首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 812 毫秒
1.
大瑞铁路澜沧江大桥工程边坡稳定性三维数值模拟分析   总被引:4,自引:2,他引:2  
采用现场调查、工程地质分析和三维数值模拟方法,对在建大瑞铁路工程澜沧江大桥边坡稳定性进行了综合分析研究。澜沧江大桥是在建大瑞铁路的控制性工程之一,由于多种因素的综合作用,桥址岸坡发育延伸较长的顺坡向节理和近垂直的陡倾节理。右岸桥位工程开挖区位于一组较大型顺坡结构面的下方,岸坡稳定性直接关系到桥位的适宜性。综合研究表明,工程开挖后,右岸桥位上部岩体极易在顺坡向结构面的控制下发生滑移–拉裂式破坏,沿外倾结构面产生较大的位移,甚至可能失稳,需要进行专门的工程治理。左岸边坡岩体结构相对稳定,工程开挖后,位移将主要集中在开挖面附近的浅表层部位,不仅变形较小,影响范围也相对较小。   相似文献   

2.
丽香铁路金沙江特大桥位于金沙江虎跳峡镇高地震烈度深切峡谷地段。香格里拉端岸坡地形陡峻,卸荷裂隙发育,岸坡岩体在地震及工程荷载作用下的稳定性直接控制了桥梁选址方案的可行性。在深入分析对岸坡工程地质条件的基础上,基于节理特征分析的Barton模型、岩体结构面强度实验,讨论了岩体结构面强度参数,并在此基础上采用底摩擦实验研究了岸坡在自然和工程荷载作用下的稳定性,进而采用离散单元法计算分析了岸坡岩体在自然、桥基荷载作用下、地震加桥基荷载作用工况条件下的破坏趋势。研究表明,岸坡整体稳定,但在地震和桥梁荷载作用下,岸坡卸荷裂隙进一步发育,对桥基影响较大,应加强卸荷带岩体的工程整治以确保桥基安全。  相似文献   

3.
高陡岩质边坡稳定性三维离散元分析   总被引:3,自引:2,他引:1  
某高陡岩质边坡地质条件复杂、软弱结构面发育、开挖高度大、坡度陡、临空面多,为边坡变形提供了有利的空间,边坡多处出现失稳破坏迹象。通过对边坡工程地质条件调查,岩体结构特征和边坡开挖等影响因素的分析,认为边坡变形主要发生在强风化强卸荷岩体内,受软弱结构面的控制比较明显,表现为结构面组合控制的块体变形失稳破坏模式。采用3DEC数值模拟软件,模拟了边坡开挖后坡体变形特征,数值模拟结果表明,边坡浅表层块体以及控制性块体稳定性差,可能导致边坡产生整体失稳。  相似文献   

4.
王华 《岩土力学》2011,32(7):2034-2038
结合某大桥桥基岸坡地质条件,采用相似原理为基础的底摩擦试验方法,定性模拟分析了在天然状态和加载条件下岸坡岩体的变形破坏过程和模式。试验结果表明:在天然状态下,左右岸岸坡岩体处于稳定状态;在加载条件下,左岸岸坡岩体稳定,右岸发育的错落体失稳,而导致整个岸坡不稳定,建议对其进行预加固或改变桥墩位置  相似文献   

5.
以龙塘山 2号大桥为工程背景 ,在综合考虑桥基岸坡的工程地质条件尤其是岩体结构的基础上 ,建立了数值分析模型 ,采用离散元法对该桥 10 #墩所处岸坡的破坏模式进行了模拟。模拟结果表明 :( 1)龙塘山 2号大桥 10 #墩所处岸坡基本稳定 ;( 2 )施工时 ,应对既有公路上方岸坡坡顶及坡面可能崩滑岩块进行预清除与加固 ;( 3)根据岸坡破坏趋势可得其稳定坡角为 5 0°  相似文献   

6.
赵超  樊敬亮  孟娟 《江苏地质》2009,33(3):245-250
高山峡谷地区的北盘江大桥两岸高边坡,表部风化卸荷严重。因此,对其稳定性及危害程度进行准确评价显得尤为重要。首先,对两岸边坡的结构类型、结构面与坡面的组合、岩体风化及物理力学性质等特征进行了研究;然后,对两岸边坡的岩体进行了质量分级;在岩体质量分级的基础上,利用FLAC3D数值模拟软件,对两岸边坡在自重、大桥荷载和地震作用下引起的工程效应进行了综合评价。  相似文献   

7.
列车震动荷载对边坡稳定性的影响分析   总被引:1,自引:0,他引:1  
以某高速铁路隧道出口边坡为研究对象,在边坡工程地质条件、岩体结构特征及变形破坏特征调查分析的基础上,阐明了边坡的变形破坏模式为受卸荷结构面控制的块体顺坡向滑塌破坏。通过建立边坡的三维数值模型,对比分析了边坡在天然工况(施工平台及隧道开挖前)和列车震动荷载工况下,沿隧道走向剖面上的应力、变形及剪应变增量变化特征,并分析了施工平台开挖及列车震动荷载对边坡稳定性的影响,得出了施工平台开挖及列车震动荷载,可能在开挖面附近及坡内软岩夹层中引起局部的变形破坏,对边坡整体稳定性影响较小的结论。  相似文献   

8.
金沙江某水电站引水洞出口边坡稳定性分析   总被引:1,自引:0,他引:1  
金沙江某水电站引水洞出口边坡为千枚岩类软岩边坡,其地质条件复杂、结构面发育。由于边坡特殊的岩体结构及其重要性,其稳定发展趋势便成为工程技术人员关心的主要问题。本文在地质调查的基础上,分析了边坡岩体结构特征,建立边坡地质模型,并采用3D-FLAC模拟边坡-洞室组合开挖后的应力、变形分布特征及破坏区范围。结果表明,洞室开挖主要影响6倍洞径范围内围岩应力分布状态,对边坡整体稳定性影响不大;但边坡开挖会使得坡面产生不同程度的受拉区域,对边坡稳定性影响较大。另外,在此基础上选取典型的边坡进行稳定性分析,分析表明,天然状态下,边坡开挖后局部岩体稳定性较差,存在块体失稳的可能,但整体稳定性较好;暴雨、地震条件下,边坡稳定性较差,边坡顶部岩土体有沿结晶灰岩与千枚岩的地层分界面发生失稳的可能。  相似文献   

9.
黄土填方高边坡变形破坏机制分析   总被引:1,自引:1,他引:0  
本文依据西北某油田倒班基地黄土填方高陡边坡工程勘察, 研究了该边坡的变形破坏机制, 通过对边坡工程地质条件及变形破坏分析, 建立FLAC3D地质模型, 采用数值模拟方法研究了边坡变形破坏机制。研究结果表明, 主要变形区或破坏区为陡坎周围至其沿坡面向下20~25m 的范围之间, 其破坏深度底界为全新世填土层Q4与原状黄土Q3接触面, 但要重点控制沿坡面向下20~25m 的范围之间的变形。数值模拟结果表明, 该边坡目前整体稳定性较好, 不会发生整体变形破坏。  相似文献   

10.
两河口水电站引水进口边坡变形稳定性分析   总被引:1,自引:1,他引:0  
两河口水电站引水进口边坡主要由砂、板岩组成的陡倾横向坡,最大开挖坡高215 m。本文根据边坡的地质结构及变形破坏特征,分析了边坡的破坏模式及稳定状况。在此基础上,采用三维有限元数值模拟的方法,模拟了工程边坡的分步开挖过程。分析表明,边坡稳定性主要受f34-1等中缓倾角结构面及Ⅴ级岩体的控制,具有沿中缓倾角结构面及Ⅴ级岩体发生滑移破坏的趋势,塑性破坏区主要分布在Ⅴ级岩体及其断层内,水平深度一般为35 m,研究成果对边坡的支护设计具有重要意义。  相似文献   

11.
碎裂结构岩质边坡是地质工程中遇到的一种最不稳定边坡,其原岩松弛,结构面普遍张开,围岩自稳能力差,碎裂结构岩体出露不连续,空间分布存在差异,导致边坡破坏边界不明显,变形破坏机制很难确定。本文以雅砻江楞古水电站碎裂结构岩质边坡为例,在地质环境调查和平硐勘测的基础上,系统研究了碎裂岩体结构特征,分析了控制边坡变形破坏的边界条件和变形破坏模式,并运用UDEC离散元程序模拟验证。研究结果表明:碎裂岩质边坡的变形破坏主要受自身结构及内部相对长大结构面控制,变形演化过程依循应力调整、时效变形和局部失稳3个阶段,变形破坏模式分为断层主控底滑型和裂隙切割破坏型。目前针对碎裂结构岩质边坡研究相对较少,缺乏大型工程实例支撑,该研究成果为水利工程中这类边坡的研究提供了参考。  相似文献   

12.
两河口水库区索依村滑坡形成机制及稳定性评价   总被引:1,自引:0,他引:1  
索依村滑坡位于两河口水电站近坝库区,为一古滑坡。本文从斜坡地质结构分析人手,结合雅砻江河谷地貌演化,分析了滑坡的形成演化机制,进而评价了滑坡的稳定性。研究结果表明,滑坡发生于陡立板岩顺向层状结构斜坡中,其变形破坏模式为倾倒弯曲-拉裂型,形成于雅砻江Ⅲ级阶地形成以后至Ⅱ级阶地形成前的河谷快速下切期。是在河谷强烈下蚀作用及凹岸侧蚀作用下,斜坡岩体发生侧向卸荷,并在重力场作用下发生倾倒弯曲拉裂变形而形成。滑坡现状处于稳定状态,两河口水电站施工期导流围堰回水情况下,整体处于基本稳定状态,对水电工程施工安全不会带来重大影响。  相似文献   

13.
川藏铁路沿线地形地貌复杂,构造活动强烈,地质灾害频发,其中古滑坡复活问题是威胁川藏铁路建设和运营的严重隐患之一。位于四川康定市的某古滑坡体,距原规划的川藏铁路大桥仅100 m,通过工程地质测绘和钻孔勘探,分析该古滑坡的发育特征与成因机制;并利用二维有限元软件,对古滑坡可能的失稳模式进行预测。结果显示:古滑坡边界清晰,滑坡体积约118万m 3,主要沿基覆界面滑动,局部变形破坏强烈;发育多级拉张裂缝;天然工况与降雨工况下处于稳定状态,地震工况下处于不稳定状态;潜在破坏部位为边坡中部碎石土堆积体后缘,滑动面即沿着碎石土与全风化岩体的接触面,一旦复活将严重威胁铁路大桥的运营与安全。  相似文献   

14.
王飞  唐辉明 《工程地质学报》2017,25(6):1501-1508
以甲西倾倒体为典型实例,从赋存环境、发育特征、形成条件等基础层面上分析雅砻江上游互层斜坡倾倒变形破坏机制及演化过程。研究表明:区内大型倾倒体是斜坡岩体在叠加有残余构造应力的自重应力场中长期演化的产物,软硬相间的岩性组合、陡倾内的岸坡结构,加之垂直层面密集节理的切割是斜坡发生倾倒变形的控制性因素;斜坡倾倒是受节理面和层面控制的复合倾倒模式,即:硬岩发生块状-弯曲倾倒,而软岩发生弯曲倾倒;受河谷演化控制,斜坡变形破坏主要经历了4个演化阶段:卸荷回弹陡倾面拉裂阶段,初始变形阶段,板梁根部折断、剪切面贯通阶段以及破坏阶段,并最终转化为蠕滑-拉裂模式形成滑坡。该滑动面受倾向坡外破裂面控制,而并非沿最大弯折带发育。  相似文献   

15.
贵州省德江县香树坪滑坡特征及形成机制研究   总被引:1,自引:0,他引:1  
香树坪滑坡位于贵州省铜仁地区德江县大坪村齐心组,为大型古滑坡。滑坡边界及前缘坡下发育多条拉陷槽,滑动方向为310~335。基于滑坡区工程地质条件和滑坡变形破坏特征,建立了滑坡形成机制概念模型:在河谷形成及演化过程中,香树坪斜坡以滑移-弯曲演化。滑坡前缘拉槽LC6#和LC3#依次形成,其卸荷和临空效应导致上部坡体进一步变形。滑坡坡脚区因上部坡体进一步滑移变形而应力集中,坡体稳定性整体降低。当坡脚区失稳时滑坡发生。数值分析很好地再现了滑坡演化过程及机理。研究成果可对西部山区类似类滑坡发育条件及识别研究提供参考。  相似文献   

16.
则木河断裂带具有构造活动强烈、地震活跃、次生地质灾害严重的特点。本文以鹅掌河流域为例,通过对断裂的活动特征,地质灾害的分布规律、长期活动性与成因机制和地貌演化进行分析,研究得出:(1)则木河断裂带活动特征影响地质环境的演化。新构造运动引起断裂带局部应变失衡,断裂活动诱发频繁地震;隆起和断陷断块的差异性活动,加剧地貌演化与地表过程;沉积建造环境的不同,影响岩土体的剥蚀与沉积;断裂的掀斜运动,改变地表水系格局与地热运移。(2)活动断裂对地质灾害的控制作用,表现为灾害具有时空效应。空间上,灾害沿断裂带呈带状分布,沿水系呈线状分布,具有地层倾向性,集中于断裂破碎带的软岩,微地貌效应显著;时间上,现有地质灾害在多次地震扰动和强降雨触发下形成,鹅掌河形成高频泥石流。(3)断裂活动影响灾害成因机制和灾害类型及破坏模式,脆弱的地质环境在地震持续扰动和极端降雨的耦合作用是灾害频发的根本原因;依据灾害成灾机制,将灾害分为3大类,7小类,具有震裂斜坡的典型破坏模式。(4)活动断裂与地质灾害相互作用决定地貌演化。鹅掌河泥石流影响邛海的地貌变迁,通过计算构造隆起量与灾害剥蚀量,表明鹅掌河处于隆起区,邛海处于淤积区。由此可见,则木河断裂活动特征通过影响区域地质环境演化,诱发大量的地震地质灾害,最终由地震构造作用驱动的隆起和断陷,地表灾害过程驱动的剥蚀和淤积,两者相互作用决定现有地貌的演化。  相似文献   

17.
现有上硬下软边坡的研究大都集中在压缩挤出变形的近水平泥岩、页岩基座型边坡变形演化过程,针对倾倒变形的板岩基座型边坡开挖响应研究甚少,本文以西藏玉曲河某水电站厂址边坡为研究对象,根据现场地质调查建立符合坡体实际情况的地质结构模型,采用物理试验的方法模拟原型边坡开挖。通过试验揭示上硬下软反倾边坡在开挖条件下的变形响应特征及破坏模式。研究结果表明:(1)开挖条件下上硬下软型边坡变形破坏过程分为a)下部软岩倾倒弯曲加剧;b)软岩倾倒折断,上部卸荷硬岩沿已有裂隙剪切;c)倾倒软岩滑移,卸荷硬岩剪断岩性分界部位,折断面贯通3个阶段。其变形破坏模式为下部软岩倾倒—上部硬岩剪断组合滑移型破坏;(2)开挖强倾倒区岩体会使下部软岩迅速失稳并促使上部硬岩剪切破坏;开挖引起的反倾上硬下软边坡大变形在短时间内完成,前期变形和能量积累是一个较长的过程;(3)开挖时需避免对坡脚倾倒岩体“大开挖”施工。  相似文献   

18.
中国21世纪若干重大工程地质与环境问题   总被引:11,自引:5,他引:11  
21世纪中国的大规模的国家建设不可避免地导致大量的工程地质与环境问题。 2 1世纪中国西部高山峡谷地区主要工程地质问题有: 构造活动带岩土体动力稳定性, 高地应力下岩体应变储能与岩体性质, 高陡边坡的变形及尺寸效应和动力稳定性, 深埋长大隧洞的地温与地压, 深埋隧洞岩体结构探测与施工地质超前预报, 大跨度复杂洞群变形与稳定性的群洞效应, 冻土的冻融变形、稳定性及其处理技术, 可溶岩岩溶规律与岩体利用问题, 河床深厚覆盖层的处理与利用等问题; 中国东部及沿海地区工程地质问题包括: 高速交通网建设中软土地基变形与稳定性及处理技术, 深井采矿中软岩巷道大变形与处理技术, 深厚松散堆积层上大型桥梁桥基变形与稳定性, 海底隧道围岩工程地质与水文地质问题, 城市多层地下空间开发中的工程地质问题等; 此外, 水土流失与北方大规模荒漠化问题, 黄河下游地上悬河与长江下游塌岸和堤防稳定性问题, 黄河断流引起的下游地区环境问题, 我国北方干旱地区水资源长期匮乏问题, 城市化中的环境破坏与污染控制等问题, 将是中国 2 1世纪突出的环境问题。中国工程地质工作者应当在结构土力学与岩体结构力学、工程地质学的基本理论与工程地质动力学、人 地相互作用机制与环境工程地质学、地质工程理论与方法。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号