首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
Detailed mineralogical, bulk-rock geochemical and Sr-Nd isotopic data for the recently discovered Ahobil kimberlite(Pipe-16) from the Wajrakarur kimberlite field(WKF), Eastern Dharwar craton(EDC),southern India, are presented. Two generations of compositionally distinct olivine, Ti-poor phlogopite showing orangeitic evolutionary trends, spinel displaying magmatic trend-1, abundant perovskite, Tirich hydrogarnet, calcite and serpentine are the various mineral constituents. On the basis of(i) liquidus mineral composition,(ii) bulk-rock chemistry, and(iii) Sr-Nd isotopic composition, we show that Ahobil kimberlite shares several characteristic features of archetypal kimberlites than orangeites and lamproites. Geochemical modelling indicate Ahobil kimberlite magma derivation from small-degree melting of a carbonated peridotite source having higher Gd/Yb and lower La/Sm in contrast to those of orangeites from the Eastern Dharwar and Bastar cratons of Indian shield. The TDm Nd model age(~2.0 Ga) of the Ahobil kimberlite is(i) significantly older than those(1.5~1.3 Ga) reported for Wajrakarur and Narayanpet kimberlites of EDC,(ii) indistinguishable from those of the Mesoproterozoic EDC lamproites,and(iii) strikingly coincides with the timing of the amalgamation of the Columbia supercontinent. High bulk-rock Fe-Ti contents and wide variation in oxygen fugacity fO_2, as inferred from perovskite oxybarometry, suggest non-prospective nature of the Ahobil kimberlite for diamond.  相似文献   

2.
New mineralogical and bulk-rock geochemical data for the recently recognised Mesoproterozoic(ca.1100 Ma) and late Cretaceous(ca.90 Ma) kimberlites in the Timmasamudram cluster(TKC) of the Wajrakarur kimberlite field(WKF),Eastern Dharwar Craton,southern India,are presented.On the basis of groundmass mineral chemistry(phlogopite,spinel,perovskite and clinopyroxene),bulk-rock chemistry(SiO_2.K_2O,low TiO_2.Ba/Nb and La/Sm),and perovskite Nd isotopic compositions,the TK-1(macrocrystic variety) and TK-4(Macrocrystic variety) kimberlites in this cluster are here classified as orangeites(i.e.Group Ⅱ kimberlites),with geochemical characteristics that are very similar to orangeites previously described from the Bastar Craton in central India,as well as the Kaapvaal Craton in South Africa.The remaining kimberlites(e.g.,TK-2,TK-3 and the TK-1 microcrystic variant),are more similar to other 1100 Ma,Group Ⅰ-type kimberlites of the Eastern Dharwar Craton,as well as the typical Group Ⅰkimberlites of the Kaapvaal Craton.Through the application of geochemical modelling,based on published carbonated peridotite/melt trace element partition coefficients,we show that the generation of the TKC kimberlites and the orangeites results from low degrees of partial melting of a metasomatised,carbonated peridotite.Depleted mantle(T_(DM)) Nd perovskite model ages of the 1100 Ma Timmasamudram kimberlites show that the metasornatic enrichment of their source regions are broadly similar to that of the Mesoproterozoic kimberlites of the EDC.The younger,late Cretaceous(ca.90 Ma) TK-1(macrocrystic variant)and TK-4 kimberlites,as well as the orangeites from the Bastar Craton,share similar Nd model ages of1100 Ma,consistent with a similarity in the timing of source enrichment during the amalgamation of Rodinia supercontinent.The presence of late Cretaceous diamoncliferous orangeite activity,presumably related to the location of the Marion hotspot in southern India at the time,suggests that thick Iithosphere was preserved,at least locally,up to the late Cretaceous,and was not entirely destroyed during the breakup of Gondwana,as inferred by some recent geophysical models.  相似文献   

3.
New geochemical data of the crater-facies Tokapal kimberlite system sandwiched between the lower and upper stratigraphic horizons of the Mesoproterozoic Indr avati Basin are presented.The kimberlite has been subjected to extensive and pervasive low-temperature alteration.Spinel is the only primary phase identifiable,while olivine macrocrysts and juvenile lapilli are largely pseudomorphed(talc-serpentinecarbonate alteration).However,with the exception of the alkalies,major element oxides display systematic fractionation trends; likewise,HFSE patterns are well correlated and allow petrogenetic interpretation.Various crustal contamination indices such as(SiO2+Al2O3+Na2O)/(MgO+ K2O) and Si/Mg are close to those of uncontaminated kimberlites.Similar La/Yb(79-109) of the Tokapal samples with those from the kimberlites of Wajrakarur(73-145) and Narayanpet(72-156),Eastern Dharwar craton,southern India implies a similarity in their genesis.In the discriminant plots involving HFSE the Tokapal samples display strong affinities to Group II kimberlites from southern Africa and central India as well as to ‘transitional kimberlites' from the Eastern Dharwar craton,southern India,and those from the Prieska and Kuruman provinces of southern Africa.There is a striking similarity in the depleted-mantle(TDM) Nd model ages of the Tokapal kimberlite system,Bastar craton,the kimberlites from NKF and WKF,Eastern Dharwar craton,and the Majhgawan diatreme,Bundelkhand craton,with the emplacement age of some of the lamproites from within and around the Palaeo-Mesoproterozoic Cuddapah basin,southern India.These similar ages imply a major tectonomagmatic event,possibly related to the breakup of the supercontinent of Columbia,at 1.3-1.5 Ga across the three cratons.The ‘transitional'geochemical features displayed by many of the Mesoproterozoic potassic-ultrapotassic rocks,across these Indian cratons are inferred to be memories of the metasomatising fluids/melts imprinted on their source regions during this widespread event.  相似文献   

4.
New geochemical data of the crater-facies Tokapal kimberlite system sandwiched between the lower and upper stratigraphic horizons of the Mesoproterozoic lndravati Basin a::e presented. The kimberlite has been subjected to extensive and pervasive low-temperature alteration. Spinel is the only primary phase identifiable, while olivine macrocrysts and juvenile lapilli are largely pseudomorphed (talc-serpentine- carbonate alteration). However, with the exception of the alkalies, major element oxides display systematic fractionation trends; likewise, HFSE patterns are well correlated and allow petrogenetic interpretation. Various crustal contamination indices such as (SiO2 + AI::O3 ~ Na20)](MgO ~ K20) and Si] Mg are close to those of uncontaminated kimberlites. Similar La]Yb ('79-109) of the Tokapal samples with those from the kimberlites of Wajrakarur (73-145) and Narayanpet (72-156), Eastern Dharwar craton, southern India implies a similarity in their genesis. In the discriminant plots involving HFSE the Tokapal samples display strong affinities to Group 1I kimberlites from southern Africa and central India as well as to 'transitional kimberlites' from the Eastern Dharwar craton, southern India, and those from the Prieska and Kuruman provinces of southern Africa. There is a striking ~;imilarity in the depleted-mantle (TOM) Nd model ages of the Tokapal kimberlite system, Bastar craton, th~ kimberlites from NKF and WKE Eastern Dharwar craton, and the Majhgawan diatreme, Bundelkhand craton, with the emplacement age of some of the lamproites from within and around the Palaeo~Mesoproterozoic Cuddapah basin, southern India. These similar ages imply a major tectonomagmatic event, possibly related to the break- up of the supercontinent of Columbia, at 1.3-1.5 Ga across the l:hree cratons. The 'transitional' geochemical features displayed by many of the Mesoproterozoic po~:assic-ultrapotassic rocks, across these Indian cratons are inferred to be memories of the metasomatisi  相似文献   

5.
The Qingchengzi orefield is a large polymetallic ore concentration area in the Liaodong peninsula,northeastern China,that includes twelve Pb-Zn deposits and five Au-Ag deposits along its periphery.The ore-forming age remains much disputed,which prevents the identification of the relationship between the mineralization and the associated magmatism.In this paper,we quantitatively present the feasibility of making ore mineral ~(40)Ar/~(39)Ar dating and report reliable ~(40)Ar/~(39)Ar ages of lamprophyre groundmass,K-feldspar and sphalerite from the Zhenzigou deposit.Direct and indirect methods are applied to constrain the timing of mineralization,which plays a vital role in discussing the contribution of multistage magmatism to ore formation.The low-potassium sphalerite yielded an inverse isochron age of 232.8±41.5 Ma,which features a relatively large uncertainty.Two lamprophyre groundmasses got reliable inverse isochron ages of 193.2±1.3 Ma and 152.3±1.5 Ma,respectively.K-feldspar yielded a precise inverse isochron age of 134.9±0.9 Ma.These four ages indicate that the mineralization is closely associated with Mesozoic magmatism.Consequently,regarding the cooling age of the earliest Mesozoic Shuangdinggou intrusion(224.2±1.2 Ma)as the initial time of mineralization,we can further constrain the age of the sphalerite to 224–191 Ma.These new and existing geochronological data,combined with the interaction cutting or symbiotic relationship between the lamprophyre veins and ore veins,suggest that the Pb-Zn-Au-Ag mineralization in the Qingchengzi orefield mainly occurred during three periods:the late Triassic(ca.224–193 Ma),the late Jurassic(ca.167–152 Ma)and the early Cretaceous(ca.138–134 Ma).This polymetallic deposits are shown to have been formed during multiple events coinciding with periods of the Mesozoic magmatic activity.In contrast,the Proterozoic magmatism and submarine exhalative and hydrothermal sedimentation in the Liaolaomo paleorift served mainly to transport and concentrate the ore-forming substances at the Liaohe Group with no associated Pb-Zn-Au-Ag mineralization.  相似文献   

6.
The Carboniferous Early Permian rill-related volcanic successions.covering large areas in the Chinese Tianshan and its adjacent areas.make up a newly recognized important Phanerozoic large igneous province in the world.which can be further divided into two sub-provinces:Tianshan and Tarim. The regional unconformity of Lower Carboniferous upon basement or pre-Carboniferous rocks.the ages (360—351 Ma) of the youngest ophiolite and the peak of subduction metamorphism of high pressure-low temperature metamorphic belt and the occurrence of Ni-Cu-bearing mafic-ultramatic intrusion with age of—352 Ma and A-type granite with age of~358 Ma reveal that the final closure of the Paleo Asian Ocean might lake place in the Early Mississippian.Our summation shows that at least four criteria.being normally used to identify ancient asthenosphere upwelling(or mantle plumes),are met for this large igneous province:(1) surface uplift prior to magmatism:(2) being associated with continental ifting and breakup events:(3) chemical characteristics of asthenosphere(or plume) derived basalts;(4) close links to large-scale minerali/alion and the uncontaminaled basalts,being analogous to those of many "ore-bearing" large igneous provinces.display Sr-Nd isotopic variations between plume and EMI geochemical signatures.These suggest that a Carboniferous asthenosphere upwelling and an Early Permian plume played the central role in the generation of the Tianshan—Tarim(central Asia) large igneous province.  相似文献   

7.
Acid intrusions are widespread in the Sawur region, Xinjiang. The Ka'erjiao intrusion is mainly composed of albite granite porphyry, K-feldspar granite porphyry, ivernite and granite porphyry. Being a transitional product between magma intrusion and eruption in the Sawur region, the Ka'erjiao intrusion was formed at the telophase of the late Carboniferous to the begining of early Permian as determined by the SHRIMP U-Pb zircon dating, with an age of 302.6±7.6 Ma (1σ). The intrusion consists of alkali-enriched rock, whose REE distribution patterns are of the LREE enrichment type, theδEu value is low and Nd, Sr, Pb isotopes reflect its mantle source characteristics. Theδ18O value of intrusion is low as a result of isotope exchange with meteoric water. The geochemical characteristics show that it was formed in a post-collisional tectonic setting. Taking combined considerations of current studies of A-type granites and Permian volcanic rocks, we think that in the telophase of the late Carboniferous to the beginning of the early Permian, the Sawur region was within the extension or compressional to extensional period of a post-collisional stage. The Ka'erjiao intrusion from mantle sources can confirm the vertical continental crust growth in the late Paleozoic. The Sawur region in west Junggar is consistent with east Junggar in post-collisional tectonic evolution process.  相似文献   

8.
http://www.sciencedirect.com/science/article/pii/S1674987113001072   总被引:6,自引:1,他引:5  
The late Permian Emeishan large igneous province(ELIP) covers ~0.3 x 106 km2 of the western margin of the Yangtze Block and Tibetan Plateau with displaced,correlative units in northern Vietnam(Song Da zone).The ELIP is of particular interest because it contains numerous world-class base metal deposits and is contemporaneous with the late Capitanian(~260 Ma) mass extinction.The flood basalts are the signature feature of the ELIP but there are also ultramafic and silicic volcanic rocks and layered maficultramafic and silicic plutonic rocks exposed.The ELIP is divided into three nearly concentric zones(i.e.inner,middle and outer) which correspond to progressively thicker crust from the inner to the outer zone.The eruptive age of the ELIP is constrained by geological,paleomagnetic and geochronological evidence to an interval of 3 Ma.The presence of picritic rocks and thick piles of flood basalts testifies to high temperature thermal regime however there is uncertainty as to whether these magmas were derived from the subcontinental lithospheric mantle or sub-lithospheric mantle(i.e.asthenosphere or mantle plume) sources or both.The range of Sr(I_(Sr) = 0.7040-0.7132),Nd(ε_(Nd)(t) ≈-14 to +8),Pb(~(206)Pb/~(204)Pb_1≈ 17.9-20.6) and Os(γ_(Os) =-5 to +11) isotope values of the ultramafic and mafic rocks does not permit a conclusive answer to ultimate source origin of the primitive rocks but it is clear that some rocks were affected by crustal contamination and the presence of near-depleted isotope compositions suggests that there is a sub-lithospheric mantle component in the system.The silicic rocks are derived by basaltic magmas/rocks through fractional crystallization or partial melting,crustal melting or by interactions between mafic and crustal melts.The formation of the Fe-Ti-V oxide-ore deposits is probably due to a combination of fractional crystallization of Ti-rich basalt and fluxing of C02-rich fluids whereas the Ni-Cu-(PGE) deposits are related to crystallization and crustal contamination of mafic or ultramafic magmas with subsequent segregation of a sulphide-rich portion.The ELIP is considered to be a mantle plume-derived LIP however the primary evidence for such a model is less convincing(e.g.uplift and geochemistry) and is far more complicated than previously suggested but is likely to be derived from a relatively short-lived,plume-like upwelling of mantle-derived magmas.The emplacement of the ELIP may have adversely affected the short-term environmental conditions and contributed to the decline in biota during the late Capitanian.  相似文献   

9.
The widely distributed Early Cretaceous magmatism in the Tethys Himalaya(TH) of southern Tibet is related to the Kerguelen mantle plume. Associated magmatic activity products are distributed in the eastern TH, where the active age is earlier than the peak ages of the Kerguelen mantle plume. This study investigated magmatic activity of the Dingri area in the central TH which was coeval with the Kerguelen mantle plume. The intrusion in the Dingri area contains diabases and monzonites. The zircon a...  相似文献   

10.
Geochemical and isotopic investigations have been carded out on the Chebu gabbroite in southern Jiangxi Province, southeast China and these results are compared with gabbro bodies along the coast of Fujian Province in order to understand their magma sources and tectonic implications. The Chebu intrusion formed at the beginning of the Middle Jurassic (172~4.3 Ma). These rocks are Ti-rich and Al-poor in major elements, characterized by strong enrichment in large-ion lithophile elements (LILE) and moderate enrichment in high field strength elements (HFSE) and light rare-earth elements CLREE), without pronounced Nb or Ta anomalies. Age-correlated Sr-Nd isotope ratios show moderately high ranges of (^87Sr/^86Sr)i from 0.7065 to 0.7086 and 0.5124 to 0.5125 of (^143Nd/^144Nd)i. The geochemical characteristics of the Chebu gabbroite suggest that it is notably different from island-arc basalt and similar to intra-plate basaltic rocks. By combining interpretations of its geological and geochemical characteristics and the regional geological development history, the Chebu gabbroitic intrusion is thought to be the product of asthenosphere upwelling and rapid lithosphere extension during a transition of tectonic systems in southeast China. The tectonic environment and source characteristics of the intrusion are different from Cretaceous gabbro bodies along the coast of Fujian Province, The former formed in a tectonic environment of rapid intra-plate lithospheric extension and the source characteristics were of a weakly enriched primitive mantle, whereas the latter originated mainly in a volcanic-magmatic arc extensional tectonic environment and the nature of the source was an enriched mantle with more subduct subducted components.  相似文献   

11.
Dike swarms are generally ascribed to intrusion of mantle-source magma result from extension. Basic dike swarms around the Shanxi-Hebei-Inner Mogolia borders in the northern peripheral area of the North China Craton can be divided into five age groups according to isotopic dating: 1800-1700 Ma, 800-700 Ma, 230 Ma, 140-120 Ma, and 50-40 Ma. Geological, petrological and isotope geochemical features of the five groups is investigated in order to explore the variation of the mantle material composition in the concerned area with time. And the various extensional activities reflected by the five groups of dike swarms are compared with some important tectonic events within the North China Craton as well as around the world during the same period.  相似文献   

12.
正The mechanism of the breakup of supercontinent is a scientific frontier in the field of supercontinent study.The rifting and breakup of supercontinent has long been considered to be related to mantle plume.Paleo-  相似文献   

13.
Acid intrusions are widespread in the Sawur region, Xinjiang. The Ka'erjiao intrusion is mainly composed of albite granite porphyry, K-feldspar granite porphyry, ivernite and granite porphyry. Being a transitional product between magma intrusion and eruption in the Sawur region, the Ka'erjiao intrusion was formed at the telophase of the late Carboniferous to the begining of early Permian as determined by the SHRIMP U-Pb zircon dating, with an age of 302.6±7.6 Ma (1σ). The intrusion consists of alkali-enriched rock, whose REE distribution patterns are of the LREE enrichment type, theδEu value is low and Nd, Sr, Pb isotopes reflect its mantle source characteristics. Theδ18O value of intrusion is low as a result of isotope exchange with meteoric water. The geochemical characteristics show that it was formed in a post-collisional tectonic setting. Taking combined considerations of current studies of A-type granites and Permian volcanic rocks, we think that in the telophase of the late Carboniferous to the beginning of the early Permian, the Sawur region was within the extension or compressional to extensional period of a post-collisional stage. The Ka'erjiao intrusion from mantle sources can confirm the vertical continental crust growth in the late Paleozoic. The Sawur region in west Junggar is consistent with east Junggar in post-collisional tectonic evolution process.  相似文献   

14.
The spinel coexisting with diamonds is often used as indicator mineral to evaluate the diamond-bearing potentiality of the kimberlite. In order to figure out the characteristics of spinels in the No. 30 kimberlite pipe, this paper has carried out detailed morphological observation and electron probe analysis on the spinels. The results show that spinels are elliptical and sub-Angular grains, with large particle diameter( 5(H)-1000 μm). A small amount of spinels shows erosional embay men t shape. With high contents of Cr2O3( up to 66. 56% ) and MgO ( 8. 88% - 16. 68% ) , and low TiO2, contents (mostly相似文献   

15.
Acid intrusions are widespread in the Sawur region, Xinjiang. The Ka'erjiao intrusion is mainly composed of albite granite porphyry, K-feldspar granite porphyry, ivernite and granite porphyry. Being a transitional product between magma intrusion and eruption in the Sawur region, the Ka'erjiao intrusion was formed at the telophase of the late Carboniferous to the begining of early Permian as determined by the SHRIMP U-Pb zircon dating, with an age of 302.6±7.6 Ma (1σ). The intrusion consists of alkali-enriched rock, whose REE distribution patterns are of the LREE enrichment type, theδEu value is low and Nd, Sr, Pb isotopes reflect its mantle source characteristics. Theδ18O value of intrusion is low as a result of isotope exchange with meteoric water. The geochemical characteristics show that it was formed in a post-collisional tectonic setting. Taking combined considerations of current studies of A-type granites and Permian volcanic rocks, we think that in the telophase of the late Carboniferous to the beginning of the early Permian, the Sawur region was within the extension or compressional to extensional period of a post-collisional stage. The Ka'erjiao intrusion from mantle sources can confirm the vertical continental crust growth in the late Paleozoic. The Sawur region in west Junggar is consistent with east Junggar in post-collisional tectonic evolution process.  相似文献   

16.
Radiogenic isotopic dating and Lu–Hf isotopic composition using laser ablation-inductively coupled plasma-mass spectrometry(LA-ICP-MS)of the Wude basalt in Yunnan province from the Emeishan large igneous province(ELIP)yielded timing of formation and post-eruption tectonothermal event.Holistic lithogeochemistry and elements mapping of basaltic rocks were further reevaluated to provide insights into crustal contamination and formation of the ELIP.A zircon U–Pb age of 251.3±2.0 Ma of the Wude basalt recorded the youngest volcanic eruption event and was consistent with the age span of 251-263 Ma for the emplacement of the ELIP.Such zircons hadεHf(t)values ranging from7.3 to+2.2,identical to those of magmatic zircons from the intrusive rocks of the ELIP,suggesting that crust-mantle interaction occurred during magmatic emplacement,or crust-mantle mixing existed in the deep source region prior to deep melting.The apatite U–Pb age at 53.6±3.4 Ma recorded an early Eocene magmatic superimposition of a regional tectonothermal event,corresponding to the Indian–Eurasian plate collision.Negative Nb,Ta,Ti and P anomalies of the Emeishan basalt may reflect crustal contamination.The uneven Nb/La and Th/Ta values distribution throughout the ELIP supported a mantle plume model origin.Therefore,the ELIP was formed as a result of a mantle plume which was later superimposed by a regional tectonothermal event attributed to the Indian–Eurasian plate collision during early Eocene.  相似文献   

17.
The spinel-lherzolite under study was discovered in the magnesian ultrabasic rocks in a Palaeozoic ophiolite zone. It occurs as spheroidal inclusions. Its petrofabric features, slip system of plastic deformation, REE distribution and estimation of temperature and pressure conditions of rock formation are all very similar to those of the ultramafic inclusion in Cenozoic and Mesozoic alkali basalt and kimberlite.  相似文献   

18.
We present petrography and mineral chemistry for both phlogopite,from mantle-derived xenoliths(garnet peridotite,eclogite and clinopyroxene-phlogopite rocks)and for megacryst,macrocryst and groundmass flakes from the Grib kimberlite in the Arkhangelsk diamond province of Russia to provide new insights into multi-stage metasomatism in the subcratonic lithospheric mantle(SCLM)and the origin of phlogopite in kimberlite.Based on the analysed xenoliths,phlogopite is characterized by several generations.The first generation(Phil)occurs as coarse,discrete grains within garnet peridotite and eclogite xenoliths and as a rock-forming mineral within clinopyroxene-phlogopite xenoliths.The second phlogopite generation(Phl2)occurs as rims and outer zones that surround the Phil grains and as fine flakes within kimberlite-related veinlets filled with carbonate,serpentine,chlorite and spinel.In garnet peridotite xenoliths,phlogopite occurs as overgrowths surrounding garnet porphyroblasts,within which phlogopite is associated with Cr-spinel and minor carbonate.In eclogite xenoliths,phlogopite occasionally associates with carbonate bearing veinlet networks.Phlogopite,from the kimberlite,occurs as megacrysts,macrocrysts,microcrysts and fine flakes in the groundmass and matrix of kimberlitic pyroclasts.Most phlogopite grains within the kimberlite are characterised by signs of deformation and form partly fragmented grains,which indicates that they are the disintegrated fragments of previously larger grains.Phil,within the garnet peridotite and clinopyroxene-phlogopite xenoliths,is characterised by low Ti and Cr contents(TiO_21 wt.%,Cr_2 O_31 wt.% and Mg# = 100 × Mg/(Mg+ Fe)92)typical of primary peridotite phlogopite in mantle peridotite xenoliths from global kimberlite occurrences.They formed during SCLM metasomatism that led to a transformation from garnet peridotite to clinopyroxene-phlogopite rocks and the crystallisation of phlogopite and high-Cr clinopyroxene megacrysts before the generation of host-kimberlite magmas.One of the possible processes to generate low-Ti-Cr phlogopite is via the replacement of garnet during its interaction with a metasomatic agent enriched in K and H_2O.Rb-Sr isotopic data indicates that the metasomatic agent had a contribution of more radiogenic source than the host-kimberlite magma.Compared with peridotite xenoliths,eclogite xenoliths feature low-Ti phlogopites that are depleted in Cr_2O_3 despite a wider range of TiO_2 concentrations.The presence of phlogopite in eclogite xenoliths indicates that metasomatic processes affected peridotite as well as eclogite within the SCLM beneath the Grib kimberlite.Phl2 has high Ti and Cr concentrations(TiO_22 wt.%,Cr_2O_31 wt.% and Mg# = 100× Mg/(Mg + Fe)92)and compositionally overlaps with phlogopite from polymict brecc:ia xenoliths that occur in global kimberlite formations.These phlogopites are the product of kimberlitic magma and mantle rock interaction at mantle depths where Phl2 overgrew Phil grains or crystallized directly from stalled batches of kimberlitic magmas.Megacrysts,most macrocrysts and microcrysts are disintegrated phlogopite fragments from metasomatised peridotite and eclogite xenoliths.Fine phlogopite flakes within kimberlite groundmass represent mixing of high-Ti-Cr phlogopite antecrysts and high-Ti and low-Cr kimberlitic phlogopite with high Al and Ba contents that may have formed individual grains or overgrown antecrysts.Based on the results of this study,we propose a schematic model of SCLM metasomatism involving phlogopite crystallization,megacryst formation,and genesis of kimberlite magmas as recorded by the Grib pipe.  相似文献   

19.
The periodic assembly and dispersal of continental fragments,referred to as the supercontinent cycle,bear close relation to the evolution of mantle convection and plate tectonics.Supercontinent formation involves complex processes of"introversion"(closure of interior oceans),"extroversion"(closure of exterior oceans),or a combination of these processes in uniting dispersed continental fragments.Recent developments in numerical modeling and advancements in computation techniques enable us to simulate Earth’s mantle convection with drifting continents under realistic convection vigor and rheology in Earth-like geometry(i.e.,3D spherical-shell).We report a numerical simulation of 3D mantle convection,incorporating drifting deformable continents,to evaluate supercontinent processes in a realistic mantle convection regime.Our results show that supercontinents are assembled by a combination of introversion and extroversion processes.Small-scale thermal heterogeneity dominates deep mantle convection during the supercontinent cycle,although large-scale upwelling plumes intermittently originate under the drifting continents and/or the supercontinent.  相似文献   

20.
正Objective Rodinia was a supercontinent that comprised nearly all the current existing continents/blocks on Earth to form a coherent large landmass during the Meso-Neoproterozoic. Thus, discovery of Meso-Neoproterozoic rocks in a certain Precambrian block can provide important clues for studying the assembly and break-up history of Rodinia. The Dunhuang Block, located at the southernmost part  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号