporation of rapeseed cake enhanced the emissions of CO2, CH4, and N2O in the rice-growing season by 12.3%, 252.3%, and 17.5%,respectively, while no further effect was held on the emissions of CO2 and N2O in the following wheatgrowing season. The incorporation of wheat straw enhanced the emissions of CO2 and CH4 by 7.1%and 249.6%, respectively, but reduced the N2O emission by 18.8% in the rice-growing season. Significant reductions of 17.8% for the CO2 and of 12.9% for the N2O emission were observed in the following wheatgrowing season. A positive correlation existed between the emissions of N2O and CO2 (R2 = 0.445, n =73, p < 0.001) from the rice-growing season when N2O was emitted. A trade-off relationship between the emissions of CH4 and N2O was found in the rice-growing season. The CH4 emission was significantly correlated with the CO2 emission for the period from rice transplantation to field drainage, but not for the entire rice-growing season. In addition, air temperature was found to regulate the CO2 emissions from the non-waterlogged period over the entire rice-wheat rotation season and the N2O emissions from the nonwaterlogged period of the rice-growing season, which can be quantitatively described by an exponential function. The temperature coefficient (Q10) was then evaluated to be 2.3±0.2 for the CO2 emission and 3.9±0.4 for the N2O emission, respectively.  相似文献   

17.
1992年大气甲烷增长速率异常 下降的模拟研究   总被引:4,自引:0,他引:4  
张仁健  王明星 《大气科学》2000,24(3):355-362
应用初步建立的全球二维大气化学模式,模拟了甲烷、一氧化碳和OH自由基自工业革命以来的长期变化,对1992年大气中甲烷增长速率突然下降这一异常现象的可能原因如平流层O3下降,皮纳图博火山引起对流层温度下降、甲烷排放源减少等逐一进行了定量研究。研究还发现一氧化碳排放源的减少是另一重要影响因子,并进行了验证。结果表明,1992年甲烷增长速率急剧下降的主要原因来自甲烷和一氧化碳排放源的减少。  相似文献   

18.
An ocean biogeochemistry model was developed and incorporated into a global ocean general circulation model (LICOM) to form an ocean biogeochemistry general circulation model (OBGCM). The model was used to study the natural carbon cycle and the uptake and storage of anthropogenic CO2 in the ocean. A global export production of 12.5 Pg C yr-1 was obtained. The model estimated that in the pre-industrial era the global equatorial region within 15o of the equator released 0.97 Pg C yr-1 to the atmosphere, which was balanced by the gain of CO2 in other regions. The post-industrial air-sea CO2 flux indicated the oceanic uptake of CO2 emitted by human activities. An increase of 20-50 mol kg-1 for surface dissolved inorganic carbon (DIC) concentrations in the 1990s relative to pre-industrial times was obtained in the simulation, which was consistent with data-based estimates. The model generated a total anthropogenic carbon inventory of 105 Pg C as of 1994, which was within the range of estimates by other researchers. Various transports of both natural and anthropogenic DIC as well as labile dissolved organic carbon (LDOC) were estimated from the simulation. It was realized that the Southern Ocean and the high-latitude region of the North Pacific are important export regions where accumulative air-sea CO2 fluxes are larger than the DIC inventory, whereas the subtropical regions are acceptance regions. The interhemispheric transport of total natural carbon (DIC+LDOC) was found to be northward (0.11 Pg C yr-1), which was just balanced by the gain of carbon from the atmosphere in the Southern Hemisphere.  相似文献   

19.
The seasonal cycle of atmospheric CO2 at surface observation stations in the northern hemisphere is driven primarily by net ecosystem production (NEP) fluxes from terrestrial ecosystems. In addition to NEP from terrestrial ecosystems, surface fluxes from fossil fuel combustion and ocean exchange also contribute to the seasonal cycle of atmospheric CO2. Here the authors use the Goddard Earth Observing System-Chemistry (GEOS-Chem) model (version 8-02-01), with modifications, to assess the impact of these fluxes on the seasonal cycle of atmospheric CO2 in 2005. Modifications include monthly fossil and ocean emission inventories. CO2 simulations with monthly varying and annual emission inventories were carried out separately. The sources and sinks of monthly averaged net surface flux are different from those of annual emission inventories for every month. Results indicate that changes in monthly averaged net surface flux have a greater impact on the average concentration of atmospheric CO2 in the northern hemisphere than on the average concentration for latitudes 30-90°S in July. The concentration values differ little between both emission inventories over the latitudinal range from the equator to 30°S in January and July. The accumulated impacts of the monthly averaged fossil and ocean emissions contribute to an increase of the total global monthly average of CO2 from May to December.An apparent discrepancy for global average CO2 concentration between model results and observation was because the observation stations were not sufficiently representative. More accurate values for monthly varying net surface flux will be necessary in future to run the CO2 simulation.  相似文献   

20.
采用静态暗箱采样—气相色谱/化学发光分析相结合的方法,对晋南地区盐碱地不同小麦秸秆还田量裸地土壤夏、秋季(2008年6~10月)的甲烷(CH4)、二氧化碳(CO2)、氧化亚氮(N2O)和一氧化氮(NO)交换通量进行了原位观测。结果表明:观测期内,秸秆全还田(FS)、秸秆一半还田(HS)和秸秆不还田(NS)处理土壤—大气间CH4、CO2、N2O和NO平均交换通量分别为-0.8±2.7、-1.4±2.3、-6.5±1.8μg(C).m-2.h-1(CH4),267.1±23.1、212.0±17.8、188.5±13.6mg(C).m-2.h-1(CO2),20.7±3.0、16.3±2.3、14.7±1.7μg(N).m-2.h-1(N2O),3.9±0.5、3.4±0.5、3.0±0.4μg(N).m-2.h-1(NO)。交换通量表现出明显的季节变化趋势,灌溉、降雨和温度变化是影响该趋势的主要因素。相对于NS处理,FS和HS处理降低了累积CH4吸收量(66%和59%),增加了累积CO2(42%和12%)、N2O(41%和9%)和NO(30%和13%)排放量,因此,秸秆还田促进了农田土壤总的温室气体排放。计算得到FS和HS处理小麦秸秆的CO2、N2O、NO排放系数分别为73.4%±1.6%和43.3%±1.0%(CO2)、0.37%±0.01%和0.17%±0.00%(N2O)、0.06%±0.00%和0.05%±0.00%(NO),FS处理的排放系数显著高于HS处理,且均低于同一实验地种植玉米、施肥农田的小麦秸秆排放系数(N2O和NO排放系数分别为2.32%和0.42%)。可见,在采用排放因子方法估算还田秸秆CO2、N2O和NO排放量时,应考虑秸秆还田量、农作物种植和施肥因素的影响。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号