首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 879 毫秒
1.
面向海域工程抗震设计及评估对海底地震动的需求,基于日本相模湾海域K-NET的ETMC海底强震动记录,根据震级、震中距选取面向工程输入的949组地震动记录数据库。在考虑震源类型差异的基础上,对地震动峰值、持时、频谱等参数进行分析,通过反应谱、Arias烈度等指标描述典型海底地震动特征。根据峰值加速度、显著持时等强度指标对海底地震动记录进行排序,给出基于不同地震动特征分类下的典型地震动记录。推荐的海底地震动可为考虑不同结构需求参数的典型海域工程结构时程分析提供输入地震动。  相似文献   

2.
随着强震台网的密布及观测记录的增加,为研究各类局部场地地震反应预测模型的合理性提供了有效的参考依据,也使利用强震记录及场地条件研究地震动特征成为可能。选取场地地质参数资料和地震记录数据齐全的日本小田原(Ashigara Valley)盲测试验场地,通过对比不同地震动输入方式及场地反应分析模型,研究地震动特征,分析现有模型的优劣。基于1990年8月5日M5.1强震事件的地表基岩记录和地下基岩地震记录,采用地下台强震记录直接输入、地表基岩台强震记录减半为基底地震动输入、地表基岩台强震记录反演为基底地震动输入作为3种基岩地震动输入。基于局部场地条件分别建立一维等效线性模型、二维黏弹性模型及二维时域等效线性化模型等工程中常用的场地数值分析模型,进行局部场地地震反应分析,预测该盲测场地的地表地震动特征,并与对应的实测强震记录结果进行对比,分析不同基岩地震动输入方式对预测地震动特征及地表土层反应谱特征的影响,重点分析地震动输入、土体非线性、场地横向不均匀性及几何与非线性特征共同作用等因素对地表地震动特征的影响,以期为地表地震动的合理预测提供参考。  相似文献   

3.
最不利设计地震动研究   总被引:39,自引:1,他引:39       下载免费PDF全文
谢礼立  翟长海 《地震学报》2003,25(3):250-261
实际记录到的真实地震动在工程结构的抗震研究、分析和设计中往往作为一种施加到结构上使结构振动,直至破坏的地震荷载.如何合理选择真实的地震动记录作为研究结构地震反应的输入,一直是国内外抗震研究和设计中引人关注的重要问题.本文首先提出了最不利设计地震动的概念;然后在收集到的国内外5000余条被认为有重要意义的地震动记录基础上,利用综合估计地震动潜在破坏势的方法,对4种场地类型分别给出了长周期、短周期和中周期结构的国内外最不利设计地震动;最后通过几类不同结构的地震反应分析,初步验证了本文所确定的最不利设计地震动的可靠性和合理性.   相似文献   

4.
Study on the severest real ground motion for seismic design and analysis   总被引:1,自引:0,他引:1  
How to select the adequate real strong earthquake ground motion for seismic analysis and design of trucures is an essential problem in earthquake engineering research and practice.In the paper the concept of the severest design ground motion is proposed and a method is developed for comparing the severity of the recorded strong ground motions.By using this method the severest earthquake ground motions are selected out as seismic inputs to the structures to be designed from a database that consists of more than five thousand significant strong ground moton records collected over the world.The selected severest ground motions are very likely to be able to drive the structures to their critical response and thereby result in the highest damage potential.It is noted that for different structures with diffferent predominant natural periods and at different sites where structures are located the severest design ground motions are usually different.Finally.two examples are illustrated to demonstrate the rationality of the concept and the reliability of the selected design motion.  相似文献   

5.
本文给出了唐山地区强震动记录应用研究的两个实例,提出了建筑结构采用时程分析时选用强震动记录的原则和方法,通过对唐山地区强震动记录的分析处理,得到了其峰值加速度及加速度反应谱,确定了本地区进行弹性时程分析时选用的强震动记录;研究了局部场地条件对地震动影响的唐山响堂三维强震动观测台阵,以唐山响堂台阵2号测井(地下32m)的基岩强震动作为输入,通过2号测井的土层剖面,利用2个一维土层地震反应分析程序,分别计算得到地表的峰值加速度和加速度反应谱,并把计算结果与同次地震相应的地表强震动记录峰值加速度与加速度反应谱进行了对比分析。  相似文献   

6.
This paper presents a new way of selecting real input ground motions for seismic design and analysis of structures based on a comprehensive method for estimating the damage potential of ground motions, which takes into consideration of various ground motion parameters and structural seismic damage criteria in terms of strength, deformation, hysteretic energy and dual damage of Park & Ang damage index. The proposed comprehensive method fully involves the effects of the intensity, frequency content and duration of ground motions and the dynamic characteristics of structures. Then, the concept of the most unfavourable real seismic design ground motion is introduced. Based on the concept, the most unfavourable real seismic design ground motions for rock, stiff soil, medium soil and soft soil site conditions are selected in terms of three typical period ranges of structures. The selected real strong motion records are suitable for seismic analysis of important structures whose failure or collapse will be avoided at a higher level of confidence during the strong earthquake, as they can cause the greatest damage to structures and thereby result in the highest damage potential from an extended real ground motion database for a given site. In addition, this paper also presents the real input design ground motions with medium damage potential, which can be used for the seismic analysis of structures located at the area with low and moderate seismicity. The most unfavourable real seismic design ground motions are verified by analysing the seismic response of structures. It is concluded that the most unfavourable real seismic design ground motion approach can select the real ground motions that can result in the highest damage potential for a given structure and site condition, and the real ground motions can be mainly used for structures whose failure or collapse will be avoided at a higher level of confidence during the strong earthquake. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

7.
The characteristics of seismic ground motions in southern China are difficult to determine statistically due to a lack of strong ground motion data. In this study, a stochastic finite-fault ground motion model was adopted to simulate the seismic ground motions at bedrock for southern China, based on parameters derived from small and medium earthquakes that have occurred in the region. From these, the response spectra was estimated. A set of ground motion attenuation relationships was then developed based on simulated peak ground motions and response spectral parameters through regression, which would be applicable for use in engineering practice. Through comparisons, it was demonstrated that the proposed ground motion relationships are generally consistent with those obtained from other reported ground motion attenuation models for southern China.  相似文献   

8.
齐玉妍  孙丽娜  吕国军  李慧 《地震》2019,39(4):172-180
2012年5月28日河北省唐山市古冶区与滦县交界发生4.8级地震, 国家强震动台网中心在河北、 天津和北京的94个强震动台站记录到了本次地震的加速度。 本文给出了获取记录的强震动台站分布及强震动记录结果, 统计了强震动记录数量随震中距的变化, 给出了3个较小震中距台站记录到的加速度时程; 绘制了空间地震动峰值加速度等值线图及周期0.2 s、 2.0 s加速度反应谱值的等值线, 发现峰值加速度等值线与长周期加速度反应谱等值线极值分布具有明显地域差异, 分析认为是由于厚沉积层对长周期地震动具有放大作用造成的。 通过强震动记录与适用于本区的三个衰减关系对比, 分析了此次地震的峰值加速度衰减特征, 同时研究了周期0.2 s、 2.0 s加速度反应谱值的衰减特征, 周期2.0 s反应谱值随震中距的衰减与衰减关系能较好地对应, 然而在震中距100~130 km沉积层较厚的集中地区, 表现出了实际记录较衰减关系值偏大的现象, 认为同样是由于厚沉积层对地震动加速度反应谱长周期的放大作用导致的。 研究了震中距差别不大的情况下, 场地类型与沉积层厚度对反应谱特征周期的影响, 对比基岩台站与软弱地基土层台站的强震动记录反应谱, 发现软弱土层台站的土层对地震动有一定的放大作用, 导致中长周期地震动被放大, 对比位于沉积层较薄的隆起区台站与位于沉积层较厚的凹陷区台站强震动记录反应谱, 发现厚的沉积层不仅对反应谱长周期有放大的作用, 同时也会使得反应谱特征周期值变大。  相似文献   

9.
The characteristics of seismic ground motions in southern China are difficult to determine statistically due to a lack of strong ground motion data. In this study, a stochastic finite-fault ground motion model was adopted to simulate the seismic ground motions at bedrock for southern China, based on parameters derived from small and medium earthquakes that have occurred in the region. From these, the response spectra was estimated. A set of ground motion attenuation relations hipswas then developed based on simulated peak ground motions and response spectral parameters through regression, which would be applicable for use in engineering practice. Through comparisons, it was demonstrated that the proposed ground motion relationships are generally consistent with those obtained from other reported ground motion attenuation models for southern China.  相似文献   

10.
2022年3月16日在日本福岛县东部海域发生7.4级地震,本文基于近实时震害评估系统RED-ACT对此次地震进行了快速评估,包括强震动记录分析、区域地震破坏力震害评估结果和典型桥梁破坏,并结合实际震害对比了该系统评估结果以及其他主要震害快速评估系统的分析结果,结果表明:(1)此次地震造成的地面运动强度较大,多数台站记录PGA较2021年福岛7.3级地震更强,反应谱在0.5~1.3s区间呈现远高于2021年福岛地震的趋势。(2)RED-ACT的震害评估结果相较于日本NIED-CRS系统和美国USGS-PAGER系统与实际震害更为接近,在强震动记录较为密集的地区,开展基于强震动时程和建筑非线性分析的震害评估能够得到更为准确的震害评估结果。(3)此次地震对白石市附近桥梁造成了一定的破坏,桥梁破坏附近处的强震动会对典型桥梁结构造成一定程度的破坏。  相似文献   

11.
In this study, the broadband ground motions of the 2021 M7.4 Maduo earthquake were simulated to overcome the scarcity of ground motion recordings and the low resolution of macroseismic intensity map in sparsely populated high-altitude regions. The simulation was conducted with a hybrid methodology, combining a stochastic high-frequency simulation with a low-frequency ground motion simulation, from the regional 1-D velocity structure model and the Wang WM et al.(2022) source rupture model,respect...  相似文献   

12.
地震对区域建筑的破坏力对震后应急决策有着重要意义.为满足地震应急管理部门及时了解地震破坏力的迫切需求,充分利用现有强震动台网的记录数据,清华大学等13家单位共同编制了T/SSC 1—2021《基于强震动记录的地震破坏力评估》标准.标准是在国内外100余次基于强震动的地震破坏力评估的成功经验上制定的.标准基于强震动记录和...  相似文献   

13.
As the forward directivity and fling effect characteristics of the near-fault ground motions, seismic response of structures in the near field of a rupturing fault can be significantly different from those observed in the far field. The unique characteristics of the near-fault ground motions can cause considerable damage during an earthquake. This paper presents results of a study aimed at evaluating the near-fault and far-fault ground motion effects on nonlinear dynamic response and seismic damage of concrete gravity dams including dam-reservoir-foundation interaction. For this purpose, 10 as-recorded earthquake records which display ground motions with an apparent velocity pulse are selected to represent the near-fault ground motion characteristics. The earthquake ground motions recorded at the same site from other events that the epicenter far away from the site are employed as the far-fault ground motions. The Koyna gravity dam, which is selected as a numerical application, is subjected to a set of as-recorded near-fault and far-fault strong ground motion records. The Concrete Damaged Plasticity (CDP) model including the strain hardening or softening behavior is employed in nonlinear analysis. Nonlinear dynamic response and seismic damage analyses of the selected concrete dam subjected to both near-fault and far-fault ground motions are performed. Both local and global damage indices are established as the response parameters. The results obtained from the analyses of the dam subjected to each fault effect are compared with each other. It is seen from the analysis results that the near-fault ground motions, which have significant influence on the dynamic response of dam–reservoir–foundation systems, have the potential to cause more severe damage to the dam body than far-fault ground motions.  相似文献   

14.
作为一种特殊的地震动,长周期地震动对结构的危害已引起国内外学者的关注。选取10条KiK-net、K-NET台网中典型的长周期地震动,以及10条国内外的短周期地震动,对比分析两者时程特征和反应谱特征的差异。将所选长、短周期地震动输入钢框架结构模型;通过非线性时程分析,研究钢框架结构在长、短周期地震动作用下的响应差异。结果表明:短周期地震动的平均地面峰值加速度是长周期地震动的3.26倍,而平均地面峰值位移比长周期地震动低10.89%;短周期地震动作用下,钢框架结构顶点加速度响应平均值是长周期地震动的5.16倍,结构顶点位移响应平均值仅比长周期地震动多0.91%;长周期地震动作用下,钢框架结构层间位移角响应较大,结构底部受影响范围更广。对于长周期地震动隐患地区的高层钢框架结构,应对长、短周期震害分别进行考虑;对于中、长周期钢框架结构,建议选用峰值位移作为抗震分析指标。  相似文献   

15.
In this paper, ground motion during six past devastating earthquakes and one possible future event in the northeastern part of India is estimated by seismological approaches. Considering uncertainty in the input source parameters, a series of ground motions have been simulated. The peak ground acceleration (PGA) and response spectra at important cities and towns in the epicentral regions of these events are obtained. The PGA distribution over the entire northeastern region of India, encompassing the epicenter, is presented in the form of contours. The obtained results can be used for the seismic analysis and design of structures in this region.  相似文献   

16.
Due to the randomness of earthquake wave magnitude and direction, and the uncertain direction of strong axis and weak axis in the construction of engineering structures, the effect of the direction of ground motion on a structure are studied herein. Ground motion records usually contain three vertical ground motion data, which are obtained by sensors arranged in accordance with the EW(East-West) direction, NS(South- North) direction and perpendicular to the surface(z) direction, referring to the construction standard of seismic stations. The seismic records in the EW and NS directions are converted to Cartesian coordinates in accordance with the rotation of θ = 0°-180°, and consequently, a countless group of new ground motion time histories are obtained. Then, the characteristics of the ground motion time history and response spectrum of each group were studied, resulting in the following observations:(1) the peak and phase of ground motion are changed with the rotation of direction θ, so that the direction θ of the maximum peak ground motion can be determined;(2) response spectrum values of each group of ground motions change along with the direction θ, and their peak, predominant period and declining curve are also different as the changes occur; then, the angle θ in the direction of the maximum peak value or the widest predominant period can be determined; and(3) the seismic response of structures with different directions of ground motion inputs has been analyzed under the same earthquake record, and the results show the difference. For some ground motion records, such as the Taft seismic wave, these differences are significant. Next, the Lushan middle school gymnasium structure was analyzed and the calculation was checked using the proposed method, where the internal force of the upper space truss varied from 25% to 28%. The research results presented herein can be used for reference in choosing the ground motion when checking the actual damage to structures following earthquakes and explaining the seismic damage. Meanwhile, it also provides a reference value for research into the most severe ground motion.  相似文献   

17.
Modern engineering design methods require ground motion time histories as input for non-linear dynamic structural analysis. Non-linear dynamic methods of analysis are increasingly applied in the context of probabilistic risk assessments and for cost-effective design of critical infrastructures. In current engineering practice artificial time histories matching deterministic design spectra or probabilistic uniform hazard spectra are most frequently used for engineering analysis. The intermediate step of generation of response spectra can lead to a biased estimate of the potential damage from earthquakes because of insufficient consideration of the true energy content and strong motion duration of earthquakes. Thus, assessment of seismic risk may seem unrealistic. An engineering approach to the development of three-component ground motion time histories has been established which enables consideration of the typical characteristics of seismic sources, regional ground motion attenuation, and the main geotechnical characteristics of the target site. Therefore, the approach is suitable for use in scenario-based risk analysis a larger number of time histories are required for representation of the seismic hazard. Near-field effects are implemented in the stochastic source model using engineering approximations. The approach is suggested for use in areas of low seismicity where ground motion records of larger earthquakes are not available. Uncertainty analysis indicates that ground motions generated by individual earthquakes are well constrained and that the usual lognormal model is not the best choice for predicting the upper tail of the distribution of the ground motions.  相似文献   

18.
The seismic response of the Mexico City Cathedral built of very soft soil deposits is evaluated by using motions recorded in various parts of the structure during several moderate earthquakes. This unique set of records provides significant insight into the seismic response of this and other similar historic stone masonry structures. Free‐field ground motions are carefully compared in time and frequency domains with motions recorded at building basement. The dynamic characteristics of the structure are inferred from the earthquake records by using system identification techniques. Variation of seismic response for different seismic intensities is discussed. It is shown that, due to the soil–structure interaction, due to large differences between dominant frequencies of earthquake ground motions at the site and modal frequencies of vibration of the structure, and due to a particularly high viscous damping, seismic amplifications of ground motion in this and similar historic buildings erected on soft soil deposits are much smaller than that induced in most modern constructions. Nevertheless, earthquake records and analytical results show that several components of the structure such as its central dome and the bell towers may be subjected to local vibrations that significantly amplify ground motions. Overall, results indicate that in its present state the structure has an acceptable level of seismic safety. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

19.
2013年7月22日甘肃省定西市岷县漳县交界(东经104.2°,北纬34.5°)发生M6.6地震。甘肃强震动台网在该地区覆盖良好,获得了丰富的主震加速度记录。本文收集整理了此次地震中各强震动台站获得的加速度记录资料并进行了基本处理;经统计分析绘出了峰值加速度分布图。  相似文献   

20.
兰州观象台存放台阵汶川M_S8.0强震动记录与分析   总被引:1,自引:1,他引:0       下载免费PDF全文
兰州观象台存放台阵在汶川特大地震中获取了10组三分量数字强震动加速度记录.本文依据这些实际观测资料研究了黄土场地在地震发生后的自由场地面运动加速度过程及其特征.结果表明在震源、场地和震中距相同情况下,场地上不同测点记录的加速度峰值存在一定程度的差异,较明显地反映了场地地形对EW分向地面自由场加速度的影响.10个测点的峰值加速度(PGA)均显示EW向大于NS向,而垂直向最小;各测点的傅里叶谱值,尤其是在小于1 Hz频段范围内,差异极小.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号