首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 417 毫秒
1.
In Yuka-Luofengpo area of the north Qaidam Mountains, eclogitic metapelites are recognized. The metapelites enclosed lenses of eclogites, and locally intercalated with eclogites. Their typical mineral assemblages are garnet+kyanite+chloritoid+phengite+quartz+rutile. Strong growth zoning is preserved in garnets of metapelites, and phengite contains up to 3.4 Si per formula units. The petrographic observations and textural relations testify to the following sequence of mineral assemblages connected to three metamorphic stage: (1) Grt+ChlI+CldI +PheI ± StI+Qtz; (2) Grt+Ky+PheII±CldII+Qtz; and (3) Grt+CldIII+ChlII+PheIII+StII ± ky+ Qtz. Applying THERMOCALC Program, Grt-Phe thermometer and Grt-Ky-Phe-Qtz barometry, P-T conditions for three metamorphic stages were obtained: P=1.07±0.31GPa, T=564±22? (prograde stage); P=2.3–3.1GPa, T=615–700°C-(peak stage); and P =1.22 ± 0.26GPa, T=581±20°C (retrograde stage). A hairpin shape P-T path similar to that of adjacent eclogite is inferred. In combination with eclogitic mineral relics in marbles and orthogneisses enclosing eclogites, we thought that the relationship between eclogites and country rocks is “in situ” rather than “tectonic emplacement”.  相似文献   

2.
The skarns and skarn deposits are widely distributed at home and abroad. The skarn deposits include many kinds of ores and higher ore grade. Some of them are broad in scale. Scientists of ore deposits from different countries have paid and are paying grea…  相似文献   

3.
Basaltic lava from Kilauea, Hawaii may have a red-brown surface, indicative of Fe-(hydr)oxides. This surface is not found where exposed to weathering, but at the interface between lava lobes, or in the interior of lava channels. We use several analytical techniques to determine how these Fe-(hydr)oxide surfaces may have developed. WDS-elemental distribution line profiles from the lava surface towards the lava′s interior detect an Fe-rich film of less than 5 μm thickness. Heat treatment of quenched, fresh lava samples of the same chemical composition between 600–1,090°C helps to replicate temperatures under which such an Fe-rich film might have formed. These experiments suggest that Fe-enrichment occurs above 1,020°C, whereas at lower temperatures Ca is enriched relative to Fe. One sample was treated below the glass transition temperature, at 600°C for 164 h. A depth profile with secondary neutral mass spectrometry shows an enrichment of Mg at the outer 50 nm of the glass surface. The formation of films requires cation migration, which is driven by an oxygen chemical potential between air and the reduced basalt (Fe2+/Fe3+ ratio of 13.3). The change of surface alteration from Mg to Ca film at lower temperatures, to predominantly Fe at high temperatures, is determined by a change of cation availability, largely controlled by crystallization that already occurs below 850°C, and volume crystallization that occurs above 925°C.  相似文献   

4.
Based on an analysis of a large array of meteorological data, we have shown that surface air temperatures differ significantly in years of sunspot maxima and minima for different months and latitudes and longitudes of observation points. This difference is the greatest at high latitudes of 60–83°; it is equal to +2.07 ± 0.28°C in February in the longitudinal range of 170 ± 190° and −1.41 ± 0.29°C in November in the longitude range of 150 ± 170°.  相似文献   

5.
Ultrahigh‐temperature (UHT) granulite facies rocks from the Achankovil Shear Zone area and the southern domain of the Madurai Granulite Block in South India contain monazite useful for in situ microprobe U–Pb dating. The UHT rocks examined consist of garnet + cordierite (retrograde) + quartz + mesoperthite + biotite + plagioclase + Fe‐Ti oxides ± orthopyroxene ± sillimanite and accessory zircon and monazite. Sillimanite occurs only as inclusions in garnet. Microstructural observations suggest garnet, orthopyroxene, spinel and mesoperthite are products of peak metamorphism. Post‐peak formation of cordierite ± orthopyroxene ± quartz and cordierite + spinel + Fe‐Ti oxides assemblages is also observed. Geothermobarometry on orthopyroxene and garnet‐orthopyroxene bearing assemblages suggest peak UHT conditions of T = 940–1040°C and P = 8.5–9.5 kbar. This was followed by a retrograde stage of 3.5–4.5 kbar and 720 ± 60°C, estimated from garnet‐cordierite assemblages. A small population of rounded, probably detrital, monazites in these rocks yield ages from Meso‐ to Neoproterozoic indicating a heterogeneous source. The youngest associated spot ages are 660–600 Ma suggesting protolith deposition up to ca 600 Ma. In contrast, the vast majority of monazites that crystallized during the latest metamorphic event show late Neoproterozoic to Cambrian ages. Probability‐density plots of monazite age data show a ‘peak’ between 533 and 565 Ma, but this peak need not reflect a particular thermal event. Collating ages from homogenous metamorphic monazites associated with minerals stable at peak P‐T conditions suggests peak metamorphism in these rocks occurred at 580–600 Ma. Together with a re‐evaluation of available data from adjacent granulite blocks in southern India, these data suggest the main metamorphic event coinciding with the suturing of India with the Gondwana amalgam probably occurred 580–600 Ma. The 500–550 Ma ages commonly reported in previous studies might represent post‐peak thermal events.  相似文献   

6.
High-pressure and high temperature experiments at 20 GPa on (Mg,Fe)SiO3 have revealed stability fields of two types of aluminium-free ferromagnesian garnets; non-cubic garnet and cubic garnet (majorite). Majorite garnet is stable only within a limited compositional variation, 0.2 < Fe/(Mg + Fe)< 0.4, and in the narrow temperature interval of 200°C around 2000°C, while the stability of non-cubic garnet with more iron-deficient compositions persists up to higher temperatures. These two garnets show fractional melting into iron-deficient garnet and iron-rich liquid, and the crystallization field of cubic garnet extends over Fe/(Mg + Fe)= 0.5. The assemblage silicate spinel and stishovite is a low-temperature phase, which also occurs in the iron-rich portion of the MgSiO3—FeSiO3 system. The sequence as given by the Fe/(Mg + Fe) value for the coexisting phases with the two garnets at 2000°C and 20 GPa is: silicate modified spinel aluminium-free garnets silicate spinel.Natural majorite in shock-metamorphosed chondrites is clarified to be produced at pressures above 20 GPa and temperatures around 2000°C. Similar shock events may cause the occurrence of non-cubic garnet in iron-deficient meteorites. Non-cubic garnet could be a stable phase in the Earth's mantle if a sufficiently low concentration of aluminium is present in the layer corresponding to the stable pressure range of non-cubic garnet. The chemical differentiation by melting in the deep mantle is also discussed on the basis of the present experimental results and the observed coexistence of majorite garnet with magnesiowüstite in chondrites.  相似文献   

7.
The November 2002 eruption of Piton de la Fournaise in the Indian Ocean was typical of the activity of the volcano from 1999 to 2006 in terms of duration and volume of magma ejected. The first magma erupted was a basaltic liquid with a small proportion of olivine phenocrysts (Fo81) that contain small numbers of melt inclusions. In subsequent flows, olivine crystals were more abundant and richer in Mg (Fo83–84). These crystals contain numerous melt and fluid inclusions, healed fractures, and dislocation features such as kink bands. The major element composition of melt inclusions in this later olivine (Fo83–84) is out of equilibrium with that of its host as a result of extensive post-entrapment crystallization and Fe2+ loss by diffusion during cooling. Melt inclusions in Fo81 olivine are also chemically out of equilibrium with their hosts but to a lesser degree. Using olivine–melt geothermometry, we determined that melt inclusions in Fo81 olivine were trapped at lower temperature (1,182 ± 1°C) than inclusions in Fo83–84 olivine (1,199–1,227°C). This methodology was also used to estimate eruption temperatures. The November 2002 melt inclusion compositions suggest that they were at temperatures between 1,070°C and 1,133°C immediately before eruption and quenching. This relatively wide temperature range may reflect the fact that most of the melt inclusions were from olivine in lava samples and therefore likely underwent minor but variable amounts of post-eruptive crystallization and Fe2+ loss by diffusion due to their relatively slow cooling on the surface. In contrast, melt inclusions in tephra samples from past major eruptions yielded a narrower range of higher eruption temperatures (1,163–1,181°C). The melt inclusion data presented here and in earlier publications are consistent with a model of magma recharge from depth during major eruptions, followed by storage, cooling, and crystallization at shallow levels prior to expulsion during events similar in magnitude to the relatively small November 2002 eruption.  相似文献   

8.
Ferromagnesian silicate olivines, pyroxenes and garnets with Mg/(Mg + Fe)?0.3 (molar) have been found to transform to high-pressure phases characterized by the orthorhombic perovskite structure when compressed to pressures above 250 kbar in a diamond-anvil press and heated to temperatures above 1,000°C with a YAG laser. The zero-pressure density of the perovskite phase of (Mg,Fe)SiO3 is about 3–4% greater than that of the close-packed oxides, rocksalt plus stishovite. For (Mg,Fe)2SiO4 compounds, the perovskite plus rocksalt phase assemblage is 2–3% denser than the mixed oxides. The experimental synthesis of such high-density perovskite phases in olivine, pyroxene and garnet compounds suggests that (Mg,Fe)SiO3-perovskite is the dominant mineral phase in the earth's lower mantle.  相似文献   

9.
The decompressional pressure–temperature (P–T) path was estimated for ultrahigh‐pressure (UHP) eclogite from the Sulu region of eastern China by applying geo‐thermobarometers to well‐preserved equilibrium mineral pairs. The sample studied is a kyanite‐bearing eclogite that was collected from the Taohang area of the Sulu region. Garnet is relatively homogeneous in chemical composition, but omphacite has a clear chemical zoning with decreasing jadeite content from core to rim. Assuming that peak‐P equilibrium compositions are preserved in the cores of garnet (Grt) and omphacite (Omp), P–T conditions were calculated to be about 700°C and 3.4 GPa. On the other hand, the jadeite content of omphacite rims varies from 0.35 to 0.46 mol.%. Nevertheless, the variation in Fe/Mg ratios of omphacite rims is very small. Temperatures of 566 ± 54°C were obtained at 1.5 GPa for garnet rim and omphacite rim pairs. These petrological considerations indicate that temperatures should have significantly declined during the early decompression stage of this eclogite. In other areas of the Sulu region, isothermal decompression paths were proposed, and it was concluded that the UHP rocks were exhumed as a large mass tens of kilometers in thickness to avoid thermal effects from the surrounding materials. However, the newly identified decompression path accompanying the significant cooling may indicate that the Taohang outcrop was located at the margin of the Sulu UHP terrane. Thus, the decompressional P–T path is not unique in the Sulu region and varies depending on the location.  相似文献   

10.
Low temperature eclogite facies metamorphism in Western Tianshan, Xinjiang   总被引:3,自引:0,他引:3  
According to the field occurrences and petrological study, the low temperature eclogite facies metamorphic rocks in Western Tianshan of Xinjiang can be divided into five types: (i) massive glaucophane-epidote eclogites and glaucophane-paragonite eclogites; (ii) schistose or gneissic mica eclogites; (iii) banded calcite eclogites; (iv) pillow glaucophane eclogites; (v) garnet-omphacite quartzites. Their eclogite facies metamorphism has undergone four stages of evolution: (i) pre-peak lawsonite-blueschist facies stage,T = 350–4000°C,P = 0.7–0.9 GPa; (ii) peak eclogite facies stage,T = 530 ± 20°C,P = 1.6–1.9 GPa; (iii) retrograde epidote-blueschist facies stage, T=500–530°C,P = 0.9–1.2 GPa and (iv) retrograde blueschist-greenschist facies stage,T= 450–550°C,P= 0.7–0.8 GPa. The metamorphic PT path of Western Tianshan eclogites is characterized by clockwise ITD resulting from the subduction of Tarim plate northward to Yili-Central Tianshan plate followed by fast uplift to the surface. But there were at least two stages of blueschist facies retrograde metamorphism overprinted during their uplift.  相似文献   

11.
Granulite facies metamorphism of the igneous complex of South Harris has produced garnet-clinopyroxene-plagioclase assemblages from olivine-normative rocks and 2 pyroxene-plagioclase-quartz assemblages from quartz-normative rocks. The appearance of garnet can be considered in terms of two complex reactions:Olivine + plagioclase1 → (Ca, Mg, Fe) garnet + plagioclase2(olivine-normative) (A)Orthopyroxene + plagioclase1 → (Ca, Mg, Fe) garnet + plagioclase2 + quartz (quartz-normative) (B)For bulk compositions of the South Harris rocks the equilibrium pressure for reaction (A) has been exceeded whereas that for reaction (B) was not reached. Estimated physical conditions of metamorphism bracketed by these and other reactions are: 800–860°C and 10–13 kbar. These estimates, based on experimental data on simple systems combined with thermodynamic models of the solid solutions involved are in good agreement with extrapolated pressures for the experimentally determined appearance of garnet in basaltic compositions (Green and Ringwood, 1967). The latter give 9–12 kbar in the temperature range of interest. The calculations are also consistent with the occurrence of kyanite in associated metapelites and with the stability of spinel-lherzolite during the granulite metamorphism.  相似文献   

12.
Origin of Li-F-rich granite: Evidence from high P-T experiments   总被引:2,自引:0,他引:2  
In South China and some regions around the world, there is a special type of rocks. These rocks are usually ultra-acidic, peraluminous, rich in Na and volatile components, such as H2O, F, B and P, and with higher concentrations of lithophile rare metal elements, including Li, Rb, Cs, Be, Ta, Nb, Sn, W, etc. Rocks of this type are commonly called Li-F-rich, rare-metal bearing granitic rocks, or Li-F granites for short[1]. The economic importance and distinct forma-tion mechanism of Li-…  相似文献   

13.
The Shizishan copper-gold deposit at Tongling, Anhui Province consists of two magmato-hydrothermal mineralization types: the crypto-explosive breccia type and the skarn type. At least four episodes of boiling occurred to the ore-forming fluids in this deposit. The first episode took place in accompany with the formation of the crypto-explosive breccias. The melt-fluid inclusions giving temperatures above 600℃ and salinities higher than 42% NaCl equiv represent a residual magma related to this episode. The second episode occurred during skarnization, giving fluid temperatures of 422℃-472℃, averaging 458℃, and salinities of 10.2%-45.1% NaCl equiv. The third episode corresponds to the main mineralization stage, i.e., the quartz-sulphide stage. Fluid temperatures of this episode vary in a range of 337℃-439℃ with an average of 390℃, and salinities in a range of 3%-30% NaCl equiv. The forth episode happened at the waning stage of mineralization, giving fluid temperatures below 350℃ with an average of 265℃ and salinities of 2.1%-40.4% NaCl equiv.  相似文献   

14.
Estimates of pyroclastic flow emplacement temperatures in the Cerro Galán ignimbrite and Toconquis Group ignimbrites were determined using thermal remanent magnetization of lithic clasts embedded within the deposits. These ignimbrites belong to the Cerro Galán volcanic system, one of the largest calderas in the world, in the Puna plateau, NW Argentina. Temperature estimates for the 2.08-Ma Cerro Galán ignimbrite are retrieved from 40 sites in 14 localities (176 measured clasts), distributed at different distances from the caldera and different stratigraphic heights. Additionally, temperature estimates were obtained from 27 sample sites (125 measured clasts) from seven ignimbrite units forming the older Toconquis Group (5.60–4.51 Ma), mainly outcropping along a type section at Rio Las Pitas, Vega Real Grande. The paleomagnetic data obtained by progressive thermal demagnetization show that the clasts of the Cerro Galán ignimbrite have one single magnetic component, oriented close to the expected geomagnetic field at the time of emplacement. Results show therefore that most of the clasts acquired a new magnetization oriented parallel to the magnetic field at the moment of the ignimbrite deposition, suggesting that the clasts were heated up to or above the highest blocking temperature (T b) of the magnetic minerals (T b = 580°C for magnetite; T b = 600–630°C for hematite). We obtained similar emplacement temperature estimations for six out of the seven volcanic units belonging to the Toconquis Group, with the exception of one unit (Lower Merihuaca), where we found two distinct magnetic components. The estimation of emplacement temperatures in this latter case is constrained at 580–610°C, which are lower than the other ignimbrites. These estimations are also in agreement with the lowest pre-eruptive magma temperatures calculated for the same unit (i.e., 790°C; hornblende–plagioclase thermometer; Folkes et al. 2011b). We conclude that the Cerro Galán ignimbrite and Toconquis Group ignimbrites were emplaced at temperatures equal to or higher than 620°C, except for Lower Merihuaca unit emplaced at lower temperatures. The homogeneity of high temperatures from proximal to distal facies in the Cerro Galán ignimbrite provides constraints for the emplacement model, marked by a relatively low eruption column, low levels of turbulence, air entrainment, surface–water interaction, and a high level of topographic confinement, all ensuring minimal heat loss.  相似文献   

15.
Experimental study of spinel-garnet phase transition was carried out using natural mineral and rock specimens from xenolith of mantle rocks in Cenozoic basalt as starting materials. From the result it was found that the condition of spinel Iherzolite-garnet Ihenolite phase transition (T = 1 100°C andP = 1.8–2.0 GPa) is consistent with theP-T equilibrium condition of the five-phase assemblage spinel/garnet Iherzolite in eastern China, suggesting that there may exist a spinel-garnet Iherzolite phase transition zone with the thickness of a few km to several ten km at the depth of 55–70 km in the continental upper mantle of eastern China. The depth of phase transition from spinel pyroxenite to garnet pyroxenite is found to be less than 55 km. Experiment results also show that water promotes metasomatism on one hand but suppresses phase transition on the other. Zoning of mineral composition was also discussed. Project supported by the National Natural Science Foundation of China.  相似文献   

16.
Sr isotope geochemical studies (the 87Sr/86Sr and ?18O-87Sr/86Sr systems) on the wall rocks and ores from the Lemachang independent Ag deposit in northeastern Yunnan provide strong evidence that the ore-forming fluids had flown through radiogenetically Sr-enriched rocks or strata prior to their entry into the locus of ore precipitation, and water-rock interaction is the main mechanism of Ag ore precipitation. The radiogenetically Sr-enriched source region may be the Proterozoic basement (the Kunyang and Hekou groups). Moreover, the theoretical modeling of the Sr isotopic system indicates that the ore-forming fluids contain as much as 3×10?6 Sr with isotopic composition of Sr being 0.750 and that of oxygen 7.0‰. The ore-forming temperatures were estimated at 150-250℃ for the carbonate rock-type ores and at 200-260℃ for the clastic rock-type.  相似文献   

17.
M. Ebanu  A. Nagasaki 《Island Arc》1999,8(4):459-474
Kyanite-bearing ultrahigh-pressure (UHP) eclogites occur as blocks in orthogneisses at Yangzhuang, in the Junan area of the southwestern Sulu province, eastern China. Eclogites have variable bulk rock compositions, with Al2O3 = 16–27 wt%, FeO* + MgO = 6–22 wt% and CaO = 9–13 wt%. Major minerals are garnet, omphacite, phengitic white mica, zoisite, kyanite, rutile and an SiO2 phase. Fe-rich staurolite (Mg ? Mg# = 0.24 ± 0.01) and paragonite–margarite aggregates are rarely included in the cores of prograde zoned garnet. Metamorphic conditions ranged from 520 to 650°C and <1.4 GPa at an early prograde stage, and mostly reached 660–830°C and 2.7–3.5 GPa at the peak UHP stage. The estimated dP/dT of the prograde P–T path is less than 0.25 GPa/100°C at earlier stages and increases to 0.7–1.4 GPa/100°C just before the UHP stage. The kink of the prograde P–T path closely resembles the steady-state P–T paths proposed, assuming a two-parameter brittle-plastic shear stress model. The estimated P–T path adequately explains the absence of prograde lawsonite and sodic amphibole and the common occurrence of coexisting zoisite, kyanite and sodic-calcic amphibole in the UHP eclogites throughout the Sulu province. Simple clockwise prograde P–T paths for Sulu UHP eclogites proposed in earlier studies should be carefully re-examined.  相似文献   

18.
Lower crustal high grade metamorphic rocks have been successively found at Pamirs nearby the western Himalayan syntaxis, Namjagbarwa and Dinggye nearby the eastern Himalayan syntaxis and the central segment of the Himalayan Orogenic Belt, respec-tively[1―4]. In particular, some researchers deduced that there were probably eclogites at some locations[5]. Moreover, some geochronological data of these lower crustal granulites also have been accumulated. For example, the high-pressure granulit…  相似文献   

19.
Post-10 ka rhyolitic eruptions from the Haroharo linear vent zone, Okataina Volcanic Centre, have occurred from several simultaneously active vents spread over 12 km. Two of the three eruption episodes have tapped multiple compositionally distinct homogeneous magma batches. Three magmas totalling ~8 km3 were erupted during the 9.5 ka Rotoma episode. The most evolved Rotoma magma (SiO2=76.5–77.9 wt%, Sr=96–112 ppm) erupted from a southeastern vent, and is characterised by a cummingtonite-dominant mineralogy, a temperature of 739±14°C, and fO2 of NNO+0.52±0.11. The least evolved (SiO2=75.0–76.4 wt%, Sr=128–138 ppm, orthopyroxene+ hornblende-dominant) Rotoma magma erupted from several vents, and was hotter (764±18°C) and more reduced (NNO+0.40±0.13). The ~11 km3 Whakatane episode occurred at 5.6 ka and also erupted three magmas, each from a separate vent. The most evolved (SiO2=73.3–76.2 wt%, Sr=88–100 ppm) Whakatane magma erupted from the southwestern (Makatiti) vent and is cummingtonite-dominant, cool (745±11°C), and reduced (NNO+0.34±0.08). The least evolved (SiO2=72.8–74.1 wt%, Sr=132–134 ppm) magma was erupted from the northeastern (Pararoa) vent and is characterised by an orthopyroxene+ hornblende-dominant mineralogy, temperature of 764±18°C, and fO2 of NNO+0.40±0.13. Compositionally intermediate magmas were erupted during the Rotoma and Whakatane episodes are likely to be hybrids. A single ~13 km3 magma erupted during the intervening 8.1 ka Mamaku episode was relatively homogeneous in composition (SiO2=76.1–76.8 wt%, Sr=104–112 ppm), temperature (736±18°C), and oxygen fugacity (NNO+0.19±0.12). Some of the vents tapped a single magma while others tapped several. Deposit stratigraphy suggests that the eruptions alternated between magmas, which were often simultaneously erupted from separate vents. Both effusive and explosive activity alternated, but was predominantly effusive (>75% erupted as lava domes and flows). The plumbing systems which fed the vents are inferred to be complex, with magma experiencing different conditions in the conduits. As the eruption of several magmas was essentially concurrent, the episodes were likely triggered by a common event such as magmatic intrusion or seismic disturbance.  相似文献   

20.
We describe an orthopyroxene–cordierite mafic gneiss from the Nomamisaki metamorphic rocks in the Noma Peninsula, southern Kyushu, Japan. The mineral assemblage of the gneiss is orthopyroxene, cordierite, biotite, plagioclase, and ilmenite. Thermometry based on the Fe–Mg exchange reaction between orthopyroxene and biotite yields a peak metamorphic temperature of 680°C. The stability of cordierite relative to garnet, quartz, and sillimanite defines the upper limit of the peak metamorphic pressure as 4.4 kbar. These features indicate that the Nomamisaki metamorphic rocks underwent low‐pressure high‐temperature type metamorphism. Although a chronological problem still remains, the Nomamisaki metamorphic rocks can be regarded as a western continuation of the Higo Belt. The Usuki–Yatsushiro Tectonic Line, which delineates the southern border of the Higo Belt, is therefore located on the east of the Nomamisaki metamorphic rocks in southern Kyushu.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号