首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Sea-level records show large glacial-interglacial changes over the past million years, which on these time scales are related to changes of ice volume on land. During the Pleistocene, sea-level changes induced by ice volume are largely caused by the waxing and waning of the large ice sheets in the Northern Hemisphere. However, the individual contributions of ice in the Northern and Southern Hemisphere are poorly constrained. In this study, for the first time a fully coupled system of four 3-D ice-sheet models is used, simulating glaciations on Eurasia, North America, Greenland and Antarctica. The ice-sheet models use a combination of the shallow ice and shelf approximations to determine sheet, shelf and sliding velocities. The framework consists of an inverse forward modelling approach to derive a self-consistent record of temperature and ice volume from deep-sea benthic δ18O data over the past 1 million years, a proxy for ice volume and temperature. It is shown that for both eustatic sea level and sea water δ18O changes, the Eurasian and North American ice sheets are responsible for the largest part of the variability. The combined contribution of the Antarctic and Greenland ice sheets is about 10 % for sea level and about 20 % for sea water δ18O during glacial maxima. However, changes in interglacials are mainly caused by melt of the Greenland and Antarctic ice sheets, with an average time lag of 4 kyr between melt and temperature. Furthermore, we have tested the separate response to changes in temperature and sea level for each ice sheet, indicating that ice volume can be significantly influenced by changes in eustatic sea level alone. Hence, showing the importance of a simultaneous simulation of all four ice sheets. This paper describes the first complete simulation of global ice-volume variations over the late Pleistocene with the possibility to model changes above and below present-day ice volume, constrained by observations of benthic δ18O proxy data.  相似文献   

2.
Summary Meteorological and glaciological analyses are integrated to examine the precipitation trends during the last three decades over the ice sheets covering Antarctica and Greenland. For Antarctica, the best data source is provided by glaciologically-measured trends of snow accumulation, and for limited sectors of East Antarctica consistency with precipitation amounts calculated from the atmospheric water balance equation is obtained. For Greenland, precipitation rates parameterized from atmospheric analyses yield the only comprehensive depiction. The precipitation rate over Antarctica appears to have increased by about 5% over a time period spanning the accumulation means for the 1955–65 to 1965–75 periods, while over Greenland it has decreased by about 15% since 1983 with a secondary increase over the southern part of the ice sheet starting in 1977. At the end of the 10-year overlapping period, the global sea-level impact of the precipitation changes over Antarctica dominates that for Greenland and yields a net ice-sheet precipitation contribution of roughly 0.02 mm yr–1. These changes are likely due to marked variations in the cyclonic forcing affecting the ice sheets, but are only weakly reflected in the temperature regime, consistent with the episodic nature of cyclonic precipitation. These conclusions are not founded on high quality data bases. The importance of such changes for understanding global sea-level variations argues for a modest research effort to collect simultaneous meteorological and glaciological observations in order to describe and understand the current precipitation variations over both ice sheets. Some suggestions are offered for steps that could be taken.With 8 Figures  相似文献   

3.
The timing and nature of ice sheet variations on Greenland over the last ~5 million years remain largely uncertain. Here, we use a coupled climate-vegetation-ice sheet model to determine the climatic sensitivity of Greenland to combined sets of external forcings and internal feedbacks operating on glacial-interglacial timescales. In particular, we assess the role of atmospheric pCO2, orbital forcing, and vegetation dynamics in modifying thresholds for the onset of glaciation in late Pliocene and Pleistocene. The response of circum-Arctic vegetation to declining levels of pCO2 (from 400 to 200 ppmv) and decreasing summer insolation includes a shift from boreal forest to tundra biomes, with implications for the surface energy balance. The expansion of tundra amplifies summer surface cooling and heat loss from the ground, leading to an expanded summer snow cover over Greenland. Atmospheric and land surface fields respond to forcing most prominently in late spring-summer and are more sensitive at lower Pleistocene-like levels of pCO2. We find cold boreal summer orbits produce favorable conditions for ice sheet growth, however simulated ice sheet extents are highly dependent on both background pCO2 levels and land-surface characteristics. As a result, late Pliocene ice sheet configurations on Greenland differ considerably from late Pleistocene, with smaller ice caps on high elevations of southern and eastern Greenland, even when orbital forcing is favorable for ice sheet growth.  相似文献   

4.
Future Greenland temperature evolution will affect melting of the ice sheet and associated global sea-level change. Therefore, understanding Greenland temperature variability and its relation to global trends is critical. Here, we reconstruct the last 1,000 years of central Greenland surface temperature from isotopes of N2 and Ar in air bubbles in an ice core. This technique provides constraints on decadal to centennial temperature fluctuations. We found that northern hemisphere temperature and Greenland temperature changed synchronously at periods of ~20 years and 40–100 years. This quasi-periodic multi-decadal temperature fluctuation persisted throughout the last millennium, and is likely to continue into the future.  相似文献   

5.
The influence of changes in winds over the Amundsen Sea has been shown to be a potentially key mechanism in explaining rapid loss of ice from major glaciers in West Antarctica, which is having a significant impact on global sea level. Here, Coupled Model Intercomparison Project Phase 5 (CMIP5) climate model data are used to assess twenty-first century projections in westerly winds over the Amundsen Sea (U AS ). The importance of model uncertainty and internal climate variability in RCP4.5 and RCP8.5 scenario projections are quantified and potential sources of model uncertainty are considered. For the decade 2090–2099 the CMIP5 models show an ensemble mean twenty-first century response in annual mean U AS of 0.3 and 0.7 m s?1 following the RCP4.5 and RCP8.5 scenarios respectively. However, as a consequence of large internal climate variability over the Amundsen Sea, it takes until around 2030 (2065) for the RCP8.5 response to exceed one (two) standard deviation(s) of decadal internal variability. In all scenarios and seasons the model uncertainty is large. However the present-day climatological zonal wind bias over the whole South Pacific, which is important for tropical teleconnections, is strongly related to inter-model differences in projected change in U AS (more skilful models show larger U AS increases). This relationship is significant in winter (r = ?0.56) and spring (r = ?0.65), when the influence of the tropics on the Amundsen Sea region is known to be important. Horizontal grid spacing and present day sea ice extent are not significant sources of inter-model spread.  相似文献   

6.
The large uncertainty in future global glacier volume projections partly results from a substantial range in future climate conditions projected by global climate models. This study addresses the effect of global and regional differences in climate input data on the projected twenty-first century glacier contribution to sea-level rise. Glacier volume changes are calculated with a surface mass balance model combined with volume-area scaling, applied to 89 glaciers in different climatic regions. The mass balance model is based on a simplified energy balance approach, with separated contributions by net solar radiation and the combined other fluxes. Future mass balance is calculated from anomalies in air temperature, precipitation and atmospheric transmissivity, taken from eight global climate models forced with the A1B emission scenario. Regional and global sea-level contributions are obtained by scaling the volume changes at the modelled glaciers to all glaciers larger than 0.1 km2 outside the Greenland and Antarctic ice sheets. This results in a global value of 0.102 ± 0.028 m (multi-model mean and standard deviation) relative sea-level equivalent for the period 2012–2099, corresponding to 18 ± 5 % of the estimated total volume of glaciers. Glaciers in the Antarctic, Alaska, Central Asia and Greenland together account for 65 ± 4 % of the total multi-model mean projected sea-level rise. The projected sea-level contribution is 35 ± 17 % larger when only anomalies in air temperature are taken into account, demonstrating an important compensating effect by increased precipitation and possibly reduced atmospheric transmissivity. The variability in projected precipitation and atmospheric transmissivity changes is especially large in the Arctic regions, making the sea-level contribution for these regions particularly sensitive to the climate model used. Including additional uncertainties in the modelling procedure and the input data, the total uncertainty estimate for the future projections becomes ±0.063 m.  相似文献   

7.
We test a surface renewal model that is widely used over snow and ice surfaces to calculate the scalar roughness length (z s ), one of the key parameters in the bulk aerodynamic method. For the first time, the model is tested against observations that cover a wide range of aerodynamic roughness lengths (z 0). During the experiments, performed in the ablation areas of the Greenland ice sheet and the Vatnajökull ice cap in Iceland, the surface varied from smooth snow to very rough hummocky ice. Over relatively smooth snow and ice with z 0 below a threshold value of approximately 10?3 m, the model performs well and in accord with earlier studies. However, with growing hummock size, z 0 increases well above the threshold and the bulk aerodynamic flux becomes significantly smaller than the eddy-correlation flux (e.g. for z 0 = 0.01 m, the bulk aerodynamic flux is about 50% smaller). Apparently, the model severely underpredicts z s over hummocky ice. We argue that the surface renewal model does not account for the deep inhomogeneous roughness sublayer (RSL) that is generated by the hummocks. As a consequence, the homogeneous substrate ice grain cover becomes more efficiently ‘ventilated’. Calculations with an alternative model that includes the RSL and was adapted for use over hummocky ice, qualitatively confirms our observations. We suggest that, whenever exceedance of the threshold occurs (z 0  >  10?3 m, i.e., an ice surface covered with at least 0.3-m high hummocks), the following relation should be used to calculate scalar roughness lengths, ln (z s /z 0)  =  1.5  ? 0.2 ln (Re *)  ? 0.11(ln (Re *))2.  相似文献   

8.
A large component of present-day sea-level rise is due to the melt of glaciers other than the ice sheets. Recent projections of their contribution to global sea-level rise for the twenty-first century range between 70 and 180 mm, but bear significant uncertainty due to poor glacier inventory and lack of hypsometric data. Here, we aim to update the projections and improve quantification of their uncertainties by using a recently released global inventory containing outlines of almost every glacier in the world. We model volume change for each glacier in response to transient spatially-differentiated temperature and precipitation projections from 14 global climate models with two emission scenarios (RCP4.5 and RCP8.5) prepared for the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. The multi-model mean suggests sea-level rise of 155 ± 41 mm (RCP4.5) and 216 ± 44 mm (RCP8.5) over the period 2006–2100, reducing the current global glacier volume by 29 or 41 %. The largest contributors to projected global volume loss are the glaciers in the Canadian and Russian Arctic, Alaska, and glaciers peripheral to the Antarctic and Greenland ice sheets. Although small contributors to global volume loss, glaciers in Central Europe, low-latitude South America, Caucasus, North Asia, and Western Canada and US are projected to lose more than 80 % of their volume by 2100. However, large uncertainties in the projections remain due to the choice of global climate model and emission scenario. With a series of sensitivity tests we quantify additional uncertainties due to the calibration of our model with sparsely observed glacier mass changes. This gives an upper bound for the uncertainty range of ±84 mm sea-level rise by 2100 for each projection.  相似文献   

9.
The performance of a snow cover model in capturing the ablation on the Greenland ice sheet is evaluated. This model allows an explicit calculation of the formation of melt water, of the fraction of melt water which re-freezes, and of runoff in the ablation region. The input climate variables to the snowpack model come from two climate models. While the higher resolution general circulation model (ECHAM 4), is closest to observations in its estimate of accumulation, it fails to give accurate results in its predictions of runoff, primarily in the southern half of the ice sheet. The two-dimensional low-resolution climate model (MIT 2D LO) produces estimates of runoff from the Greenland ice sheet within the range of uncertainty of the Inter governmental Panel on Climate Change (IPCC1) 1995 estimates. Both models reproduce some of the characteristics of the extent of the wet snow zone observed with satellite remote sensing; the MIT model is closer to observations in terms of areal extent and intensity of the melting in the southern half of the ice-sheet in July and August while the ECHAM model reproduces melting in the northern half of the ice sheet well. Changes in runoff from Greenland and Antarctica are often cited as one of the major concerns linked to anthropogenic changes in climate. Because it is based on physical principles and relies on the surface energy balance as input, the snow cover model can respond to the current climatic forcing as well as to future changes in climate on the century time scale without the limitations inherent in empirical parametrizations. For a reference climate scenario similar to the IPCC's IS92a, the model projects that the Greenland ice sheet does not contribute significantly to changes in the level of the ocean over the twenty-first century. Increases in accumulation over the central portion of the ice sheet offset most of the increase in melting and runoff, which takes place along the margins of the ice sheet. The range of uncertainty in the predictions of sea-level rise is estimated by repeating the calculation with the MIT model for seven climate change scenarios. The range is –0.5 to 1.7 cm.  相似文献   

10.
The recent increase in the rate of the Greenland ice sheet melting has raised with urgency the question of the impact of such a melting on the climate. As former model projections, based on a coarse representation of the melting, show very different sensitivity to this melting, it seems necessary to consider a multi-model ensemble to tackle this question. Here we use five coupled climate models and one ocean-only model to evaluate the impact of 0.1 Sv (1 Sv = 106 m3/s) of freshwater equally distributed around the coast of Greenland during the historical era 1965–2004. The ocean-only model helps to discriminate between oceanic and coupled responses. In this idealized framework, we find similar fingerprints in the fourth decade of hosing among the models, with a general weakening of the Atlantic Meridional Overturning Circulation (AMOC). Initially, the additional freshwater spreads along the main currents of the subpolar gyre. Part of the anomaly crosses the Atlantic eastward and enters into the Canary Current constituting a freshwater leakage tapping the subpolar gyre system. As a consequence, we show that the AMOC weakening is smaller if the leakage is larger. We argue that the magnitude of the freshwater leakage is related to the asymmetry between the subpolar-subtropical gyres in the control simulations, which may ultimately be a primary cause for the diversity of AMOC responses to the hosing in the multi-model ensemble. Another important fingerprint concerns a warming in the Nordic Seas in response to the re-emergence of Atlantic subsurface waters capped by the freshwater in the subpolar gyre. This subsurface heat anomaly reaches the Arctic where it emerges and induces a positive upper ocean salinity anomaly by introducing more Atlantic waters. We found similar climatic impacts in all the coupled ocean–atmosphere models with an atmospheric cooling of the North Atlantic except in the region around the Nordic Seas and a slight warming south of the equator in the Atlantic. This meridional gradient of temperature is associated with a southward shift of the tropical rains. The free surface models also show similar sea-level fingerprints notably with a comma-shape of high sea-level rise following the Canary Current.  相似文献   

11.
A projection of future sea level   总被引:1,自引:0,他引:1  
Evidence is reviewed that suggests faster sea-level rise when climate gets warmer. Four processes appear as dominating on a time scale of decades to centuries: melting of mountain glaciers and small ice caps, changes in the mass balance of the large polar ice sheets (Greenland, Antarctica), possible ice-flow instabilities (in particular on the West Antarctic Ice Sheet), and thermal expansion of ocean water.For a given temperature scenario, an attempt is made to estimate the different contributions. The calculation yields a figure of 9.5 cm of sea-level rise since 1850 AD, which is within the uncertainty range of estimates of the observed rise.A further 33 cm rise is found as most likely for the year 2050, but the uncertainty is very large ( = 32 cm). The contribution from melting of land ice is of the same order of magnitude as thermal expansion. The mass-balance effects of the major ice sheets tend to cancel to some extent (increasing accumulation on Antarctica, increasing ablation on Greenland). For the year 2100 a value of 66 cm above the present-day stand is found ( = 57 cm). The estimates of the standard deviation include uncertainty in the temperature scenario, as presented elsewhere in this volume.  相似文献   

12.
Samples of surface snow were collected for stable isotope analysis along the traverse route from Zhongshan to Dome A (East Antarctica) from Dec 28th, 2007 to Feb. 8th, 2008. The local relationship between δD and surface temperature is established to be 6.4 ± 0.2 ‰ per °C, very similar to the average for East Antarctic. The deuterium excess shows a pattern of high values over Antarctica, particularly at Dome A. We compare our data with an atmospheric general circulation model which includes stable water isotopes (ECHAM5-wiso). The model simulation captures the right levels of δD, but overestimates δ18O. This study provides support for the ongoing deep ice core project at Dome A.  相似文献   

13.
C. Hatté  J. Guiot 《Climate Dynamics》2005,25(2-3):315-327
A modified version of the Biome4 vegetation model for simulation of the mean δ13C of plant communities is presented, and used to reconstruct palaeoprecipitation. We treat all fractionations by C3 and C4 plants in all coexistent Plant Functional Types, weighted by their respective net primary production. We constrain the range of variation in the intracellular versus atmospheric CO2 concentration by fixing a lower limit. Finally, we replace some constant parameters by functions of external forcing to account for their responses to environmental variation. The new version of Biome4 was applied as an inverse model and tested on three modern data sets. The fit between observations and simulations is very close to the 1:1 relationship, with respective slopes of 0.90±0.02 (r 2=0.98, n=29) for δ13C and 0.97±0.06 (r 2=0.90, n=29) for precipitation. Inverse modelling was applied using the Metropolis-Hastings algorithm to the Nußloch loess sequence. Over the last glaciation, simulated palaeoprecipitation varies between 240 mm year?1 and 400 mm year?1. This study clearly demonstrates atmospheric teleconnections with the Greenland ice-sheet extension, by matching Dansgaard-Oeschger events with precipitation increase of ca. 100–200 mm year?1.  相似文献   

14.
The Greenland ice sheet holds enough water to raise the global sea level with ??7 m. Over the last few decades, observations manifest a substantial increase of the mass loss of this ice sheet. Both enhanced melting and increase of the dynamical discharge, associated with calving at the outlet-glacier fronts, are contributing to the mass imbalance. Using a dynamical and thermodynamical ice-sheet model, and taking into account speed up of outlet glaciers, we estimate Greenland??s contribution to the 21st-century global sea-level rise and the uncertainty of this estimate. Boundary fields of temperature and precipitation extracted from coupled climate-model projections used for the IPCC Fourth Assessment Report, are applied to the ice-sheet model. We implement a simple parameterization for increased flow of outlet glaciers, which decreases the bias of the modeled present-day surface height. It also allows for taking into account the observed recent increase in dynamical discharge, and it can be used for future projections associated with outlet-glacier speed up. Greenland contributes 0?C17?cm to global sea-level rise by the end of the 21st century. This range includes the uncertainties in climate-model projections, the uncertainty associated with scenarios of greenhouse-gas emissions, as well as the uncertainties in future outlet-glacier discharge. In addition, the range takes into account the uncertainty of the ice-sheet model and its boundary fields.  相似文献   

15.
The present and twenty-first century near-surface wind climate of Greenland is presented using output from the regional atmospheric climate model RACMO2. The modelled wind variability and wind distribution compare favourably to observations from three automatic weather stations in the ablation zone of southwest Greenland. The Weibull shape parameter is used to classify the wind climate. High values (κ > 4) are found in northern Greenland, indicative of uniform winds and a dominant katabatic forcing, while lower values (κ < 3) are found over the ocean and southern Greenland, where the synoptic forcing dominates. Very high values of the shape parameter are found over concave topography where confluence strengthens the katabatic circulation, while very low values are found in a narrow band along the coast due to barrier winds. To simulate the future (2081–2098) wind climate RACMO2 was forced with the HadGEM2-ES general circulation model using a scenario of mid-range radiative forcing of +4.5 W m?2 by 2100. For the future simulated climate, the near-surface potential temperature deficit reduces in all seasons in regions where the surface temperature is below the freezing point, indicating a reduction in strength of the near-surface temperature inversion layer. This leads to a wind speed reduction over the central ice sheet where katabatic forcing dominates, and a wind speed increase over steep coastal topography due to counteracting effects of thermal and katabatic forcing. Thermally forced winds over the seasonally sea ice covered region of the Greenland Sea are reduced by up to 2.5 m s?1.  相似文献   

16.
Projecting twenty-first century regional sea-level changes   总被引:2,自引:0,他引:2  
We present regional sea-level projections and associated uncertainty estimates for the end of the 21 st century. We show regional projections of sea-level change resulting from changing ocean circulation, increased heat uptake and atmospheric pressure in CMIP5 climate models. These are combined with model- and observation-based regional contributions of land ice, groundwater depletion and glacial isostatic adjustment, including gravitational effects due to mass redistribution. A moderate and a warmer climate change scenario are considered, yielding a global mean sea-level rise of 0.54 ±0.19 m and 0.71 ±0.28 m respectively (mean ±1σ). Regionally however, changes reach up to 30 % higher in coastal regions along the North Atlantic Ocean and along the Antarctic Circumpolar Current, and up to 20 % higher in the subtropical and equatorial regions, confirming patterns found in previous studies. Only 50 % of the global mean value is projected for the subpolar North Atlantic Ocean, the Arctic Ocean and off the western Antarctic coast. Uncertainty estimates for each component demonstrate that the land ice contribution dominates the total uncertainty.  相似文献   

17.
Estimates of twenty-first century sea-level changes for Norway   总被引:1,自引:0,他引:1  
In this work we establish a framework for estimating future regional sea-level changes for Norway. Following recently published works, we consider how different physical processes drive non-uniform sea-level changes by accounting for spatial variations in (1) ocean density and circulation (2) ice and ocean mass changes and associated gravitational effects on sea level and (3) vertical land motion arising from past surface loading change and associated gravitational effects on sea level. An important component of past and present sea-level change in Norway is glacial isostatic adjustment. Central to our study, therefore, is a reassessment of vertical land motion using a far larger set of new observations from a permanent GNSS network. Our twenty-first century sea-level estimates are split into two parts. Firstly, we show regional projections largely based on findings from the Fourth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC AR4) and dependent on the emission scenarios A2, A1B and B1. These indicate that twenty-first century relative sea-level changes in Norway will vary between ?0.2 to 0.3 m (1-sigma ± 0.13 m). Secondly, we explore a high-end scenario, in which a global atmospheric temperature rise of up to 6 °C and emerging collapse for some areas of the Antarctic ice sheets are assumed. Using this approach twenty-first century relative sea-level changes in Norway are found to vary between 0.25 and 0.85 m (min/max ± 0.45 m). We attach no likelihood to any of our projections owing to the lack of understanding of some of the processes that cause sea-level change.  相似文献   

18.
Scaling analysis shows that the mean thickness of an ice sheet depends on the product of two poorly known quantities, the ice viscosity and the net snow accumulation rate. We adjust the viscosity of an ice sheet in order to get a consistent value of this product for the present-day ice sheet volume and area given the net snow accumulation rate calculated by an atmospheric general circulation model (GCM). We then hold this artificial rheology constant in further numerical experiments. We hope that in doing so we can partially compensate for systematic GCM errors in simulating the snow accumulation rate, and, therefore, thickening/thinning of ice sheets will depend mostly on the tendency in the net accumulation change rather than on its absolute value. Using this approach, the response of the Greenland and Antarctic ice sheets to doubling CO2 concentration is simulated and the horizontal distribution of possible thickening/thinning of polar ice obtained. We find that, initially, the region of thickening ice is close to the area of increased snowfall rate, but later it significantly changes under the influence of internal ice flow dynamics. The sea-level changes predicted by our experiments agree with some empirical estimates. The sensitivity experiment with assigned basal sliding does not show significant changes in the large-scale ice topography, meaning, for example, that there is no indication of a possible disintegration of the West Antarctic ice sheet. At the same time, the regional thickening/thinning of ice (and consequently the sea-level change) depends strongly on processes at the ice sheet bottom.  相似文献   

19.
Using the lAP two-level general circulation model,the ice age July climate was simulated through the surface conditions of 18 000 years before present assembled by the CLIMAP Project.Comparing with the present July simulation results,the ice age atmosphere is found to have a substantially lower temperature,precipitation,and cloudiness,higher sea-level pressure,especially in the high latitude land region of the Northern Hemisphere and Antarctica.When the CO2 content is set as the modern value the climatic response is very small,which shows that the problems of CO2 sensitivity should be studied by means of coupled models.It is also pointed out that there are some common characteristics between CO2-induced climatic changes and the ice age surface condition-induced climatic changes,which may give us some insight into how climate responds to external forcings.  相似文献   

20.
 The LMDz variable grid GCM was used to simulate the Last Glacial Maximum (LGM, 21 ky Bp.) climate of Greenland and Antarctica at a spatial resolution of about 100 km.The high spatial resolution allows to investigate the spatial variability of surface climate change signals, and thus to address the question whether the sparse ice core data can be viewed as representative for the regional scale climate change. This study addresses primarily surface climate parameters because these can be checked against the, limited, ice core record. The changes are generally stronger for Greenland than for Antarctica, as the imposed changes of the forcing boundary conditions (e.g., sea surface temperatures) are more important in the vicinity of Greenland. Over Greenland, and to a limited extent also in Antarctica, the climate shows stronger changes in winter than in summer. The model suggests that the linear relationship between the surface temperature and inversion strength is modified during the LGM. The temperature dependency of the moisture holding capacity of the atmosphere alone cannot explain the strong reduction in snowfall over central Greenland; atmospheric circulation changes also play a crucial role. Changes in the high frequency variability of snowfall, atmospheric pressure and temperature are investigated and possible consequences for the interpretation of ice core records are discussed. Using an objective cyclone tracking scheme, the importance of changes of the atmospheric dynamics off the coasts of the ice sheets, especially for the high frequency variability of surface climate parameters, is illustrated. The importance of the choice of the LGM ice sheet topography is illustrated for Greenland, where two different topographies have been used, yielding results that differ quite strongly in certain nontrivial respects. This means that the paleo-topography is a significant source of uncertainty for the modelled paleoclimate. The sensitivity of the Greenland LGM climate to the prescribed sea surface conditions is examined by using two different LGM North Atlantic data sets. Received: 23 October 1997 / Accepted: 17 March 1998  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号