首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Measurements have been made of concentration fluctuations in a dispersing plume from an elevated point source in the atmospheric surface layer using a recently developed fast-response photoionization detector. This detector, which has a frequency response (–6 dB point) of about 100 Hz, is shown to be capable of resolving the fluctuation variance contributed by the energetic subrange and most of the inertial-convective subrange, with a reduction in the fluctuation variance due to instrument smoothing of the finest scales present in the plume of at most 4%.Concentration time series have been analyzed to obtain the statistical characteristics of both the amplitude and temporal structure of the dispersing plume. We present alongwind and crosswind concentration fluctuation profiles of statistics of amplitude structure such as total and conditional fluctuation intensity, skewness and kurtosis, and of temporal structure such as intermittency factor, burst frequency, and mean burst persistence time. Comparisons of empirical concentration probability distributions with a number of model distributions show that our near-neutral data are best represented by the lognormal distribution at shorter ranges, where both plume meandering and fine-scale in-plume mixing are equally important (turbulent-convective regime), and by the gamma distribution at longer ranges, where internal structure or spottiness is becoming dominant (turbulent-diffusive regime). The gamma distribution provides the best model of the concentration pdf over all downwind fetches for data measured under stable stratification. A physical model is developed to explain the mechanism-induced probabilistic schemes in the alongwind development of a dispersing plume, that lead to the observed probability distributions of concentration. Probability distributions of concentration burst length and burst return period have been extracted and are shown to be modelled well with a powerlaw distribution. Power spectra of concentration fluctuations are presented. These spectra exhibit a significant inertial-convective subrange, with the frequency at the spectral peak decreasing with increasing downwind fetch. The Kolmogorov constant for the inertial-convective subrange has been determined from the measured spectra to be 0.17±0.03.  相似文献   

2.
3.
The dynamical characteristics of concentration fluctuations in a dispersing plume over the energetic and inertial-convective range of scales of turbulent motion are studied using a multiscale analysis technique that is based on an orthonormal wavelet representation. It is shown that the Haar wavelet concentration spectrum is similar to the Fourier concentration spectrum in that both spectra exhibit an extensive inertial-convective subrange spanning about two decades in frequency, with a scaling exponent of -5/3. Analysis of the statistical properties (e.g., fluctuation intensity, skewness, and kurtosis) of the concentration wavelet coefficients (i.e., the concentration discrete detailed signal) suggests that the small scales are always more intermittent than the large scales. The degree of intermittency increases monotonically with decreasing scale within the inertial-convective subrange, reaching a plateau at the very small scales associated with the beginning of the near-dissipation subrange. The probability density function (pdf) of the concentration discrete detailed signal displays stretched exponential tails with an intermittency exponent (tail slope) q that increases as a , where is the scale or dilation and a is a power-law exponent that is dependent on downwind distance, plume height, and stratification strength with typical values in the range from about 0.25 to 0.35. It is shown that the concentration variance cascade process requires a phase coherency of eddies between different scales at the small-scale end of the inertial-convective subrange.The variation of the concentration wavelet statistics with height above the ground is investigated. The increased mean shear near the ground smooths the fine-scale plume structure for scales within the inertial-convective subrange, producing a weaker spatiotemporal intermittency in the concentration field compared to that measured higher up in the plume. The pdf of the concentration detailed signal at a fixed scale possesses less elongated tails with decreasing height z. The intermittency exponent q is found to decrease roughly linearly with increasing z.Finally, the results of the wavelet decomposition are combined to provide a conceptual model of the turbulent transport, stirring, and mixing regimes in a dispersing plume. The implications of the results for contaminant texture in a plume are discussed.  相似文献   

4.
Field experiments on concentration fluctuations have frequently measured horizontal cross-sections of fluctuation statistics through plumes at fixed heights near the surface, but have not considered the effect of height above the ground in any detail. A set of tracer experiments designed to measure vertical profiles of concentration fluctuations in plumes, with a range of source heights, is described, and profiles of statistics are presented. Considerable variation of the statistics with both source and detector height is found. Near the surface, fluctuation intensity is a minimum and the time and length scales of the fluctuations are greatly increased. Profiles are consistent with the idea that concentration fluctuations near the surface are like those higher up at a greater distance from the source. Lowering the source height reduces the fluctuation intensity at all heights, and also alters the form of the concentration PDF. Results may be explained by the reduced length scale of sheargenerated turbulence near the surface causing enhanced small-scale mixing, which rapidly smooths out much of the fine structure with the plume.  相似文献   

5.
The effects of source size on plume behaviour have been examined in a 1.2 m wind tunnel boundary layer for isokinetic sources with diameters from 3 to 35 mm at source heights of 230 mm and at ground level. Experimental measurements of mean concentration and the variance, intermittency and probability density functions of the concentration fluctuations were obtained. In addition, a fluctuating Gaussian plume model is presented which reproduces many of the observed features of the elevated emission. The mean plume width becomes independent of source size much more rapidly than the instantaneous plume width. Since it is the meandering of the instantaneous plume which generates most of the concentration fluctuations near the source, these are also dependent on source size. The flux of variance in the plume reaches a maximum, whose value is greatest for the smallest source size, close to the source and thereafter is monotonically decreasing. The intermittency factor reaches a minimum, whose value is lowest for the smallest source, and increases back towards one. Concentration fluctuations for the ground-level source are much less dependent on source size due to the effects of the surface.  相似文献   

6.
Measurements of concentration fluctuation intensity, intermittency factor, and integral time scale were made in a water channel for a plume dispersing in a well-developed, rough surface, neutrally stable, boundary layer, and in grid-generated turbulence with no mean velocity shear. The water-channel simulations apply to full-scale atmospheric plumes with very short averaging times, on the order of 1–4 min, because plume meandering was suppressed by the water-channel side walls. High spatial and temporal resolution vertical and crosswind profiles of fluctuations in the plume were obtained using a linescan camera laser-induced dye tracer fluorescence technique. A semi-empirical algebraic mean velocity shear history model was developed to predict these concentration statistics. This shear history concentration fluctuation model requires only a minimal set of parameters to be known: atmospheric stability, surface roughness, vertical velocity profile, and vertical and crosswind plume spreads. The universal shear history parameter used was the mean velocity shear normalized by surface friction velocity, plume travel time, and local mean wind speed. The reference height at which this non-dimensional shear history was calculated was important, because both the source and the receptor positions influence the history of particles passing through the receptor position.  相似文献   

7.
Surface-layer aerosol diffusion experiments have been conducted using artificial smoke plume releases at ground level over flat and homogeneously vegetated terrain at the Meppen proving grounds in the Federal Republic of Germany (1989). At fixed downwind locations in the range out to 800 m from the source, instantaneous crosswind plume profiles were detected repetitively at high spatial (1.5 m) and temporal (3 sec) intervals by use of a mini LIDAR system. The experiments were accompanied by measurement of the surface-layer mean wind and turbulence quantities by sonic anemometers. On the basis of measured crosswind concentration profiles, the following statistics were obtained: 1) Mean profile, 2) Root mean square profile, 3) Fluctuation intensities, and 4) Intermittency factors. Furthermore, some experimentally determined probability density functions (pdf's) of the fluctuations are presented. All the measured statistics are referred to a fixed and a moving frame of reference, the latter being defined as a frame of reference from which the (low frequency) plume meander is removed. Finally, the measured statistics are compared with statistics on concentration fluctuations obtained with a simple puff diffusion model (RIMPUFF) developed at Risø.  相似文献   

8.
Concentration fluctuation data from surface-layer released smokeplumes have been investigated with the purpose of finding suitable scaling parametersfor the corresponding two-particle, relative diffusion process.Dispersion properties have been measured at downwind ranges between 0.1 and 1 km from a continuous, neutrally buoyant ground level source. A combinationof SF6 and chemical smoke (aerosols) was used as tracer. Instantaneous crosswind concentration profiles of high temporal (up to 55 Hz) and spatialresolution (down to 0.375 m) were obtained from aerosol-backscatter Lidar detectionin combination with simultaneous gas chromatograph (SF6) reference measurements. The database includes detailed crosswind concentration fluctuation measurements. Each experiment, typically of 1/2-hour duration, containsplume mean and variance concentration profiles, intermittency profiles andexceedence and duration statistics. The diffusion experiments were accompanied by detailed in-situ micrometeorological mean and turbulence measurements. In this paper, a new distance-neighbour function for surface-released smoke plumes is proposed, accompanied by experimental evidence in its support. The new distance-neighbour function is found to scale with the surface-layer friction velocity,and not with the inertial subrange dissipation rate, over the range of distance-neighbour separations considered.  相似文献   

9.
Water-tunnel measurements of velocity, turbulence and scalar concentration for three model urban canopies with aspect ratios A r of building height-to-width of 0.25, 1 and 3 are presented. The measurements for the canopies with A r = 1 and 3 are new, while the measurements for A r = 0.25 were previously published. A passive scalar was continuously released from a near-ground point source, and the concentration was measured at several distances from the source and at different heights above the ground. Plume spreads, concentration and distance from the source were non-dimensionalized using length, time and velocity scales reflecting the geometry of the buildings. The scaling collapses the data for all aspect ratios and is valid when the vertical extent of the plume is smaller than the canopy height. The observed plume spreads are compared with analytical relations, which predict linear growth in both transverse and vertical directions. The observed mean concentration is compared with a Gaussian dispersion model that predicts a ?2 power-law decay with distance from the source.  相似文献   

10.
Observations of 1-s average concentration fluctuations during two trials of a U.S. Army diffusion experiment are presented and compared with model predictions based on an exponential probability density function (pdf). The source is near the surface and concentration monitors are on lines about 30 to 100 m downwind of the source. The observed ratio of the standard deviation to the mean of the concentration fluctuations is about 1.3 on the mean plume axis and 4 to 5 on the mean plume edges. Plume intermittency (fraction of non-zero readings) is about 50%; on the mean plume axis and 10%; on the mean plume edges. A meandering plume model is combined with an exponential pdf assumption to produce predictions of the intermittency and the standard deviation of the concentration fluctuations that are within 20%; of the observations.  相似文献   

11.
Temperature and humidity spectra have been measured at 3 and 12 m above the ground, together with profiles of wind, temperature and humidity, and flux measurements. Both temperature and humidity spectra appear to follow Monin-Obukov similarity as well as Kolmogorov's prediction for the inertial subrange. The standard deviations of temperature and humidity fluctuations support Monin-Obukov similarity and the predictions of local free convection. The spectral constants for the inertial subrange have been estimated as 0.8 for temperature and 0.6 for humidity.  相似文献   

12.
Often, a combination of waves and turbulence is present in the stably stratified atmospheric boundary layer. The presence of waves manifest itself in the vertical profiles of variances of fluctuations and in low-frequency contributions to the power spectra. In this paper we study internal waves by means of a linear stability analysis of the mean profiles in a stably stratified boundary layer and compare the results with observed vertical variance profiles of fluctuating wind and temperature along a 200 m mast. The linear stability analysis shows that the observed mean flow is unstable for disturbances in a certain frequency and wavenumber domain. These disturbances are expected to the detectable in the measurements. It is shown that indeed the calculated unstable frequencies are present in the observed spectra. Furthermore, the shape of the measured vertical variance profiles, which increase with height, is explained well by the calculated vertical structure of the amplitude of unstable Kelvin-Helmholtz waves, confirming the contribution of waves to the variances. Because turbulence and waves have quite distinct transport properties, estimates of diffusion from measurements of variances would strongly overestimate this diffusion. Therefore it is important to distinguish between them.  相似文献   

13.
Measurements of vertical profiles of pollen concentration from local and remote sources have been made during convective conditions with balloon-mounted rotating impaction samplers.The vertical profiles of local particles appear to be usually characterized by a decrease in the ground layer and by almost constant values aloft. A minimum often occurs at levels between 100 and 200 m.The concentration profiles of pollen from remote sources present a peak at heights of some hundred meters.By comparing the observed profiles with some published models of transport, it appears that: (i) because of differing eddy scales, turbulent transport affects the settling of pollen differently close to the ground than aloft; and (ii) turbulent anisotropies related to the dynamic and thermal structure of the atmosphere may affect the vertical distribution of particulate matter in the boundary layer.  相似文献   

14.
Simultaneous measurements of horizontal and vertical wind speeds and temperature fluctuations at heights up to 91 m in the stable atmospheric boundary layer are described. The power and cospectral shapes show a low-frequency peak (near the Brunt-Väisälä frequency) separated by a spectral gap from a peak at high frequency due to turbulence. Spectral shapes in the turbulence subrange at 8 m are in good agreement with the universal curves previously presented by Kaimal (1973). Further information is given on the variation of the scaling parameter, f 0, with stability; and the applicability of the normalising procedure to the spectra from the higher levels is discussed.  相似文献   

15.
Particulate dispersion into and within a 10- to 13-m tall pine forest was studied experimentally at Brookhaven National Laboratory using stained ragweed pollen and other tracers ranging from 14 to 54 m in diam. Seventy-two continuous point source releases lasting 20 to 40 min were made at various distances from within the forest edge to 60 m upwind and at heights of 1.75 to 14.0 m. In most experiments, differently colored ragweed pollen was released simultaneously from three locations. Thirty-six longer tests were made using pollen from area sources of ragweed and three with pollen from distant sources. All tests were made during the day with steady winds and unstable lapse rates outside the forest. The sampling network consisted of 119 rotoslide samplers mounted at heights from 0.5 to 21.0 m at 57 positions extending 100 m into the forest. Deposition was sampled by greased microscope slides at each sampling position. Meteorological measurements were taken in and near the forest.Data were classified by particle characteristics; by source type, distance and height; and by meteorological parameters. Isopleths were drawn on scale diagrams of the sampling grid to illustrate concentration patterns. Changes in centerline concentration, crosswind integrated concentration, mass flux, plume width, plume height, deposition, and deposition velocity were related to distance within the forest and other variables. Results were compared to those of similar releases over open terrain and those of previous forest dispersion studies elsewhere.The plume approaching the forest is broadened both vertically and horizontally by increased turbulence at the forest edge and flows mainly into the trunk space and above the forest. Lateral spread is slow within the forest, but vertical spreading beyond the entrance region is greater than in the open. Particles become mixed uniformly below the canopy while appreciable interchange takes place through this layer. Concentration within the forest decreases at a faster rate than in the open, but change in total mass flux within and above the forest is not significantly different. Loss of material takes place by impaction near the forest edge and in the tree tops and by deposition within the forest. Most loss takes place to the foliage rather than the ground, and larger particles are lost faster than smaller ones.This research was carried out under the auspices of the New York State Museum and Science Service and the U.S. Atomic Energy Commission and was partially supported by Research Grant No. R-800677 from the Division of Meteorology, U.S. Environmental Protection Agency.  相似文献   

16.
A Lagrangian particle dispersion model (LPDM) driven by velocity fields from large-eddy simulations (LESs) is used to determine the mean and variability of plume dispersion in a highly convective planetary boundary layer (PBL). The total velocity of a “particle” is divided into resolved and unresolved or random (subfilter scale, SFS) velocities with the resolved component obtained from the LES and the SFS velocity from a Lagrangian stochastic model. This LPDM-LES model is used to obtain an ensemble of dispersion realizations for calculating the mean, root-mean-square (r.m.s.) deviation, and fluctuating fields of dispersion quantities. An ensemble of 30 realizations is generated for each of three source heights: surface, near-surface, and elevated. We compare the LPDM calculations with convection tank experiments and field observations to assess the realism of the results. The overall conclusion is that the LPDM-LES model produces a realistic range of dispersion realizations and statistical variability (i.e., r.m.s. deviations) that match observations in this highly convective PBL, while also matching the ensemble-mean properties. This is true for the plume height or trajectory, vertical dispersion, and the surface values of the crosswind-integrated concentration (CWIC), and their dependence on downstream distance. One exception is the crosswind dispersion for an elevated source, which is underestimated by the model. Other analyses that highlight important LPDM results include: (1) the plume meander and CWIC fluctuation intensity at the surface, (2) the applicability of a similarity theory for plume height from a surface source to only the very strong updraft plumes—not the mean height, and (3) the appropriate variation with distance of the mean surface CWIC and the lower bound of the CWIC realizations for a surface source.  相似文献   

17.
A numerical stochastic model is developed for the upcrossing rate across a specified threshold concentration. The model assumes that the concentration time series at a given spatial point within a dispersing plume can be approximated as a first-order Markovian process designed to be consistent with a given time-invariant concentration probability density function (pdf). The model requires only the specification of a concentration pdf with a given mean and variance and a concentration fluctuation integral time scale. Predicted upcrossing rates are compared with atmospheric plume concentration data obtained from a point source near the ground. For this data set, a log-normal pdf is found to give better estimates of the threshold crossing rate than a gamma pdf.  相似文献   

18.
A meandering plume model that explicitly incorporatesinternal fluctuations has been developed and used to model the evolutionof concentration fluctuations in point-source plumes in grid turbulenceobtained from a detailed water-channel simulation. This fluctuating plumemodel includes three physical parameters: the mean plume spread in fixedcoordinates, which represents the outer plume length scale; the meaninstantaneous plume spread in coordinates attached to the instantaneousplume centroid, which represents the inner plume length scale; and, theconcentration fluctuation intensity in the meandering reference frame,which represents the in-plume fluctuation scale. These parameters arespecified in terms of a set of coupled dynamical equations that modeltheir development with downstream distance from the source. Explicitexpressions for the concentration moments of arbitrary integral orderand the concentration probability density function have been obtainedfrom the fluctuating plume model. Detailed comparisons of model predictionsagainst water-channel measurements for the first four concentrationmoments and the concentration probability distributions generally showvery good overall quantitative agreement. Exact quantitative conditions,expressed in terms of the physical parameters of the fluctuating plumemodel, have been derived for the emergence of off-centreline peaks inthe concentration variance profile. These quantitative conditions havebeen illustrated in terms of a diagram of states of the dispersing plume,and the qualitatively different regimes of plume concentration variancebehaviour on this state diagram have been identified and characterized.  相似文献   

19.
Particulate dispersion from sources within a 10- to 13-m tall pine forest was studied experimentally at Brookhaven National Laboratory using stained ragweed pollen and other tracers ranging from 14 to 58 m in size. Forty-seven continuous point source releases lasting from 22 to 55 min were made at heights from 1.75 to 14.0 m from locations having a long fetch through the forest. In most experiments, differently colored ragweed pollen were emitted simultaneously from three locations. In other tests, several particle types were released from a single point. The sampling network consisted of 119 rotoslide samplers at heights from 0.5 to 21.0 m at 57 positions within and at the edge of the forest. Deposition to the ground was sampled by greased microscope slides at each position. Meteorological measurements were taken in and near the forest.Data were classified by particle characteristics, source height and meteorological parameters. Concentration patterns were illustrated on scale diagrams of the sampling grid. Changes in centerline and crosswind integrated concentrations, plume width and height, mass flux, deposition and deposition velocity were studied as a function of distance, particle size and wind speed. Results were compared to those obtained from similar releases over open terrain.In the forest, vertical predominates over lateral dispersion and considerable interchange occurs through the canopy. Flow is channelled somewhat by vegetation density differences but is generally in the direction of the mean wind above the forest. No systematic turning of the wind with height was observed. Most particles are lost to the foliage rather than to the ground and large particles are lost more rapidly than smaller ones. Rate of change in mass flux is similar to that over open terrain and is greater with light than with stronger wind speeds.This research was carried out under the auspices of the New York State Museum and Science Service and the U.S. Atomic Energy Commission (now Energy Research and Development Administration) and was partially supported by Research Grant No. R-800677 from the Division of Meteorology, U.S. Environmental Protection Agency.  相似文献   

20.
Atmospheric turbulence was measured within a black spruce forest, a jack pine forest, and a trembling aspen forest, located in southeastern Manitoba, Canada. Drag coefficients (C d ) varied little with height within the pine and aspen canopies, but showed some height dependence within the dense spruce canopy. A constant C d of 0.15, with the measured momentum flux and velocity profiles, gave good estimates of leaf-area-index (LAI) profiles for the pine and aspen canopies, but underestimated LAI for the spruce canopy.Velocity spectra were scaled using the Eulerian integral time scales and showed a substantial inertial subrange above the canopies. In the bottom part of the canopies, the streamwise and cross-stream spectra showed rapid energy loss whereas the vertical spectra showed an apparent energy gain, in the region where the inertial subrange is expected. The temperature spectra showed an inertial subrange with the expected -2/3 slope at all heights. Cospectra of momentum and heat flux had slopes of about -1 in much of the inertial subrange. Possible mechanisms to explain some of the spectral features are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号