首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The spatial and temporal consistency of seasonal air temperature and precipitation in eight widely used gridded observation-based climate datasets (CANGRD, CRU-TS3.1, CRUTEM4.1, GISTEMP, GPCC, GPCP, HadCRUT3, and UDEL) and eight reanalyses (20CR, CFSR, ERA-40, ERA-Interim, JRA25, MERRA, NARR, and NCEP2) was evaluated over the Canadian Arctic for the 1950–2010 period. The evaluation used the CANGRD dataset, which is based on homogenized temperature and adjusted precipitation from climate stations, as a reference. Dataset agreement and bias were observed to exhibit important spatial, seasonal, and temporal variability over the Canadian Arctic with the largest spread occurring between datasets over mountain and coastal regions and over the Canadian Arctic Archipelago. Reanalysis datasets were typically warmer and wetter than surface observation-based datasets, with CFSR and 20CR exhibiting biases in total annual precipitation on the order of 300?mm. Warm bias in 20CR exceeded 12°C in winter over the western Arctic. Analysis of the temporal consistency of datasets over the 1950–2010 period showed evidence of discontinuities in several datasets as well as a noticeable increase in dataset spread in the period after approximately 2000. Declining station networks, increased automation, and the inclusion of new satellite data streams in reanalyses are potential contributing factors to this phenomenon. Evaluation of trends over the 1950–2010 period showed a relatively consistent picture of warming and increased precipitation over the Canadian Arctic from all datasets, with CANGRD giving moistening trends two times larger than the multi-dataset average related to the adjustment of the station precipitation data. The study results indicate that considerable care is needed when using gridded climate datasets in local or regional scale applications in the Canadian Arctic.  相似文献   

2.
Model studies do not agree on future changes in tropical cyclone (TC) activity on regional scales. We aim to shed further light on the distribution, frequency, intensity, and seasonality of TCs that society can expect at the end of the twenty-first century in the Southern hemisphere (SH). Therefore, we investigate TC changes simulated by the atmospheric model ECHAM5 with T213 (~60 km) horizontal resolution. We identify TCs in present-day (20C; 1969–1990) and future (21C; 2069–2100) time slice simulations, using a tracking algorithm based on vorticity at 850 hPa. In contrast to the Northern hemisphere (NH), where tropical storm numbers reduce by 6 %, there is a more dramatic 22 % reduction in the SH, mainly in the South Indian Ocean. While an increase of static stability in 21C may partly explain the reduction in tropical storm numbers, stabilization cannot alone explain the larger SH drop. Large-scale circulation changes associated with a weakening of the Tropical Walker Circulation are hypothesized to cause the strong decrease of cyclones in the South Indian Ocean. In contrast the decrease found over the South Pacific appears to be partly related to increased vertical wind shear, which is possibly associated with an enhanced meridional sea surface temperature gradient. We find the main difference between the hemispheres in changes of the tropical cyclones of intermediate strength with an increase in the NH and a decrease in the SH. In both hemispheres the frequency of the strongest storms increases and the frequency of the weakest storms decreases, although the increase in SH intense storms is marginal.  相似文献   

3.
Inter-annual variability and trends of annual/seasonal precipitation totals in Ghana are analyzed considering different gridded observational (gauge- and/or satellite-based) and reanalysis products. A quality-controlled dataset formed by fourteen gauges from the Ghana Meteorological Agency (GMet) is used as reference for the period 1961–2010. Firstly, a good agreement is found between GMet and all the observational products in terms of variability, with better results for the gauge-based products—correlations in the range of 0.7–1.0 and nearly null biases—than for the satellite-gauge merged and satellite-derived products. In contrast, reanalyses exhibit a very poor performance, with correlations below 0.4 and large biases in most of the cases. Secondly, a Mann-Kendall trend analysis is carried out. In most cases, GMet data reveal the existence of predominant decreasing (increasing) trends for the first (second) half of the period of study, 1961–1985 (1986–2010). Again, observational products are shown to reproduce well the observed trends—with worst results for purely satellite-derived data—whereas reanalyses lead in general to unrealistic stronger than observed trends, with contradictory results (opposite signs for different reanalyses) in some cases. Similar inconsistencies are also found when analyzing trends of extreme precipitation indicators. Therefore, this study provides a warning concerning the use of reanalysis data as pseudo-observations in Ghana.  相似文献   

4.
The Twentieth Century Reanalysis (20thCR) dataset released in 2010 covers the period 1871-2010 and is one of the longest reanalysis datasets available worldwide. Using ERA-40, ERA-Interim and NCEP-NCAR reanalysis data, as well as HadSLP2 data and meteorological temperature records over eastern China, the performances of 20thCR in reproducing the spatial patterns and temporal variability of the East Asian winter monsoon (EAWM) are examined. Results indicate that 20thCR data: (1) can accurately reproduce the most typical configuration patterns of all sub-factors differences in the main circulation fields over East Asia involved in the EAWM system, albeit with some in comparison to ERA-40 reanalysis data; (2) is reliable and stable in describing the temporal variability of EAWM since the 1930s; and (3) can describe the high-frequency variability of EAWM better than the low-frequency fluctuations, especially in the early period. In conclusion, caution should be taken when using 20thCR data to study interdecadal variabilities or long-term trends of the EAWM, especially prior to the 1930s.  相似文献   

5.
Average long-term and average annual values of meridional Ekman heat (mass) transport are estimated using the NCEP/NCAR (for 1948-2014) and 20CR (for 1871-2012) atmospheric reanalyses, and their interdecadal variability is analyzed. It was corroborated that the typical period of interdecadal variability of meridional Ekman transport in the North Atlantic coincides with that of the Atlantic Multidecadal Oscillation (AMO) and is about 60 years. The strengthening of northeastern trade winds and westerlies accompanied by the development of the negative phase of AMO occurred in the 1880s-1920s and in the 1960s-1990s. The opposite trend is observed for the 1930s-1950s and for the period from the 1990s till the beginning of the 21st century.  相似文献   

6.
We characterise the long-term variability of European near-surface wind speeds using 142 years of data from the Twentieth Century Reanalysis (20CR), and consider the potential of such long-baseline climate data sets for wind energy applications. The low resolution of the 20CR would severely restrict its use on its own for wind farm site-screening. We therefore perform a simple statistical calibration to link it to the higher-resolution ERA-Interim data set (ERAI), such that the adjusted 20CR data has the same wind speed distribution at each location as ERAI during their common period. Using this corrected 20CR data set, wind speeds and variability are characterised in terms of the long-term mean, standard deviation and corresponding trends. Many regions of interest show extremely weak trends on century timescales, but contain large multidecadal variability. Since reanalyses such as ERAI are often used to provide the background climatology for wind farm site assessments, but contain only a few decades of data, our results can be used as a way of incorporating decadal-scale wind climate variability into such studies, allowing investment risks for wind farms to be reduced.  相似文献   

7.
Based on three groups of datasets that include radiosondes, reanalyses, and climate model simulations (e.g., Coupled Model Intercomparison Project, CMIP3) from 1979 to 2008, the interannual variability, global temperature trends, and their uncertainty using ensemble spread among intra-group and inter-group datasets have been discussed. The results show that the interannual temperature variability increased from the troposphere to stratosphere, and the maximum occurs around 50?hPa. The CMIP3 climate models have the largest discrepancy in the stratosphere. The intra-group correlations at 500?hPa generally show high similarity within each data group while the inter-group correlations between reanalyses and the CMIP3 climate model simulations indicate lesser similarity. In contrast, the inter-group correlation at 50?hPa is improved except with the Japanese 25-year Reanalysis Project (JRA-25) dataset, and the Twentieth Century Reanalysis (20CR) reanalysis shows a weak cross correlation. The global temperature trends are highly dependent on the individual data sources. Compared to the radiosondes, the reanalyses show a large ensemble spread of trends in the stratosphere, and the CMIP3 climate model simulations have a large ensemble spread in the height of the crossover point where tropospheric warming changes into stratospheric cooling. The largest ensemble spread among the reanalyses in the stratosphere is mainly from the large discrepancy in the JRA-25 reanalysis after 1998 and a relatively weak anomaly in the 20CR before 1986. The largest ensemble spread among the CMIP3 climate models in the troposphere is related to the influence of both volcanic eruptions and El Ni?o/La Ni?a–Southern Oscillation events. The strong anomalies corresponding to the volcanic eruptions of El Chichon in 1982 and Mt Pinatubo in 1991 are clearly identified in the stratosphere. These volcanic eruptions reduced the warming in the troposphere and strengthened the cooling in the stratosphere during the most recent 30?years.  相似文献   

8.
An objective methodology is applied to ERA-40 (European Centre for Medium-Range Weather Forecasts 40-year Reanalysis) and NCEP/NCAR (National Centers for Environmental Prediction/National Center for Atmospheric Research) reanalyses, to build two storm-track databases for the Euro-Atlantic sector (85°W–70°E; 20°N–75°N), spanning the period December 1958–March 2000. The technique uses the full temporal (6-hourly) and spatial resolutions (1.125° and 2.5° regular grids, for ERA-40 and NCEP/NCAR, respectively) available. It is shown that the strong discrepancies in the number of storms in each dataset (higher for ERA-40) result from differences in the resolution of the fields subject to the storm detecting/tracking algorithm, and also from the characteristics of the integration models and assimilation schemes used for each reanalysis. An intercomparison of ERA-40 and NCEP/NCAR storm-tracks is performed for spatial distribution, and main characteristics, of the overall cyclone population and of a class of severe storms—explosive cyclones. Despite the discrepancies in storm numbers, both reanalyses agree on the main cyclone activity areas (formation, minimum central pressure, and lysis). The most pronounced differences occur where subsynoptic systems are frequent, as these are better resolved by ERA-40 data. The interannual variability of cyclone counts, analysed per intensity classes and for different regions of the domain, reveals reasonable agreement between the two datasets on the sign of trends (generally positive in northern latitudes, and negative in the Azores-Mediterranean band), but discrepancies regarding their strength in the most southern areas, where the mismatches between ERA-40 and NCEP/NCAR detected lows are greatest. Submitted to Climate Dynamics in December 2004  相似文献   

9.
Temperature trends of Chennai City, India   总被引:1,自引:1,他引:0  
Chennai is the fourth largest metropolitan city in India, and it is one of India's chief industrial and economic growth centers. The temperature change in Chennai is studied in this research by analyzing the mean maximum temperature (MMaxT), mean minimum temperature (MMinT), and mean annual temperature (MAT) from 1951 to 2010. Data are analyzed in three parts by running linear regression and by taking anomalies of all time periods: (a) the whole period from 1951 to 2010; (b) phase 1, 1951–1980; and (c) phase 2, 1981–2010. The trends have been evaluated by Student's t statistics and supported by Mann Kendall rank statistics. The observed change in temperature is positive, which has been clear increasing trends in MMaxT, MMinT, and MAT. MAT has increased 1.3°C since the last 60 years. MMaxT has increased up to 1.6°C, in which the second phase accounts for 75 % of the total change during the last 60 years. MMinT over Chennai has increased 1.0°C. There is a high rise in temperature during winter season.  相似文献   

10.
Trends and variability in column-integrated atmospheric water vapor   总被引:4,自引:0,他引:4  
An analysis and evaluation has been performed of global datasets on column-integrated water vapor (precipitable water). For years before 1996, the Ross and Elliott radiosonde dataset is used for validation of European Centre for Medium-range Weather Forecasts (ECMWF) reanalyses ERA-40. Only the special sensor microwave imager (SSM/I) dataset from remote sensing systems (RSS) has credible means, variability and trends for the oceans, but it is available only for the post-1988 period. Major problems are found in the means, variability and trends from 1988 to 2001 for both reanalyses from National Centers for Environmental Prediction (NCEP) and the ERA-40 reanalysis over the oceans, and for the NASA water vapor project (NVAP) dataset more generally. NCEP and ERA-40 values are reasonable over land where constrained by radiosondes. Accordingly, users of these data should take great care in accepting results as real. The problems highlight the need for reprocessing of data, as has been done by RSS, and reanalyses that adequately take account of the changing observing system. Precipitable water variability for 1988–2001 is dominated by the evolution of ENSO and especially the structures that occurred during and following the 1997–98 El Niño event. The evidence from SSM/I for the global ocean suggests that recent trends in precipitable water are generally positive and, for 1988 through 2003, average 0.40±0.09 mm per decade or 1.3±0.3% per decade for the ocean as a whole, where the error bars are 95% confidence intervals. Over the oceans, the precipitable water variability relates very strongly to changes in SSTs, both in terms of spatial structure of trends and temporal variability (with a regression coefficient for 30°N–30°S of 7.8% K?1) and is consistent with the assumption of fairly constant relative humidity. In the tropics, the trends are also influenced by changes in rainfall which, in turn, are closely associated with the mean flow and convergence of moisture by the trade winds. The main region where positive trends are not very evident is over Europe, in spite of large and positive trends over the North Atlantic since 1988. A much longer time series is probably required to obtain stable patterns of trends over the oceans, although the main variability could probably be deduced from past SST and associated precipitation variations.  相似文献   

11.
Bin Yu  Hai Lin 《Climate Dynamics》2013,40(5-6):1183-1200
The secular trends and interannual variability of wintertime temperatures over northern extratropical lands and circulations over the northern hemisphere are examined using the NCEP/NCAR reanalysis from 1961 to 2010. A primitive equation dry atmospheric model, driven by time-averaged forcing in each winter diagnosed from the NCEP reanalysis, is then employed to investigate the influences of tropical and extratropical forcing on the temperature and circulation variability. The model has no topography and the forcing is thus model specific. The dynamic and thermodynamic maintenances of the circulation and temperature anomalies are also diagnosed. Distinct surface temperature trends over 1961–1990 and 1991–2010 are found over most of the extratropical lands. The trend is stronger in the last two decades than that before 1990, particularly over eastern Canadian Arctic, Greenland, and Asia. The exchange of midlatitude and polar air supports the temperature trends. Both the diagnosed extratropical and tropical forcings contribute to the temperature and circulation trends over 1961–1990, while the extratropical forcing dominates tropical forcing for the trends over 1991–2010. The contribution of the tropical forcing to the trends is sensitive to the period considered. The temperature and circulation responses to the diagnosed tropical and extratropical forcings are approximately additive and partially offsetting. Covariances between the interannual surface temperature and 500-hPa geopotential anomalies for the NCEP reanalysis from 1961 to 2010 are dominated by two leading modes associated with the North Atlantic Oscillation (NAO) and Pacific-North American (PNA) teleconnection patterns. The diagnosed extratropical forcing accounts for a significant part of the NAO and PNA associated variability, including the interannual variability of stationary wave anomalies, as well as dynamically and thermodynamically synoptic eddy feedbacks over the North Atlantic and North Pacific. The tropical forcing contributes to the PNA related temperature and circulation variability, but has a small contribution to the NAO associated variability. Additionally, relative contributions of tropical Indian and Pacific forcings are also assessed.  相似文献   

12.
北半球500 hPa高度场趋势变化与突变   总被引:12,自引:5,他引:12  
用1951~1998年的资料研究了北半球500hPa上季高度的长期趋势变化。结果表明,48年来低纬度500hPa高度场多为正趋势而高纬度则多为负趋势。近48年低纬的西北非洲、地中海及以西的北非北部,低纬度的中太平洋,贝加尔湖及以东载我,西北北美的高度呈持续正趋势;而阿留申及北太平洋、格林兰以南及东北北美、阿拉伯海以北高度明显降低。突变分析表明,大约60年代初及1976年,500hPa发生明显的环流  相似文献   

13.
Global hydrographic and air–sea freshwater flux datasets are used to investigate ocean salinity changes over 1950–2010 in relation to surface freshwater flux. On multi-decadal timescales, surface salinity increases (decreases) in evaporation (precipitation) dominated regions, the Atlantic–Pacific salinity contrast increases, and the upper thermocline salinity maximum increases while the salinity minimum of intermediate waters decreases. Potential trends in E–P are examined for 1950–2010 (using two reanalyses) and 1979–2010 (using four reanalyses and two blended products). Large differences in the 1950–2010 E–P trend patterns are evident in several regions, particularly the North Atlantic. For 1979–2010 some coherency in the spatial change patterns is evident but there is still a large spread in trend magnitude and sign between the six E–P products. However, a robust pattern of increased E–P in the southern hemisphere subtropical gyres is seen in all products. There is also some evidence in the tropical Pacific for a link between the spatial change patterns of salinity and E–P associated with ENSO. The water cycle amplification rate over specific regions is subsequently inferred from the observed 3-D salinity change field using a salt conservation equation in variable isopycnal volumes, implicitly accounting for the migration of isopycnal surfaces. Inferred global changes of E–P over 1950–2010 amount to an increase of 1 ± 0.6 % in net evaporation across the subtropics and an increase of 4.2 ± 2 % in net precipitation across subpolar latitudes. Amplification rates are approximately doubled over 1979–2010, consistent with accelerated broad-scale warming but also coincident with much improved salinity sampling over the latter period.  相似文献   

14.
This study explores the relationship between latitudinal shifts in the eddy-driven jet and in the Hadley cell edge as depicted in models and reanalyses. We calculate an interannual shift ratio of approximately 1.5:1 between the eddy-driven jet and the Hadley cell edge over the Southern Hemisphere during austral summer in model data. We further find that the ratio varies from season to season, with similarities between corresponding seasons over each hemisphere. Ratios are broadly consistent between models in this study, and appear to be realistic when compared to those from reanalyses. Mean tropical SSTs and the strength of zonal winds in the tropics appear to be critical to determining the ratio, while sea surface temperature variability is not. We argue that conditions in the tropics act to modulate the effect of midlatitude eddies on the Hadley cell, and the action of eddies in turn explains most of the correlated shifts from year to year. In contrast, the mean state of the tropics is a poor predictor of both the ratio of observed trends in reanalyses and the ratio of modeled externally forced shifts. We show that the ratios of modeled shifts are dependent on the type of external forcing.  相似文献   

15.
In a recent study of trends and low frequency variability of extra-tropical cyclone activity in the ensemble of Twentieth Century Reanalyses, we concluded that “For the North Atlantic-European region and southeast Australia, the 20CR cyclone trends are in agreement with trends in geostrophic wind extremes derived from in-situ surface pressure observations”. This conclusion has been challenged by Krueger et al. (Clim Dyn, submitted, 2013b), because a recent study (doi:10.1175/JCLI-D-12-00309.1, by the same lead author) comparing annual 95th percentiles (P95) of geostrophic wind speed (geo-wind) derived from surface pressure observations and from the 20CR found that “20CR-geostrophic storminess deviates to a large extent from the observation-based curve” in the period prior to 1950. In this reply, we show that our conclusion is valid; and we clarify that several factors contribute to the reported inconsistencies between the 20CR and observation-based geo-wind extremes. These include the choice of index that is used to represent the temporal variation of extremes (e.g., annual vs. seasonal percentiles), the use of different sampling intervals (6-hourly vs. 3-hourly), and the presence of very large errors in the observations that were not identified, corrected, or excluded in any of the previous studies of observation-based geo-wind extremes. We show that the time series of consecutive seasonal P95 geo-winds derived from the observations and from 20CR are in good agreement back to about 1893, with some deviation earlier when the observations (especially digitized data) remain limited and are more uncertain. We find that the correlation between the 20CR and observation-based geo-wind extremes (P95) time series for the full 134-year record is highly significant statistically, with and without the correction or exclusion of the newly identified erroneous SLP values. The agreement between 20CR and observations is further improved after the correction or exclusion of these erroneous values.  相似文献   

16.
The skill of a regional climate model (RegCM4) in capturing the mean patterns, interannual variability and extreme statistics of daily-scale temperature and precipitation events over Mexico is assessed through a comparison of observations and a 27-year long simulation driven by reanalyses of observations covering the Central America CORDEX domain. The analysis also includes the simulation of tropical cyclones. It is found that RegCM4 reproduces adequately the mean spatial patterns of seasonal precipitation and temperature, along with the associated interannual variability characteristics. The main model bias is an overestimation of precipitation in mountainous regions. The 5 and 95 percentiles of daily temperature, as well as the maximum dry spell length are realistically simulated. The simulated distribution of precipitation events as well as the 95 percentile of precipitation shows a wet bias in topographically complex regions. Based on a simple detection method, the model produces realistic tropical cyclone distributions even at its relatively coarse resolution (dx = 50 km), although the number of cyclone days is underestimated over the Pacific and somewhat overestimated over the Atlantic and Caribbean basins. Overall, it is assessed that the performance of RegCM4 over Mexico is of sufficient quality to study not only mean precipitation and temperature patterns, but also higher order climate statistics.  相似文献   

17.
亚洲夏季风爆发始于孟加拉湾,然后向中国南海和印度次大陆扩展,其过程约持续1个月。各地区夏季风爆发时间呈明显的年际变化。利用热带气旋资料和气象再分析资料,统计了1951-2010年孟加拉湾和中国南海夏季风爆发前后西北太平洋热带气旋、孟加拉湾气旋风暴活动和夏季风爆发的关系。结果表明,在孟加拉湾夏季风爆发过程中,共有36 a出现孟加拉湾气旋风暴,并且夏季风爆发偏早年出现风暴的几率最高,为80%。在孟加拉湾夏季风爆发偏早、正常和偏晚3种类型中,孟加拉湾风暴活动频率高峰期多出现在夏季风爆发前后几天内。并且在孟加拉湾风暴活动频率高峰出现前期,西北太平洋热带气旋最先出现活动频率高峰。孟加拉湾夏季风爆发前有40%-50%的年份西北太平洋出现热带气旋活动,其中,夏季风爆发偏早年,爆发前西北太平洋热带气旋活跃的时间偏早(4月第2候),且多活动在中国南海和菲律宾附近;爆发正常年,西北太平洋热带气旋活跃的时间为4月第4候,多活动在略偏东的海域;爆发偏晚年,西北太平洋热带气旋活跃的时间为5月初,活动区域最偏东。中国南海夏季风爆发过程中,60 a中共有29 a西北太平出现热带气旋,其中爆发偏早和正常年出现热带气旋的频率较高,并且热带气旋多出现在爆发当日和爆发后一段时间。整体来看,亚洲夏季风爆发前,西北太平洋热带气旋活动频率最先开始增强,然后孟加拉湾风暴开始活跃并伴随着孟加拉湾夏季风爆发,夏季风爆发偏早和正常年,孟加拉湾夏季风爆发后,西北太平洋热带气旋再次增强,中国南海夏季风爆发。   相似文献   

18.
19.
20.
Atmosphere–ocean interactions are known to dominate seasonal to decadal sea level variability in the southeastern North Sea. In this study an atmospheric proxy for the observed sea level variability in the German Bight is introduced. Monthly mean sea level (MSL) time series from 13 tide gauges located in the German Bight and one virtual station record are evaluated in comparison to sea level pressure fields over the North Atlantic and Europe. A quasi-linear relationship between MSL in the German Bight and sea level pressure over Scandinavia and the Iberian Peninsula is found. This relationship is used (1) to evaluate the atmospheric contribution to MSL variability in hindcast experiments over the period from 1871–2008 with data from the twentieth century reanalysis v2 (20CRv2), (2) to isolate the high frequency meteorological variability of MSL from longer-term changes, (3) to derive ensemble projections of the atmospheric contribution to MSL until 2100 with eight different coupled global atmosphere–ocean models (AOGCM’s) under the A1B emission scenario and (4) two additional projections for one AOGCM (ECHAM5/MPI-OM) under the B1 and A2 emission scenarios. The hindcast produces a reasonable good reconstruction explaining approximately 80 % of the observed MSL variability over the period from 1871 to 2008. Observational features such as the divergent seasonal trend development in the second half of the twentieth century, i.e. larger trends from January to March compared to the rest of the year, and regional variations along the German North Sea coastline in trends and variability are well described. For the period from 1961 to 1990 the Kolmogorov-Smirnow test is used to evaluate the ability of the eight AOGCMs to reproduce the observed statistical properties of MSL variations. All models are able to reproduce the statistical distribution of atmospheric MSL. For the target year 2100 the models point to a slight increase in the atmospheric component of MSL with generally larger changes during winter months (October–March). Largest MSL changes in the order of ~5–6 cm are found for the high emission scenario A2, whereas the moderate B1 and intermediate A1B scenarios lead to moderate changes in the order of ~3 cm. All models point to an increasing atmospheric contribution to MSL in the German Bight, but the uncertainties are considerable, i.e. model and scenario uncertainties are in the same order of magnitude.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号