首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 280 毫秒
1.
耿雪玉  蔡袁强  徐长节 《岩土力学》2008,29(6):1521-1529
针对任意复杂变荷载作用下未打穿的竖井地基,通过在竖井底面以下土层中设置虚拟竖井,使其能够合理考虑下卧层土体三维渗流问题,运用Laplace变换,求得频域内竖井地基的固结解。通过Laplace逆变换,得到了任意荷载作用下竖井地基的平均固结度、孔压消散曲线、沉降曲线。结合具体算例,对影响竖井地基固结的主要影响因素进行了详细分析,并将现有未打穿竖井地基平均固结度近似计算方法的精度和适用的范围进行了对比,得到了一些有益于工程实践的结论。  相似文献   

2.
Slope failure usually occurs when soil particles are unable to build a strong bond with each other and become loose because of the presence of water. Water pressure weakens the ties between the particles and they tend to slip. Therefore, this study focused on the use of horizontal drains to reduce water entry and control the ground water level as a method of slope stabilization. Several previous studies have shown that the use of horizontal drains to lower the water level in soil is one of the fastest and cheapest slope stabilization methods. The main objective of this study is to analyze the effect of horizontal drains on slope stability. Information on slope condition during the landslides which happened at Precinct 9, Putrajaya, Malaysia was used for analytical simulation. Seep/W and Slope/W analyses were carried out with GeoStudio version 2007 software. Slopes with and without horizontal drains were then compared in terms of groundwater level and factor of safety (FOS) values. Scenarios were created for seven types of soil namely: residual, clay, silt, loam, sandy loam, sandy clay loam, and silt clay loam for a case wise analysis. The effect of daily steady rainfall and realcondition rainfall was studied. These cases were studied to find the effectiveness of horizontal drains as a slope stabilization tool. The results revealed that when a drain was installed on a slope, the groundwater level dropped immediately and the safety factor of the slope increased. Sandy loam (sL) soil was identified as the best candidate for a horizontal drain. Its highly saturated hydraulic conductivity Ks facilitated groundwater drain through the horizontal drain effectively. Silt clay loam (scL) soil was identified as the least effective candidate.  相似文献   

3.
Soil disturbance caused during the installation of vertical drains reduces the in situ hydraulic conductivity of soft deposits in the immediate vicinity of the drains, resulting in a slower rate of consolidation than would be expected in the absence of disturbance. Experimental investigations have revealed the existence of two distinct zones, a smear zone and a transition zone, within the disturbed zone around the vertical drain. The degree of change in the hydraulic conductivity in the smear and transition zones is difficult to assess without performing of laboratory tests. Based on the available literature, four different profiles of hydraulic conductivity versus distance from the vertical drain were identified. Closed-form solutions for the rate of consolidation for each of these four hydraulic conductivity profiles were developed. It is found that different variations of the hydraulic conductivity profiles in the disturbed zone result in different rates of consolidation.  相似文献   

4.
针对塑料排水板(PVD)安装热源能提升PVD性能、加速竖井地基固结这一工程现象,基于热-水-应力 (T-H-M) 三场全耦合的有限元方法来模拟利用热源进行地基处理新技术(PVTD)。首先,以微分形式与等效弱形式分别给出T-H-M耦合控制方程,并推导出其有限元方程组。然后在多场耦合有限元软件中建立饱和土的T-H-M全耦合模型,并通过与已有解析解比较,验证了模型正确性。最后,对一个经典有涂抹区的竖井地基算例,分不耦合温度(UT)、耦合温度但不考虑其对饱和土物性影响(CT)、耦合温度考虑温度对饱和土渗透性影响(CTP) 3种情况进行固结计算分析。研究结果表明,相对于无热源竖井地基,CT情况下由于热源产生的附加孔隙水压力,固结速度略有下降;CTP情况下,由于热源有效改善涂抹区的渗透性能,竖井地基固结速率明显加快。上述研究结论从理论上较好地阐明了PVTD的作用机制。  相似文献   

5.
《工程地质学报》2017,25(3):605-611
在以往对非饱和土砂井地基固结理论研究中,均将涂抹区与非涂抹区土体渗透系数视为相等,这与实际工程并不相符。本文将考虑涂抹区土体渗透系数的变化,分析其对超孔隙气、水压力消散规律的影响。基于Fredlund一维固结理论以及Darcy定律和Fick定律,对有限厚度线弹性非饱和土砂井地基,在大面积均布瞬时荷载作用下,考虑涂抹区土体渗透系数的变化,利用Laplace变换并引入Bessel函数推导出Laplace变换下的解,再通过Crump方法编程实现Laplace逆变换得到超孔隙气压力、超孔隙水压力的半解析解。利用典型算例进行计算,分别得到在不同半径、不同涂抹区半径和不同涂抹程度的情况下,超孔隙气压力、超孔隙水压力随时间的变化规律。得出考虑涂抹作用时,超孔隙气、水压力的消散速度降低;涂抹区半径越大、涂抹程度越高速度越慢,反之消散越快。本研究丰富了非饱和土砂井固结理论,对非饱和土砂井固结特性的研究具有一定的工程参考价值。  相似文献   

6.
The coefficient of consolidation is one of the most important parameters that control the rate of consolidation. Conventional consolidation theories assume that the coefficient of consolidation is constant during the whole consolidation process. In the case of sensitive clay, the coefficient of consolidation is strongly dependent on the level of effective stress of clay. With the dissipation of pore water pressure and the increase of effective stress, the soil structure of the upper subsoil is gradually destroyed downwards and its coefficient of consolidation becomes smaller. At the same time, the coefficient of permeability of the vertical drains drops down because of the kinking or bending effect. The destructured upper subsoil and the kinking of the vertical drain hinder the dissipation of the pore pressure in the lower subsoil. This paper presents a model to describe the above important phenomena during the consolidation of sensitive clay with vertical drain. The solution for proposed model can be obtained by extending the closed‐form solution of the consolidation of double‐layered ground with vertical drain by the interactive method introducing the concept of the moving boundary and the reduction of discharge capacity of vertical drain. The numerical results obtained from the finite element method package PLAXIS (Ver. 7.2) are adopted to compare those obtained from the present algorithm. Moreover, the rationality of the moving boundary is explained by the distributions of the excess pore water pressure in natural soil zone along the radial direction. Wenzhou airport project is taken as a case study in this paper. The results for the sensitive soil with decaying sand drain agree very well with the in situ measured data. The calculated results can properly explain two general phenomena observed in the consolidation of soft sensitive soil ground with vertical drains: one is that the time to achieve the same consolidation degree is much longer under heavy loading than that under light loading; the other is that the consolidation speed is much slower in the lower subsoil than in the upper subsoil. Finally, it is indicated that the vertical drains can decrease the hindrance effect of the destructured subsoil. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

7.
In situ dissipation tests provide a means of evaluating the in situ coefficient of horizontal consolidation and horizontal hydraulic conductivity of soft clays. Dissipation tests by means of piezocone (CPTU), dilatometer (DMT), self-boring pressuremeter (SBPT) and BAT permeameter (BAT) were utilized in the characterization of the coefficient of horizontal consolidation and horizontal hydraulic conductivity of Singapore marine clay at Changi in a land reclamation project. Dissipation tests were carried out prior to reclamation as well as after ground improvement with vertical drains to compare the changes in the coefficient of horizontal consolidation and horizontal hydraulic conductivity prior to and after ground improvement. Tests were carried out in a vertical drain area as well as in an adjacent untreated control area after 23 months of surcharge loading, for comparison purposes. The purpose of this research is to determine the horizontal consolidation parameters of Singapore marine clay prior to reclamation as well as after 23 months of surcharge loading with and without vertical drains by means of in situ dissipation tests.  相似文献   

8.
Horizontal drains have been commonly used in stabilising unsaturated residual soil slopes. This study examines the effectiveness of horizontal drains in stabilising residual soil slopes against rainfall-induced slope failures under a tropical climate. The study includes field instrumentation at two residual soil slopes complemented with a parametric study relating to drain position. Field monitoring results indicate that rainfall infiltration is limited to a certain depth below which infiltration becomes insignificant. This zone tends to be unsuitable for horizontal drains. Horizontal drains were found to be most effective when located at the base of a slope. The parametric study indicated conditions under which horizontal drains are effective or ineffective in improving the stability of a slope. It was also found that horizontal drains have little role in minimising infiltration in an unsaturated residual soil slope. Benefits of using horizontal drains can be obtained through the lowering of the water table.  相似文献   

9.
The known formulae of Freeze and Cherry, Polubarinova–Kochina, Vedernikov for flow rate during 2-D seepage into horizontal drains and axisymmetric flow into cavities are examined and generalized. The case of an empty drain under ponded soil surface is studied and existence of drain depth providing minimal seepage rate is presented. The depth is found exhibiting maximal difference in rate between a filled and an empty drain. 3-D flow to an empty semi-spherical cavity on an impervious bottom is analysed and the difference in rate as compared with a completely filled cavity is established. Rate values for slot drains in a two-layer aquifer are ‘inverted’ using the Schulgasser theorem from the Polubarinova–Kochina expressions for corresponding flow rates under a dam. Flow to a point sink modelling a semi-circular drain in a layered aquifer is treated by the Fourier transform method. For unsaturated flow the catchment area of a single drain is established in terms of the quasi-linear model assuming the isobaric boundary condition along the drain contour. Optimal shape design problems for irrigation cavities are addressed in the class of arbitrary contours with seepage rate as a criterion and cavity cross-sectional area as an isoperimetric restriction. © 1998 John Wiley & Sons, Ltd.  相似文献   

10.
A solution is derived for the heat flow and consolidation which occur when a heat source is buried deep in a porous thermoelastic soil having anisotropic flow properties. This solution is used to examine the pore pressure generation and dissipation near both point and cylindrical heat sources. An increase in temperature will tend to generate an increase in excess pore pressure. However, the pore water will tend to flow from regions of high excess pore pressure to regions of low excess pore pressure, and so consolidation will occur, and temperature-generated excess pore pressures will tend to dissipate. Many natural soils exhibit horizontal layering and so have a higher horizontal than vertical permeability. It is shown that in soils the excess pore pressure generated by a heat source is significantly less than that in an isotropic soil having an equal vertical permeability.  相似文献   

11.
谢康和  余坤  童磊  王坤 《岩土力学》2011,32(10):2944-2950
针对现有竖向排水井地基固结解析理论对影响区一律采用圆形等效假定的缺陷,研究了影响区真实形状为正六边形的按梅花形布置的竖向排水井地基的固结问题。通过建立新固结方程和引入新的边界条件,并考虑土体水平渗透系数变化,得到了相应的解析解。对于土体水平渗透系数的3种变化模式,分别给出了各种模式下的特殊解。在此基础上,分析了3种模式下3个主要的无量纲参数对地基固结性状的影响,并比较了计算结果和现有理论结果。分析结果表明,影响区和涂抹扰动区范围越大,固结越慢;土体的最大与最小水平渗透系数之比越小,固结越快;在相同条件下,考虑扰动区渗透系数线性变化的模式2固结最快,而假定扰动区渗透系数不变的模式1的解与现有理论解相当接近,验证了现有竖向排水井地基固结解析理论中对影响区采用圆形等效假定的合理性  相似文献   

12.
《工程地质学报》2016,24(5):732-740
特大型近水平崩坡积层滑坡广泛发育于三峡库区重庆段万州城区及云阳地区。基于万州城区太白岩古滑坡以及云阳地区老药铺滑坡两个典型特大型近水平崩坡积层滑坡,分析了其结构特征及破坏特点;建立了强降雨作用下特大型近水平崩坡积层滑坡破坏的力学模型,解译了此类滑坡的破坏过程,并提出了滑带(面)超孔隙水压力是此类滑坡破坏的诱因。基于孔隙水压力与土体所处的应力状态的内在关系,推导了滑面处每个土条的孔隙水压力及水压力公式,并得出了考虑超孔隙水压力的滑坡稳定系数表达式。云阳地区老药铺滑坡算例表明,若将老药铺滑坡按zk5分为两个滑坡,两个滑坡的中心段是孔隙水压力值较高的区域;本文的孔隙水压力计算值略大于钻孔量测值,计算误差为5.8%~10%,原因在于滑面超孔隙水压力的消散;暴雨工况(含超孔隙水压力)下老药铺滑坡稳定系数为0.862,滑坡处于非稳定状态,并已发生破坏,验证了超孔隙水压力对滑坡体破坏的诱发作用;建议滑坡治理工程中应在按zk5分成的两个滑坡中间段打设排水孔,消除或降低滑面处的超孔隙水压力值,并结合滑坡周围及坡面的截排水工程以及封填裂隙治理老药铺滑坡。  相似文献   

13.
许波  雷国辉  郑强  刘加才 《岩土力学》2014,35(6):1607-1616
为评估涂抹区土体压缩和渗透系数变化对含竖向排水体地基固结的影响,采用等体积应变假设,考虑涂抹区土体的压缩变形及其水平向渗透系数沿径向分别呈线性和抛物线分布,并考虑井阻作用以及地基附加球应力沿深度任意分布,推导了随时间线性堆载预压条件下固结微分方程的显式解析解答,分析了涂抹区半径、水平向渗透系数的分布模式、以及体积压缩系数对地基整体平均固结度的影响。结果表明,涂抹区土体采用均匀折减的水平向渗透系数明显低估了地基的固结速率,而当涂抹区半径较大时,不考虑涂抹区土体的压缩变形将会高估地基的固结速率。在含竖向排水体地基固结问题的分析中,这些影响不可忽视。  相似文献   

14.
15.
This paper proposes closed‐form analytical solutions to the axisymmetric consolidation of an unsaturated soil stratum using the equal strain hypothesis. Following the 1‐dimensional (1D) consolidation theory for unsaturated soil mechanics, polar governing equations describing the air and water flows are first presented on the basis of Fick's law and Darcy's law, respectively. The current study takes into account the peripheral smear caused by an installation of vertical drain. Separation of variables and Laplace transformation are mainly adopted in the analytical derivation to obtain final solutions. Then, the hydraulic conductivity ratio, the radius of influence zone and smear parameters influencing time‐dependent excess pore pressures, and the average degree of consolidation are graphically interpreted. In this study, a comparison made between the proposed equal strain results and the existing free strain results suggests that both hypotheses would deliver similar predictions. Moreover, it is found that the smear zone resulting from vertical drain installations would hinder the consolidation rate considerably.  相似文献   

16.
李红坡  梅国雄  肖涛  陈征 《岩土力学》2020,41(5):1560-1566
在软基处理工程中,经常出现竖井打设变密而地基固结效率降低的现象。鉴于此,建立了重叠涂抹区内土体水平向渗透系数的分布函数,给出了涂抹区重叠时竖井地基超静孔压和平均固结度的解析解。通过分析不同工况下竖井地基固结度随竖井间距的变化情况,探究了竖井间距减小而地基固结效率不增反减的成因。最后,探讨了涂抹作用和井阻作用对竖井最小临界间距的影响。结果表明:相邻竖井涂抹区重叠是竖井地基中出现竖井最小临界间距的根本原因。涂抹作用越大,则竖井最小临界间距越大;具体表现为当地基扰动程度增大时或涂抹区半径增大时,竖井最小临界间距随之增大。井阻作用越大,则竖井最小临界间距越小;具体表现为当竖井渗透系数减小时、竖井长度增大时或竖井半径减小时,竖井最小临界间距随之减小。  相似文献   

17.
Soil consolidation has been widely analyzed using the poroelastic theory. As soil consolidation proceeds, porosity variation leads to the changes in hydraulic conductivity, Young’s modulus, and body force. However, the combined deformation effect of porosity variation on soil consolidation is rarely examined. In this study, a poroelastic consolidation model used to simultaneously consider the changes in hydraulic conductivity, Young’s modulus, and body force was developed to investigate the combined deformation effect of porosity variation on soil consolidation caused by groundwater table decline. The results indicate that the deformation effect of porosity variation on soil consolidation is negligible when the body force number is <0.01. For body force numbers >0.01, soil displacement could be overestimated or underestimated if the combined deformation effect of porosity variation is not completely considered. The misestimation of soil displacement increases as the body force number increases. In addition, the combined deformation effect of porosity variation also affects the transmission of pore water pressure. Therefore, it could be concluded that a reliable analysis of soil consolidation must simultaneously account for the variations in hydraulic conductivity, Young’s modulus, and body force.  相似文献   

18.
针对新技术热排水固结法,采用非等温管道流模拟竖井中U型导热管的传热过程,考虑温度对竖井扰动区和未扰动区渗透性的影响,在COMSOL Multiphysics有限元软件中进行二次开发,建立了竖井地基热排水固结法的有限元模型。以热排水固结软基处理原型试验为例,重点分析了模型耦合、部分耦合和不耦合情况下软土地基的固结度。结果表明,相对于传统排水固结法的不耦合模型,部分耦合模型下因温度产生的孔压增量延缓了地基固结的发展,固结速率有所减慢;耦合模型下温度虽也产生一定的孔压增量,但温度有效地改善了竖井涂抹区土的渗透特性,地基的固结速率加快,固结周期缩短,与试验结果一致。  相似文献   

19.
基于连续分形理论的土壤非饱和水力传导度的研究   总被引:4,自引:1,他引:4       下载免费PDF全文
土壤的孔隙是具有连续分形性质的物理结构,根据土壤孔隙分形结构建立了非饱和水力传导度模型。模型包括综合系数、分形维数和临界体积比3个参数,综合系数为不同土壤基质势对应的非饱和水力传导度与饱和传导度之间的水力联系,与土壤质地有关;分形维数反映土壤孔隙结构对于非饱和水力传导度的作用,土壤不同尺寸孔隙之间的连通性则通过临界体积加以描述。模型具有较为明确的物理解释。将模型应用于5种不同土壤的结果表明,所提出的非饱和水力传导度模型具有较好的模拟效果。  相似文献   

20.
焦志斌  王剑平  李景林 《岩土力学》2006,27(12):2246-2249
通过某电厂桩基处理工程实例,介绍了打桩引起的预制桩偏位及开挖问题。在不加外荷载情况下,采用塑料排水板方法消散打桩引起的超静孔隙水压力的处理措施,解决了高孔隙水压力下主厂房的开挖问题。分析了塑料排水板消散孔隙水压力的影响因素。观测结果及工程实践表明,塑料排水板处理桩基工程快速经济,可不需加载,但处理效果与水平排水系统有关。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号