首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 687 毫秒
1.
花岗岩体是很多重要工程地基或围岩的首选。选取高放废物地质处置阿拉善预选区巴彦诺日公花岗岩样品,开展薄片鉴定,获得各花岗岩样品的矿物含量和粒径;通过单轴压缩试验,获得花岗岩的单轴抗压强度。通过对比各组样品矿物含量和粒径与单轴抗压强度,研究二者之间的关系。结果表明:对花岗岩单轴抗压强度影响最大的矿物是钾长石和黑云母,斜长石和石英的影响不明显;矿物粒径与单轴抗压强度的相关性不明显,但与某一结构岩石单轴抗压强度的相关性明显;花岗岩的强度不仅仅取决于组成矿物含量和粒径,对于其内部结构的细节(如微裂隙、矿物排列、胶结等)非常敏感。  相似文献   

2.
In order to isolate the effect of grain size and cementation on the mechanical behaviour of poorly consolidated granular rock, we prepared synthetic rock samples in which these two parameters were varied independently. Various proportions of sand, Portland cement and water were mixed and cast in a mold. The mixture was left pressure-free during curing, thus ensuring that the final material was poorly consolidated. We used two natural well-sorted sands with grain sizes of 0.22 and 0.8 mm. The samples were mechanically tested in a uniaxial press. Static Young's modulus was measured during the tests by performing small stress excursions at discrete intervals along the stress–strain curves. All the samples exhibited nonlinear elasticity, i.e., Young's modulus increased with stress. As expected, we found that the uniaxial compressive strength increased with increasing cement content. Furthermore, we observed a transition from grain size sensitivity of strength at cement content less than 20–30% to grain size independence above this value. The measured values of Young's modulus are well explained by models based on rigid inclusions embedded in a soft matrix, at high cement content, and on cemented grain-to-grain contacts, at low cement content. Both models predict grain size independence in well-sorted cemented sands. The observed grain size sensitivity at low cement content is probably due to microstructural differences between fine- and coarse-grained materials caused by small differences in grain sorting quality.  相似文献   

3.
尺寸效应是岩石力学领域研究的难点与热点。本文利用自主研发的大尺寸刚性试验机,开展了最大样品尺寸为400 mm×400 mm×800 mm大理岩、闪长岩和凝灰岩的单轴抗压强度试验,从等高宽比条件下岩石强度的尺寸效应和不同高宽比条件下岩石强度变化两个方面开展了岩石强度尺寸效应研究,结果表明:相同高宽比条件下,岩石强度随样品尺寸的增大呈对数形式减小,且逐渐趋于定值;不同高宽比情况,岩石长宽为200 mm×200 mm,高度分别为200 mm,400 mm,600 mm和800 mm,岩石单轴抗压强度随高宽比的增加表现出先减小后增大的变化规律,对应的破坏形式表现为复杂劈裂、劈裂和剪切破坏。本文试验结果为丰富岩石尺寸效应研究提供了基础数据,同时对实际工程中岩体强度尺寸效应的修正具有一定参考价值。  相似文献   

4.
使用隧道掘进机(TBM)开挖隧道时刀盘和盾体阻碍了对岩石状态的观察,这时可使用岩渣对岩石条件进行预测和评价。从滚刀破碎掌子面产生的岩渣中选取块状岩石进行点荷载试验可以获得岩石强度,但是受过滚刀损伤作用的岩石强度值与未受损伤的岩石强度值之间的关系尚不明确。从吉林引松供水工程TBM破岩产生的岩渣中挑选块状试样进行点荷载试验,同时在产生岩渣的相应位置钻取岩芯获取点荷载强度,与单轴抗压强度进行了对比,记录了取样地点地质状态、试样的尺寸、破碎状态以及等效断裂面积。结果表明:岩渣中的岩块受到滚刀作用产生的损伤强度值有所下降,为完整取芯试样的63.25%,原岩越完整受损程度越大;灰岩点荷载强度换算岩石单轴抗压强度系数约为25.3,直接使用岩渣时建议系数约为42.1;峰值荷载与等效断裂面积成正比;尺寸过大的试块往往与岩体原有裂隙有关,强度极低,不适宜用作点荷载试验。研究结果为TBM隧道现场快速获取岩石强度参数提供了方法和依据。  相似文献   

5.
苏南宁镇地区,震旦系至第四系出露完整,研究程度颇深,诸地层的不同特征,以作为华南各地区地层对比之标准而著称。近几年来,随着大规模勘探工作的进行,宁镇地区地层的物性参数、电性参数和力学参数等各种资料,均在不断完善之中。本文试以该区震旦系至白垩系地层的岩石单轴抗压强度等的系统测试数据,对其有关的岩石力学特性进行粗浅地分析。  相似文献   

6.
针对目前岩石点荷载试验大部分采用规则试件进行,试件加工制作及试验的过程繁琐、成本高的问题,通过自制点荷载试验仪以及RMT-150B岩石力学伺服试验机,对煤矿顶底板常见岩性进行不规则岩石试件点荷载试验和规则岩石试件单轴抗压试验。试验结果表明:不规则岩石点荷载强度基本上满足正态分布规律,同时,点荷载破坏载荷与破坏面积之间呈线性关系,不同载荷破坏面积对点荷载试验中的尺寸、形状效应基本上没有太大的影响。通过分析点荷载强度与单轴抗压强度两者间的关系,得出通过点荷载强度确定单轴抗压强度的经验公式。   相似文献   

7.
The uniaxial compressive strength of intact rock is the main parameter used in almost all engineering projects. The uniaxial compressive strength test requires high quality core samples of regular geometry. The standard cores cannot always be extracted from weak, highly fractured, thinly bedded, foliated and/or block-in-matrix rocks. For this reason, the simple prediction models become attractive for engineering geologists. Although, the sandstone is one of the most abundant rock type, a general prediction model for the uniaxial compressive strength of sandstones does not exist in the literature. The main purposes of the study are to investigate the relationships between strength and petrographical properties of sandstones, to construct a database as large as possible, to perform a logical parameter selection routine, to discuss the key petrographical parameters governing the uniaxial compressive strength of sandstones and to develop a general prediction model for the uniaxial compressive strength of sandstones. During the analyses, a total of 138 cases including uniaxial compressive strength and petrographic properties were employed. Independent variables for the multiple prediction model were selected as quartz content, packing density and concavo–convex type grain contact. Using these independent variables, two different prediction models such as multiple regression and ANN were developed. Also, a routine for the selection of the best prediction model was proposed in the study. The constructed models were checked by using various prediction performance indices. Consequently, it is possible to say that the constructed models can be used for practical purposes.  相似文献   

8.
Numerical Study of Failure Mechanism of Serial and Parallel Rock Pillars   总被引:4,自引:2,他引:2  
Using a numerical modelling code, rock failure process analysis, 2D, the progressive failure process and associated acoustic emission behaviour of serial and parallel rock samples were simulated. Both serial- and parallel sample models are presented for investigating the mechanism of rock pillar failure. As expected, the numerical results show that not only the stiffness, but also the uniaxial compressive strength of the rock plays an important role in pillar instability. For serial pillars, the elastic rebound of a rock pillar with higher uniaxial compressive strength can lead to the sudden failure of an adjacent rock pillar with lower uniaxial compressive strength. The failure zone forms and develops in the pillar with lower uniaxial compressive strength; however, the failure zone does not pass across the interface of the two pillars. In comparison, when two pillars have the same uniaxial compressive strengths but different elastic moduli, both serial pillars fail, and the failure zone in the two pillars can interact, passing across the interface and entering the other pillar. For parallel pillars, damage always develops in the pillar having the lower uniaxial compressive strength or lower elastic modulus. Furthermore, in accordance with the Kaiser effect, the stress-induced damage in a rock pillar is irreversible, and only when the previous stress state in the failed rock pillar is exceeded or the subsequent applied energy is larger than the energy released by the external loading will further damage continue to occur. In addition, the homogeneity index of rock also can affect the failure modes of parallel pillars, even though the uniaxial compressive strength and stiffness of each pillar are the same.  相似文献   

9.
Unconfined compressive strength is one of the most commonly used properties in rock engineering. Estimation or selection of an appropriate value of unconfined compressive strength for a given rock can be difficult as it can vary greatly within the same rock unit. Considering this large variability, unconfined compressive strength obtained by testing just a few samples is questionable. The purpose of this study was to investigate the variability of unconfined compressive strength for a given rock and, based on this information, determine the minimum number of samples required for obtaining a reliable value. Unconfined compressive strength values for approximately 50 NX-size (2.125 in./5.4 cm) core samples were determined for five different rock types. Statistical analyses were performed on subsets of cores to determine the minimum number of samples required to render a reliable estimate of the average strength of the entire set of cores. The results indicate that the minimum number of samples needed for strength determination depends on the statistical method used, the chosen confidence interval, and the acceptable deviation from the mean. For a 95% confidence interval and a 20% acceptable strength deviation from the mean, either 9 or 10 samples are needed to test for strength, depending on the statistical analysis used.  相似文献   

10.
从康家湾铅锌金矿Ⅲ-1号矿体上盘围岩取大量岩样,分别加工制作了50个压缩和拉伸试验的试样。利用RMT-150B伺服试验系统对试样进行单轴抗压、抗拉试验,各获得了50个试验结果。采用假设检验法,分别对50个单轴抗压强度和50个抗拉强度进行检验,结果表明,它们分别服从正态分布和对数正态分布;对50个 、 和50个C、 ,进行不放回抽样,组成50组E、 、C、 。利用FLAC计算软件,对硐室围岩中的应力进行了计算,分别获得了50个最大主应力和50个最小主应力;采用同样假设检验法,证明它们分别服从对数正态和正态分布;根据单轴抗压、抗拉强度及围岩中的最大主应力、最小主应力概率密度函数,计算了硐室围岩不发生拉伸破坏和压缩破坏的可靠度;并对硐室围岩抗剪强度的校核,得出了该地下硐室围岩稳定的结论。  相似文献   

11.
单轴压缩下绿砂岩长期强度的尺寸效应研究   总被引:1,自引:0,他引:1  
岩石的蠕变特性是影响岩体工程稳定性的重要因素,而岩石的长期强度是确定岩体工程长期稳定的一个重要指标。由于岩石材料的非均质性,其长期强度具有明显的尺寸效应。为了研究岩石长期强度的尺寸效应,首先,在幂函数模型基础上,基于损伤力学理论,建立了能够描述岩石蠕变全过程的非线性蠕变损伤模型;然后,把运用该模型计算得到的单轴压缩蠕变数值模拟结果与室内单轴压缩蠕变试验结果进行对比,验证了模型的正确性;最后,采用所提出的模型对7个不同尺寸的岩样进行了单轴压缩蠕变数值模拟,并对岩石长期强度尺寸效应进行了分析。数值模拟结果表明:随着试样尺寸的逐渐增大,岩石长期强度值逐渐减小,当试样尺寸增大到一定程度时,岩石长期强度稳定在一个特定值附近。  相似文献   

12.
One of the most important quality and design parameters of natural rock materials is uniaxial compressive strength (UCS). UCS value of a building stone determines its application area such as cladding, roofing, facing, and coverings. In rock mechanics and engineering practice determination of UCS values of rock materials is suggested on core specimens whereas in construction and building stone sector, cubic specimens are suggested. In this experimental study, the effect of cubic specimen size on UCS values of some carbonate rocks which are being used as dimension stones are investigated. A total of 299 cubic specimens at five different edge sizes (3, 5, 7, 9, and 11 cm) from limestone, marble, and travertine are prepared. Chemical, petrographic analyses and physical properties of specimens are determined and after that UCS tests are carried out. It is observed that as the specimen sizes increase from 3 to 11 cm, average UCS values decrease about 7% for the tested carbonate rocks. In the light of this finding, results of UCS tests could be interpreted considering cubic specimen sizes for the same rock types in various fields.  相似文献   

13.
李志刚  徐光黎  袁杰  黄鹏  赵欣  伏永朋  苏昌 《岩土力学》2016,37(Z1):651-658
软岩强度较低,结构松散,难以加工成标准试件测其单轴抗压强度,为解决这一工程实践难题,引入了日本的一种通过测试软岩针贯入指标间接推算其抗压强度的试验仪器——针贯入仪。首先简要地介绍了针贯入试验的仪器装置、操作过程、注意事项以及数据处理方法,然后运用该仪器在现场和室内分别对不同软岩进行强度测试。统计分析测试结果表明,测试数据离散性大小与岩性均一程度、结构面分布情况密切相关。最后,选取了一组软岩岩样进行针贯入和点荷载对比试验,计算得出两种试验结果相差不大。因此,采用针贯入仪测试软岩强度是合理可行的,可在软岩工程中推广使用。  相似文献   

14.
This paper presents a numerical study of high strength concrete microstructure effects on its uniaxial and biaxial compressive strengths. Concrete is first represented as a set of angular aggregates interacting within a cement paste matrix. Then, a yield design kinematic approach is conducted at the mesoscopic scale in order to determine the concrete compressive strength for a given loading path. The proposed model, having a low computational cost, is able to capture the main microstructure effects already observed in literature on concrete uniaxial compressive strength, in particular, the aggregates volume fraction and maximal size effects. Finally, the proposed model also predicts the biaxial failure envelope of high strength concrete and confirms some experimental trends observed in literature.  相似文献   

15.
Geologic structures can represent planes of preferential weakness that, by dismembering the roof beam, may contribute to the failure of roof spans. However, beam deflection and roof failure also occur in rocks where no visible geologic discontinuities are present. This suggests that roof failure may depend on rock strength, which in turn depends on intrinsic textural properties inherent to the rock. In this study, rock samples were collected from horizontal stress-related roof fall material in coal mines for petrographic characterization and compressive strength testing. Brittle, stress failure-prone rock types include thinly interlaminated siltstone and shale, and black shale that had been lightly recrystallized. Samples exhibit a narrow range of density values between approximately 2.5–3.0 g/cm3 but exhibit a wide range of unconfined compressive strength values, between approximately 20–70 MPa. Results of laboratory observations suggest that for samples of coal mine immediate roof shale, compressive strength is not well correlated with density, grain size, sutured grain boundaries, or quartz content. These results for shale are generally at odds with the results of similar studies for sandstone. The great variability of strength, texture, and mineralogy documented in these samples may be an indication of their complexity and the need for specialized methodology in the study of shale strength.  相似文献   

16.
Estimation of uniaxial compressive strength (UCS) by P-wave velocity (VP) is of great interest to geotechnical engineers in various design projects. The specimen diameter size is one of the main factors that influence rock parameters such as UCS and VP. In this study, the diameter size of specimens that effect UCS and VP is investigated. Moreover, the correlation between UCS and VP are examined via empirical analysis. For this purpose, 15 travertine samples were collected and core specimens with a diameters size of 38, 44, 54, 64 and 74 mm were prepared. Then, uniaxial compressive strength and P-wave velocity tests were conducted according to the procedure suggested by ISRM (1981). It is concluded that the diameter size of the specimen has a significant effect on UCS and VP. Moreover, it was found that the best correlation between relevant parameters obtained for the specimen diameter of 38 mm.  相似文献   

17.
对山西大同煤峪口矿巷道砂岩进行了巴西劈裂、单轴和常规三轴试验,分析了其变形和强度特性,以整体平方根误差最小为依据拟合确定了5种强度准则参数,比较各准则的整体拟合效果以及抗拉强度和抗压强度预测值与试验值之间的差异。结果表明:砂岩单轴和低围压下的脆性特征显著,随着围压增大屈服段明显增加,逐渐由脆性向延性转变;对试验数据的整体拟合效果,Mohr-Coulomb准则最不理想,指数强度准则最好,Hoek-Brown准则和Bieniawski准则相接近;对抗拉强度的预测,Mohr-Coulomb准则明显高估了砂岩的抗拉强度,不适合预测抗拉强度,指数强度准则最为理想,Bieniawski准则不能反映岩石抗拉特性;单轴和不同围压下砂岩强度,直线型Mohr-Coulomb准则偏离了大多数试验数据点,特别是高围压下偏离显著结果失真,Hoek-Brown准则和Bieniawski准则预测结果几乎一致,Sheorey准则高围压下预测结果稍有偏高,指数强度准则接近大多数试验数据,预测效果最佳。   相似文献   

18.
充分认识岩石的地质本质性是准确描述其物理力学特性的桥梁。岩石的地质本质性涵盖了岩石的物质性、结构性和赋存状态3个方面的内容。在综合考虑岩石上述3方面特征及其与单轴试验联系的基础上,以矿物组成、密度、纵波波速和含水状态为基本指标,采用回归和BP神经网络的方法对碳酸盐岩单轴抗压强度进行预测,并采用灰色关联分析法验证本研究所选用的预测基本指标的合理性。实例应用表明:本次采用的回归方法对该类岩石强度预测的最大误差为15.3%,BP神经网络方法预测的最大误差为8.5%。预测误差出现的原因为碳酸盐岩物质组成复杂,所选预测基本指标是实际情况的简化,同时泥灰质岩石所具有的膨胀性也导致实测和预测结果具有一定的差异。  相似文献   

19.
Considerations on strength of intact sedimentary rocks   总被引:12,自引:0,他引:12  
This study presents the results of laboratory testing of sedimentary rocks under point loading as well as in uniaxial and triaxial compression. From the statistical analysis of the data, different conversion factors relating uniaxial compressive and point loading strength were determined for soft to strong rocks. Additionally, the material constant mi, an input parameter for the Hoek and Brown failure criterion, was also estimated for different limestone samples by analysing the results from a series of triaxial compression tests under different confining pressures. The uniaxial compressive strength (UCS) of intact rocks, as estimated from the point load index using conversion factors, together with the Hoek–Brown constant mi, and the Geological Strength Index (GSI) constitute the parameters for the calculation of the strength and deformability of rock masses.  相似文献   

20.
岩石作为矿物颗粒的集合体,矿物粒径非均质性对其宏观力学特性影响比较明显。基于颗粒流程序PFC2D,通过设置不同种类粒径组合及粒径比来体现粒径非均质性,研究了粒径非均质性对岩石材料宏观力学特性(弹性模量、峰值强度、泊松比)的影响。研究中设计了6种粒径组合方案,粒径种类数分别为:连续粒径、10种、8种、5种、3种、2种,每种方案下设置5种平均粒径及4种粒径比,进行单轴压缩试验。结果表明,岩石内部存在颗粒尺寸效应和粒径非均质效应,岩石弹性模量和峰值强度随粒径增大均呈减小的趋势,随粒径非均质性的提高整体上也呈减小的趋势,但局部变化阶段受模型中细颗粒含量及数量的影响会呈增大的趋势。粒径对弹性模量的作用机制主要是通过影响模型孔隙率实现的。研究结果揭示了岩石宏观特性的变化是模型内颗粒尺寸效应和粒径非均质性效应共同作用的结果,为掌握矿物粒径对岩石强度及变形特性的影响提供了一定依据。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号