首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Bristol Channel, including onshore areas, is critical for reconstructing Pleistocene glacial limits in southwest Britain. Debate about the precise regional southern limits of Devensian (Oxygen Isotope Stage (OIS) 2) and Anglian (OIS 12) glaciations has recently been rekindled. The Paviland Moraine (Llanddewi Formation), Gower, south Wales is conventionally regarded as Anglian in age. Its ‘old’ age has been based on reported highly weathered clasts, a subdued morphology and ‘field relationships’ to fossil beach sediments of now disputed age(s). Relatively little about its sedimentary characteristics has been previously published. This paper: (i) presents new sedimentological evidence including lithofacies analysis, XRF analysis and electrical resistivity tomography (ERT) of sediment cores and electrical resistivity of a tied 3D field grid; (ii) re‐assesses the proposed ‘old’ age; (iii) suggests a likely depositional origin; and (iv) discusses implications for regional glacial dynamics and future research priorities. The sediments comprise mostly dipping glacigenic diamict units containing mainly Welsh Coalfield erratics. The location and subdued moraine morphology are attributed to the hydrological influence of the underlying limestone, the local topography and ice‐sheet behaviour rather than to long‐term degradation. Moraine formation is attributed mainly to sediment gravity flows that coalesced to produce an ice‐frontal apron. Neither geochemical data nor clasts indicate prolonged subaerial weathering and in‐situ moraine sediments are restricted to a limestone plateau above and inland of fossil beach sediments. We recommend rejecting the view that the moraine represents the only recognized OIS 12 deposit in Wales and conclude that instead it marks the limit of relatively thin Last Glacial Maximum (LGM) ice in west Gower. This requires revision of the accepted view of a more restricted LGM limit in the area. We suggest that substrate hydrological conditions may be a more influential factor in moraine location and form than is currently acknowledged.  相似文献   

2.
During the last (MIS 2) and older glaciations of the North Sea, a North Sea Lobe (NSL) of the British-Irish Ice Sheet flowed onshore and terminated on the lowlands of eastern England, constructing inset sequences of either substantial ice-marginal deposits and tills or only a thin till veneer, indicative of complex and highly dynamic glaciological behaviour. The glaciation limit represented by the Marsh Tills and the Stickney and Horkstow Moraines in Lincolnshire is regarded as the maximum margin of the NSL during MIS 2 and was attained at ∼19.5 ka as determined by OSL dating of overridden lake sediments at Welton le Wold. A later ice marginal position is recorded by the Hogsthorpe-Killingholme Moraine belt, within which ice-walled lake plains indicate large scale ice stagnation rapidly followed ice advance at ∼18.4 ka based on dates from supraglacial lake deposits. The NSL advanced onshore in North Norfolk slightly earlier constructing a moraine ridge at Garrett Hill at ∼21.5ka. In addition to the large ice-dammed lakes in the Humber and Wash lowlands, we propose that an extensive Glacial Lake Lymn was dammed in the southern Lincolnshire Wolds by the NSL ice margin at the Stickney Moraine. Previous proposals that older glacier limits might be recorded in the region, lying between MIS 2 and MIS 12 deposits, are verified by our OSL dates on the Stiffkey moraine, which lies immediately outside the Garrett Hill moraine and appears to be of MIS 6 age.  相似文献   

3.
4.
Timing of the last deglaciation in Lithuania   总被引:1,自引:1,他引:0  
Boulders from the Grūda Moraine, which is associated with the maximum extent of the Scandinavian Ice Sheet (SIS) during the last glaciation, and the Baltija (also referred to as the South Lithuanian), the Middle and North Lithuanian moraines, which are associated with recessional stages of the SIS, were sampled for surface exposure dating using 10Be. By combining these data with existing radiocarbon ages, we developed a chronology for the retreat of the SIS margin in Lithuania. Our new 10Be ages suggest that the SIS margin began to retreat from its maximum extent at 18.3 ± 0.8 10Be kyr. Based on a probable correlation of the Baltija Moraine with the Pomeranian Moraine in Poland, we infer that the Baltija Moraine was formed following a re-advance of the SIS margin. The ice margin retreated from the Baltija position at 14.0 ± 0.4 10Be kyr. The SIS-margin retreat paused at least two more times to form the Middle Lithuanian Moraine at 13.5 ± 0.6 10Be kyr and the North Lithuanian Moraine (tentatively correlated to the Pajūris Moraine) at 13.3 ± 0.7 10Be kyr. Subsequent ice-margin retreat from the North Lithuanian Moraine represented the final deglaciation of Lithuania. Direct dating of these moraines better constrains the relation of ice-margin positions in Lithuania to those in adjacent countries as well as the SIS response to climate change.  相似文献   

5.
We determined in situ cosmogenic 10Be ages for nine boulders sampled on the Salpausselkä I (Ss I) Moraine. Previous dating of this moraine indicated that it formed during the Younger Dryas Stadial along the southern margin of the Scandinavian Ice Sheet in southern Finland. Our new exposure ages range from 10.9±1.0 to 13.5±1.2 10Be ka, with an error-weighted mean age of 12.4±0.7 10Be ka. Our results confirm four previous 10Be ages obtained 40 km northeast of our sample location. The combined data (n=13) indicate that retreat from the Ss I Moraine occurred at 12.5±0.7 10Be ka, in excellent agreement with an age of 12.1 ka for retreat from the Ss I Moraine based on varve chronologies. These results identify the Ss I Moraine as among the best-dated margins associated with Late Quaternary ice sheets.  相似文献   

6.
Analysis of 2D and 3D seismic records from the continental shelf off western Norway, in combination with chronological constraints from 14C dates, has led to a model for the glacial development in these shelf areas between c. 15 and 13 14C ka BP. On the shallow Måløy Plateau adjacent to the Norwegian Channel, iceberg scours are preserved below a prominent moraine ridge, which by correlation to the Norwegian Channel indicate ice retreat at c. 15 14C ka BP. Subsequently, the ice advanced across the scoured surface and deposited a till sheet before stabilizing to deposit a prominent moraine, termed the Bremanger Moraine. Based on location on the shelf, seismic stratigraphy, morphology and C dates the Bremanger Moraine is correlated with a significant moraine on the continental shelf off Trøndelag. We suggest that these features are products of a regional glacial event, the Bremanger Event, dated to <15–13.3 14C ka BP. The Bremanger Event is probably a result of the deteriorating climatic conditions in the NE Atlantic during Heinrich event 1.  相似文献   

7.
This study describes the origin and age of a body of massive ground ice exposed in the headwall of a thaw slump in the Red Creek valley, central Yukon, Canada. The site is located beyond the limits of Pleistocene glaciation in central Yukon and within the southern limit of the modern continuous permafrost zone. The origin of the massive ground ice, which is preserved under a fine-grained diamicton containing thin layers of tephra, was determined through ice petrography, stable O-H isotope composition of the ice, and gas composition of occluded air entrapped in the ice. The age of the massive ground ice was established by identifying the overlying tephra and radiocarbon dating of a “muck” deposit preserved within the ice. Collectively, the results indicate that the massive ground ice formed by snow densification with limited melting-refreezing and is interpreted as being a buried perennial snowbank. The muck deposit within the ice, which yielded an age of 30,720 ± 340 14C a BP, and the Dawson tephra (25,300 14C a BP) overlying the perennial snowbank, indicates that the snowbank accumulated at roughly the transition between marine isotope stages 3 and 2. Dry climatic conditions at this time and possibly high winds enabled the snowbank to accumulate in the absence of extensive local valley glaciation as occurred in the mountains to the south. In addition to documenting the persistence of relict permafrost and ground ice to warming climate in regions where they are predicted to disappear by numerical models, this study presents evidence of an isotopic biosignature preserved in a body of massive ground ice.  相似文献   

8.
青藏高原现代最大冰原区第四纪冰川作用   总被引:2,自引:1,他引:1  
普若岗日冰原是青藏高原最大的冰原,总面积达400km2.野外观察表明,从现代冰舌前端开始向山外有5套终碛垄和侧碛垄系列,分别称之为冰碛垄Ⅰ、Ⅱ、Ⅲ、Ⅳ和Ⅴ.根据地貌位置、地层关系、相对风化程度、风的改造程度和覆盖在有冰川漂砾的戈壁上的沙子的电子自旋共振(ESR)年代,并与中国西部山地第四纪冰川数值年代比较,这些冰碛垄分别形成于现代冰川、小冰期、新冰期、末次冰期晚阶段和早阶段.冰碛垄V中的花岗岩漂砾散布于距山前6km以内的山麓平原,说明在第四纪晚期冰原西坡的古冰川虽到达山麓平原,但未能与邻近山地古冰川相连形成统一大冰盖.  相似文献   

9.
This study precisely constrains the timing of the Younger Dryas (YD) glacial maximum in south‐western Norway by utilizing sediment records from lake basins. Two of the basins, located on the distal side of the mapped Herdla–Halsnøy Moraine, received meltwater directly from the ice sheet only when the ice margin reached its maximum extent during the YD. In the cores, the ice maximum is represented by well‐defined units with meltwater deposits, dominantly laminated silt. Plant macrofossils in the sediment sequences are common and we obtained 18 radiocarbon ages from one of the cores. By applying Bayesian age–depth modelling we obtained a precise date for this meltwater event and thereby also for the timing of the YD glacial maximum. We conclude that the ice‐sheet advance culminated at the Halsnøy Moraine at 11 760 ± 120 cal a BP, and that the ice margin stayed in this position for 170 ± 120 years. The subsequent retreat started at 11 590 ± 100 cal a BP, i.e. close to the YD/Holocene boundary. Withdrawal was probably triggered by abrupt climatic warming at this time. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

10.
The stratigraphy of lake Endletvatn on northern Andøya, northern Norway, has been revisited to improve the understanding of the palaeoenvironment in the region during the Last Glacial Maximum (LGM). Four high‐quality cores were analysed with respect to various lithological parameters and macrofossil content, supplemented by 47 AMS radiocarbon dates. The sediments indicate a low‐energy environment with a mean sedimentation rate of 0.5 mm a?1. We infer perennially frozen ground in the surroundings during the LGM. Climate proxies indicate a high arctic climate (i.e. July mean temperatures between 0 and 3°C) throughout most of the LGM. The warmest periods are marked by a rise in seed, moss and animal fossils, and often also by higher organic production in the lake. These periods took place from 21.4 to 20.1, from 18.8 to 18.1, around 17 and from 16.4 cal. ka BP onwards. The shifts between the different climatic regimes occurred rapidly – probably during one or two decades. The present data do not support recently published conclusions stating that Picea, Pinus and Betula pubescens grew on Andøya during parts of the LGM. The highest relative sea level after the final deglaciation on northern Andøya is bracketed between 36 and 38 m a.s.l. It occurred between 21.0 and 20.3 cal. ka BP, peaking around 20.7 cal. ka BP. The final deglaciation of the northern tip of Andøya occurred 22.2 cal. ka BP. Then the western margin of the Andfjorden ice stream receded to the Kjølhaugen Moraine and shortly thereafter to the Endleten Moraine. Our research confirms that northern Andøya is a key location for understanding the natural environment in northwestern Europe during the LGM.  相似文献   

11.
We measured 10Be concentrations in boulders collected from the Orsha and Braslav moraines, associated with the Last Glacial Maximum extent and a recessional stage of the Scandinavian Ice Sheet (SIS), respectively, providing a direct dating of the southeastern sector of the ice-sheet margin in Belarus. By combining these data with selected existing radiocarbon ages, we developed a chronology for the last deglaciation of Belarus. The northeastern part of the country remained ice free until at least 19.2±0.2 cal. kyr BP, whereas the northwestern part of the country was ice free until 22.3±1.5 cal. kyr BP. A lobate ice margin subsequently advanced to its maximum extent and deposited the Orsha Moraine. The ice margin retreated from this moraine at 17.7±2.0 10Be kyr to a position in the northern part of the country, where it deposited the Braslav Moraine. Subsequent ice-margin retreat from that moraine at 13.1±0.5 10Be kyr represented the final deglaciation of Belarus. Direct dating of these moraines better constrains the relation of ice-margin positions in Belarus to those in adjacent countries as well as the SIS response to climate change.  相似文献   

12.
Moraine ridges and mounds of inferred Loch Lomond Stadial (LLS) age have been mapped at three sites (Fordingdale, Swindale and Wet Sleddale) in part of the eastern Lake District, northern England, and indicate glaciers were more widespread than envisaged by Sissons (1980, Transactions of the Royal Society of Edinburgh: Earth Sciences, Vol. 71, pp. 13–27). The moraines delimit closely the downslope/downvalley limits of the former glaciers but there is no geomorphological evidence with which to define their upslope/upvalley margins. The former glaciers are considered to have been nourished within the confines of their individual valley, cirque and hillside embayment respectively, rather than being outlet glaciers of plateau icefields. Estimated equilibrium line altitudes (ELAs) are within the range of values determined previously for LLS glaciers in the Lake District and do not necessitate revision of established palaeoclimatic parameters. Individual ELAs were probably influenced by local factors; all three former glaciers had accumulation-area aspects between north and east, limiting the impact of direct solar radiation during the ablation season, and were adjacent to extensive areas of high ground to the west and/or south that would have facilitated transfer of snow to their surfaces by winds from those directions. In Fordingdale, three essentially contemporaneous depositional landforms occur upslope of the moraines and are considered to represent hillslope adjustments following wastage of glacier ice from the site. © 1998 John Wiley & Sons, Ltd.  相似文献   

13.
Terminal-moraine ridges up to 6 m high have been forming at the snout of Styggedalsbreen for two decades. Based on intermittent observations during this period, combined with a detailed study of ridge morphology, sedimentary structures and composition during the 1993 field season, a model of terminal-moraine formation that involves the interaction of glacial and glacio-fluvial processes at a seasonally oscillating ice margin is presented. In winter, subglacial debris is frozen-on to the glacier sole; in summer, ice-marginal and supraglacial streams deposit sediments on the wasting ice tongue. The ice tongue overrides an embryonic moraine ridge during a late-winter advance and a double layer of sediment (diamicton overlain by sorted sands and gravels) is added to the moraine ridge during the subsequent ablation season. Particular ridges grow incrementally over many years and exert positive feedback by enhancing snout up-arching during the winter advance and constraining the course of summer meltwater streams close to the ice margin. The double-layer annual-meltout model is related to moraine formation by the stacking of subglacial frozen-on sediment slabs (Krüger 1993). Moraine ridges of this type have a complex origin. are not push moraines, and may be characteristic of dynamic high-latitude and high-altitude temperate glaciers.  相似文献   

14.
A massive ground-ice body was found exposed in the headwall of a thaw flow developed within the Chapman Lake terminal moraine complex on the Blackstone Plateau (Ogilvie Mountains, central Yukon Territory), which is contemporaneous to the Reid glaciation. Based on visible cryostructures in the 4-m-high headwall, two units were identified: massive ground ice, overlain sharply by 2 m of icy diamicton. The nature and origin of the Chapman Lake massive ground ice was determined using cryostratigraphy, petrography, stable O-H isotopes and the molar concentration of occluded gases (CO2, O2, N2 and Ar) entrapped in the ice, a new technique in the field of periglacial geomorphology that allows to distinguish between glacial and non-glacial intrasedimental ice. Collectively, the results indicate that the Chapman Lake massive ground ice formed by firn densification with limited melting-refreezing and underwent deformation near its margin. Given that the massive ground-ice body consists of relict glacier ice, it suggests that permafrost persisted, at least locally, on plateau areas in the central Yukon Territory since the middle Pleistocene. In addition, the d value of Chapman Lake relict glacier ice suggests that the ice covering the area during the Reid glaciation originated from a local alpine glaciation in the Ogilvie Mountains.  相似文献   

15.
The impact of the Laurentide Ice Sheet (LIS) deglaciation on Northern Hemisphere early Holocene climate can be evaluated only once a detailed chronology of ice history and sea‐level change is established. Foxe Peninsula is ideally situated on the northern boundary of Hudson Strait, and preserves a chronostratigraphy that provides important glaciological insights regarding changes in ice‐sheet position and relative sea level before and after the 8.2 ka cooling event. We utilized a combination of radiocarbon ages, adjusted with a new locally derived ΔR, and terrestrial in‐situ cosmogenic nuclide (TCN) exposure ages to develop a chronology for early‐Holocene events in the northern Hudson Strait. A marine limit at 192 m a.s.l., dated at 8.1–7.9 cal. ka BP, provides the timing of deglaciation following the 8.2 ka event, confirming that ice persisted at least north of Hudson Bay until then. A moraine complex and esker morphosequence, the Foxe Moraine, relates to glaciomarine outwash deltas and beaches at 160 m a.s.l., and is tightly dated at 7.6 cal. ka BP with a combination of shell dates and exposure ages on boulders. The final rapid collapse of Foxe Peninsula ice occurred by 7.1–6.9 cal. ka BP (radiocarbon dates and TCN depth profile age on an outwash delta), which supports the hypothesis that LIS melting contributed to the contemporaneous global sea‐level rise known as the Catastrophic Rise Event 3 (CRE‐3).  相似文献   

16.
Artifacts are commonly buried by approximately 50 cm of sediment at prehistoric archeological sites (early Archaic through Mississippian) on uplands of the Sandhills of the upper Coastal Plain of the southeastern United States. Bioturbation, eolian sedimentation, and colluviation are the primary processes that can explain artifact burial because of the upland position of the sites in an erosional landscape setting. Colluvial sedimentation is discounted at most of the sites because they occur on interstream divides and upper hillslope positions. Thus, the focus is on eolian sedimentation versus bioturbation as burial agents. Six sites in the midst of the Sandhills region along the corridor of South Carolina Highway 151 in Chesterfield County provide the data. The Sandhills consist primarily of Cretaceous and Tertiary marine, fluvial, and eolian sediments that are highly dissected and overlie crystalline rocks in the deep subsurface. Two of the sites are on high fluvial terrace remnants that predate 12 ka and serve as controls where bioturbation is the only reasonable burial process. Hillslope positions of the sites are on erosional elements of the landscape (crests, shoulder slopes, and upper backslopes) where sediment transfer operates (colluvial and overland flow), but where deposition is minimal. The sites occur on very sandy soils having a texture of loamy sand to sand. In some instances, a fine textured cover sand, which is about 1.5 m thick, overlies a clayey subsoil or Bt horizon. This cover sand has been interpreted by some as an eolian sand sheet that buries a second parent material and paleosol, but standard particle size and heavy mineral data indicate that it is simply a thick E horizon over a Bt horizon. Standard particle size fractionation at whole phi intervals, and particle size analysis of the heavy mineral fraction, indicate that eolian sedimentation is unlikely at five of the six sites. Heavy minerals were analyzed with respect to the sedimentological principle of hydraulic equivalence, which provides clear separation of eolian versus water-laid sediment. Results of particle size analysis suggest that the cover sands are water-laid (probably fluvial) at five of the six sites, which favors the bioturbation process of artifact burial. Heavy mineral analysis corroborates the standard particle size data, indicating that only one site, 38CT16, possibly is composed of eolian sediment. Soil profile development suggests that the age of the sediment at site 38CT16 probably is older than 12 ka and was in place prior to human occupation. Therefore, possible eolian sedimentation at that site is not relevant to artifact burial, which also suggests bioturbation is the primary process of artifact burial. Additional evidence favoring bioturbation as a vigorous artifact burial process in the Sandhills comes from the two sites on high elevation sandy fluvial terraces (38CT34, 38CT17) where artifacts are also buried. At these terraced sites bioturbation is the only possible burial process. Overall results suggest that bioturbation best explains the occurrence of buried artifacts and that eolian sedimentation processes are not readily apparent, and are not required, in explaining artifact burial. © 1998 John Wiley & Sons, Inc.  相似文献   

17.
In this study we have obtained 17 cosmogenic exposure ages from three well‐developed moraine systems – Halland Coastal Moraines (HCM), Göteborg Moraine (GM) and Levene Moraine (LM) – which were formed during the last deglaciation in southwest Sweden by the Scandinavian Ice Sheet (SIS). The inferred ages of the inner HCM, GM and LM are 16.7 ± 1.6, 16.1 ± 1.4 and 13.6 ± 1.4 ka, respectively, which is slightly older than previous estimates of the deglaciation based on the minimum limiting radiocarbon ages and pollen stratigraphy. During this short interval from 16.7 ± 1.6 to 13.6 ± 1.4 ka a large part (100–125 km) of the marine‐based sector of the SIS in southwest Sweden was deglaciated, giving an average ice margin retreat between 20 to 50 m a?1. The inception of the deglaciation pre‐dated the Bølling/Allerød warming, the rapid sea level rise at 14.6 cal. ka BP and the first inflow of warm Atlantic waters into Skagerrak. We suggest that ice retreat in southwest Sweden is mainly a dynamical response governed by the disintegration of the Norwegian Channel Ice Stream and not primarily driven by climatic changes. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

18.
The city of Scarborough lies on the eastern margin of the Greater Toronto Area of southern Ontario, Canada, along the northern coastline of Lake Ontario. The City has a population of 500,000 and is presently one of the fastest growing communities in Canada. The City is expanding northwards onto rural land on the south slope of the large Pleistocene glacial Oak Ridges Moraine system. The moraine system is underlain by a thick (150 m) succession of tills, sands and gravels and is a regionally-significant recharge area for three principle aquifer systems that discharge to numerous watercourses that flow to Lake Ontario. Protection of deeper aquifers from surface-generated urban contaminants is a particular concern. A groundwater flow model using Visual MODFLOW was developed for the 350-km2 Rouge River–Highland Creek (RRHC) drainage basin using an extensive GIS-based collection of subsurface geological, geophysical and hydrogeological data, maps of land use and surficial geology. The RRHC model was calibrated against point water level data, known potentiometric surfaces of the principal aquifers and baseflow measurements from streamflow gauging stations and determined to be within acceptable limits. Water balance calculations indicate that 70% of the basin recharge (106,000 m3/day) enters the Upper Aquifer along the crest and immediate flanks of the Oak Ridges Moraine. To the south, Upper Aquifer water moving through fractured till aquitards accounts for more than 75% of recharge to deeper aquifers. Water quality data confirm previous observations that urban- and rural-sourced contaminants (chlorides and nitrates) present in Upper Aquifer waters are moving rapidly into deeper aquifers. Some 83% of total RRHC recharge water is ultimately discharged as baseflow to creeks draining to Lake Ontario; the remainder discharges to springs and along eroding lakeshore bluffs. Model results demonstrate that deeper aquifers are poorly protected from urban contaminants and that long-term protection of ground and surface water quality has to be a priority of municipal planners if the resource is not to be severely degraded. Electronic Publication  相似文献   

19.
Rotherslade on the Gower Peninsula in south Wales has been viewed as a key site for the reconstruction of Quaternary depositional environments in the British Isles. Since the early 20th century, and certainly since the 1980s, the accepted view has been that Rotherslade is the most westerly location on the south Gower coast where there is in situ basal till exposed and that, logically, this location marks the position of the LGM ice limit. However, reinvestigation of the sediments and their architecture, and analysis of clast fabrics and thin sections of critical sedimentary units, show that none of the exposed sediments has properties diagnostic of subglacial deposition or deformation. We postulate here that LGM ice terminated at the western side of Swansea Bay, a few kilometres to the north‐east of Rotherslade, and propose that the sedimentary sequence comprises Early to Middle Devensian periglacial sediments, overlain by a complex of Late Devensian, ice‐proximal outwash fan deposits, an assemblage of paraglacial debris and, finally, periglacial mass movement deposits. The proposed repositioning of the Late Devensian ice limit and the associated new subaerial interpretation of the sediments suggest that a reassessment of sedimentary sequences (Hunts Bay, Western Slade) and landforms (Paviland Moraine) farther west on Gower, which have attained similar stratigraphical status, is now warranted. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

20.
Late Weichselian deglaciation in the Oslofjord area, south Norway   总被引:2,自引:0,他引:2  
The older 'moraine lines' outside the Ra Moraine in the outer Oslofjord area have been correlated with events in Bohuslän, Sweden. Recent radiocarbon datings in the vicinity of the Ra Moraine and a radiocarbon dated sea-level curve for the Ski area show that the Ra Moraine was formed during the Early Younger Dryas, whereas the Ski Moraine was formed at the end of the Younger Dryas chronozone. An equidistant shoreline diagram together with a large number of marine limit observations have been used to establish the position of the glacier front during Late Younger Dryas and Early Preboreal chronozones. Reconnaissance mapping indicates a fairly regular recession with many short stops during the Bølling, Older Dryas and Allerød chronozones; at least two readvances to the Ra Moraine before 10,600 years B.P.; a rapid recession during the Middle Younger Dryas and a number of ice-front oscillations at the end of the Younger Dryas chronozone.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号