首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Penman–Monteith equation is extended to describe evaporation of intercepted rain, transpiration and the interaction between these processes in a single explicit function. This single-layer model simulates the effects of heat exchange, stomatal blocking and changed humidity deficit close to the canopy as a function of canopywater storage. Evaporation depends on the distribution of water over the canopy and the energy exchange between wet and dry parts. Transpiration depends on the dry canopy surface resistance that is described with a Jarvis-type response. The explicit functions obtained for water vapour fluxes facilitate a straightforward identificationof the various processes. Canopy water storage amounts and xylem sapflow were measured simultaneously during drying episodes after rainfall in a dense, partially wet, Douglas-fir forest. Estimates of evaporation and transpiration rates are derived from these observations. The analysis shows that evaporation induced transpirationreduction is mainly caused by energy consumption. Changes in water vapour deficit have a minor effect due to a compensating stomatal reaction. The remaining difference between observed and modelled transpiration reduction can be attributed to partial blocking of stomata by the water layer.  相似文献   

2.
Two methods are examined for combining measurements from instrumented aircraftand towers to estimate regional scale evapotranspiration. Aircraft data provided spatially averaged values of properties of the surface, the evaporative fraction and maximum stomatal conductance. These quantities are less sensitive to meteorological conditions than the turbulent fluxes of heat and water vapour themselves. The methods allowed aircraft data collected over several days to be averaged and thus to reduce the random error associated with the temporal under-sampling inherent in aircraft measurements. Evaporative fraction is estimated directly from the aircraft data, while maximum stomatal conductance is estimated by coupling the Penman–Monteith equation to a simple model relating surface conductance to the incoming shortwave radiation and specific humidity saturation deficit. The spatial averages of evaporative fraction and maximum stomatal conductance can then be used with routine tower data to estimate the regional scale evapotranspiration. Data from aircraft flights and six ground based sites during the OASIS field campaign in south–east New South Wales in 1995 have been used to check the methods. Both the evaporative fraction and the maximum stomatal conductance derived from the aircraft data give information on the spatial variability of the surface energy budget at scales from 10 to 100 km. Daily averaged latent heat fluxes estimated using these methods for the OASIS study region agree with the available observations in quasi-stationary conditions or in weakly non-stationary conditions when the data from several aircraft flights are averaged to reduce the impact of short term imbalances in the surface energy budget.  相似文献   

3.
Summary Hourly lysimetric and micrometeorological data taken over a grass surface at the Meteorological Research Unit, Cardington U.K. have been analysed. A temperature difference and measurements of wind speed at only one height, combined with an independently estimated effective roughness length allowed sensible heat and momentum fluxes determination by the profile method on an hourly basis. The estimates are compared with direct measurements of sensible heat and friction velocity obtained by the eddy correlation method. The sensible and latent heat fluxes are also modelled by the resistance method. Equations based on the Monin—Obukhov similarity theory are used to account for stability effects through various forms of parameterization Aerodynamic and surface resistances, necessary for the Penman—Monteith equation are calculated from routinely measured meteorological data. The profile method for estimation of sensible heat flux and friction velocity is found to work excellently on the discussed daytime experimental data which correspond mainly to near neutral or slightly unstable conditions.Surface latent and sensible heat fluxes can also be described very well by the resistance method. A slightly better estimate of the sensible heat flux is achieved when stability corrections are taken into account. On the contrary Penman-Monteith equation for estimating latent heat flux is insensitive to adjustments for atmospheric stability.The comparison of the various methods leads to the establishment of empirical relationships which correlate various quantities such as soil heat flux, resistances, evapotranspiration etc. to routinely measured meteorological data.With 8 Figures  相似文献   

4.
Over the last decade, simple models of theconvective boundary layer (CBL) have beensuggested as an approach to inferring regionallyaveraged land-air exchanges of heat, water and tracegases, because the properties of the CBL respond toan average of the underlying small-scaleheterogeneity. This paper explores the use of anintegral CBL method to infer regionally averagedfluxes in a landscape that has at least three majorsources of heterogeneity – irrigated andnon-irrigated rural land use and a large urban area(Sacramento region, California).The first part of the paper assesses the validity ofthe simple slab model of the CBL – this isintegrated forwards in time using local-scalemeasured heat and water vapour fluxes, to predictmixed-layer depth, temperature and humidity. Of thefour different CBL growth schemes used, the Tennekesand Driedonks model is found to give the bestperformance. Evaluation of the model performancewith different weightings of heat and water vapourfluxes based on the land use characteristics in theregion suggest that the source area for theboundary-layer sonde measurements is larger thanphysically-based estimates would suggest.Finally, measured time series of potentialtemperature are used to infer regionally averagedsensible heat fluxes using an integral CBL (ICBL)method. These ICBL fluxes are compared with thosemeasured at the local scale over the three land usetypes that comprise the region of interest. They arefound to be closest to the heat fluxes calculated byappropriately weighting the measured heat fluxes inthe source area calculated for the ICBL. We concludethat the integral CBL budget method providesadequate estimates of regionally-averaged surfaceheat fluxes in a landscape that is characterised bysurface types with distinctly different surfaceenergy budgets.  相似文献   

5.
Turbulence and heat fluxes in the marine atmospheric boundary layer (MABL) for the roll vortex regime, observed during the Genesis of Atlantic Lows Experiment (GALE) over the western Gulf Stream, have been studied. The spectral analysis suggests that cloud streets (roll vortices) are vertically organized convection in the MABL having the same roll scale for both the cloud layer and subcloud layer, and that the roll spacing is about three times the MABL depth. The roll circulations contribute significantly to the sensible (temperature) and latent heat (moisture) fluxes with importance increasing upward. Near the MABL top, these fluxes are primarily due to roll vortices which transfer both sensible heat and moisture upward in the lower half of the convective MABL. Near the MABL top, the roll circulations transfer sensible heat downward and moisture upward in the clear thermal-street region, but roll vortices influenced by evaporative cooling can transfer sensible heat upward and moisture downward in the cloud-street region. Near the cloud-top, the upward buoyancy flux due to evaporative cooling is highly related to the roll circulations near the inversion.For the lower half of the MABL, the normalized temperature flux decreases upward more rapidly than the humidity flux, which is mainly because potential temperature () increases slightly upward while humidity (q) decreases slightly upward above the unstable surface layer. The gradient production (associated with the gradient) is a source for the temperature flux in the unstable surface layer but changes to a sink in the mixed layer, while the gradient production (associated with the q gradient) acts as a source for the humidity flux in both the unstable surface and mixed layers. The results suggest that the entrainment at the MABL top might affect the budgets of temperature and humidity fluxes in the lower MABL, but not in the unstable surface layer.Caelum Research Corporation, Silver Spring, MD, 20901, U.S.A.  相似文献   

6.
Concurrent measurements of the surface energy balance components (net radiation, heat storage, and sensible and latent heat fluxes) were made in three communities (open water, Phragmites australis, Scirpus acutus) in a wetland in north-central Nebraska, U.S.A., during May-October, 1994. The Bowen ratio – energy balance method was used to calculate latent and sensible heat fluxes. This paper presents results from the open water area. The heat stored in water (G) was found to play a major role in the energy exchange over the water surface. During daytime, G consumed 45–60% of R n , the net radiation (seasonally averaged daytime G was about 127 W m–2). At night, G was a significant source of energy (seasonally averaged nighttime G was about -135 Wm). The diurnal pattern of latent heat flux ( E) did not follow that of R n . On some days, E was near zero during midday periods with large R n . The diurnal variability in E seemed to be significantly affected by temperature inversions formed over the cool water surface. The daily evaporation rate (E) ranged from 2 to 8 mm during the measurement period, and was generally between 70 and 135% of the equilibrium rate.  相似文献   

7.
The maximum height of the convective boundary layer (CBL) over the Taklimakan Desert can exceed 5000 m during summer and plays a crucial role in the regional circulation and weather. We combined the Weather Research and Forecasting Large Eddy Simulation (WRF-LES) with data from Global Positioning System (GPS) radiosondes and from eddy covariance stations to evaluate the performance of the WRF-LES in simulating the characteristics of the deep CBL over the central Taklimakan Desert. The model reproduced the evolution of the CBL processes reasonably well, but the simulations generated warmer and moister conditions than the observation as a result of the over-prediction of surface fluxes and large-scale advection. Further simulations were performed with multiple configurations and sensitivity tests. The sensitivity tests for the lateral boundary conditions (LBCs) showed that the model results are sensitive to changes in the time resolution and domain size of the specified LBCs. A larger domain size varies the distance of the area of interest from the LBCs and reduces the influence of large forecast errors near the LBCs. Comparing the model results using the original parameterization of sensible heat flux with the Noah land surface scheme and those of the sensitivity experiments showed that the desert CBL is sensitive to the sensible heat flux produced by the land surface scheme during daytime in summer. A reduction in the sensible heat flux can correct overestimates of the potential temperature profile. However, increasing the sensible heat flux significantly reduces the total time needed to increase the CBL to a relatively low altitude (< 3 km) in the middle and initial stages of the development of the CBL rather than producing a higher CBL in the later stages.  相似文献   

8.
Turbulence measurements in the lower half of the convective boundary layer (CBL), which includes both mixed layer and surface layer, were carried out with five sonic anemometers mounted on a 213-m tower over a complex flat suburban area with patches of forest, agricultural land, houses and buildings. Also made were radiosoundings of temperature, humidity and wind speed, to determine the CBL height. The sonic anemometer data of wind speed and temperature were processed to derive the second-moment turbulent statistics and were analyzed to investigate the applicability of variance methods to estimate regional surface fluxes of sensible heat. It was found that the temperature variances in the lower mixed layer, coupled with universal functions, produced sensible heat fluxes H over the area with an rms error of the order of 40 Wm-2 when compared with H values derived from the eddy correlation method. The variance of the vertical wind speed did not produce as good a result. In contrast, the surface-layer temperature variances yielded H values with rms error of the order of 20 Wm-2, even though the underlying surface was non-uniform and highly non-isothermal, above which enhanced temperature variances could be suspected.  相似文献   

9.
Inverse methods are widely used in various fields of atmospheric science. However, such methods are not commonly used within the boundary-layer community, where robust observations of surface fluxes are a particular concern. We present a new technique for deriving surface sensible heat fluxes from boundary-layer turbulence observations using an inverse method. Doppler lidar observations of vertical velocity variance are combined with two well-known mixed-layer scaling forward models for a convective boundary layer (CBL). The inverse method is validated using large-eddy simulations of a CBL with increasing wind speed. The majority of the estimated heat fluxes agree within error with the proscribed heat flux, across all wind speeds tested. The method is then applied to Doppler lidar data from the Chilbolton Observatory, UK. Heat fluxes are compared with those from a mast-mounted sonic anemometer. Errors in estimated heat fluxes are on average 18 %, an improvement on previous techniques. However, a significant negative bias is observed (on average $-63\,\%$ ) that is more pronounced in the morning. Results are improved for the fully-developed CBL later in the day, which suggests that the bias is largely related to the choice of forward model, which is kept deliberately simple for this study. Overall, the inverse method provided reasonable flux estimates for the simple case of a CBL. Results shown here demonstrate that this method has promise in utilizing ground-based remote sensing to derive surface fluxes. Extension of the method is relatively straight-forward, and could include more complex forward models, or other measurements.  相似文献   

10.
This study investigates the convective boundary layer (CBL) that develops over anon-homogeneous surface under different thermal and dynamic conditions. Analysesare based on data obtained from a Russian research aircraft equipped with turbulentsensors during the GAME-Siberia experiment over Yakutsk in Siberia, from April to June 2000.Mesoscale thermal internal boundary layers (MTIBLs) that radically modified CBLdevelopment were observed under unstable atmospheric conditions. It was found thatMTIBLs strongly influenced the vertical and horizontal structures of virtual potentialtemperature, specific humidity and, most notably, the vertical sensible and latent heatfluxes. MTIBLs in the vicinity of the Lena River lowlands were confirmed by clouddistributions in satellite pictures.MTIBLs spread through the entire CBL and radically modify its structure if the CBL isunstable, and strong thermal features on the underlying surface have horizontal scalesexceeding 10 km. MTIBL detection is facilitated through the use of special parameterslinking shear stress and convective motion.The turbulent structure of the CBL with and without MTIBLs was scaled usingthe mosaic or flux aggregate approach. A non-dimensional parameterLRau/Lhetero (where LRau is Raupach's length and Lhetero is the horizontal scale of the surface heterogeneity)estimates the application limit of similarity and local similarity scaling models forthe mosaic parts over the surface. Normalized vertical profiles of wind speed, airtemperature, turbulent sensible and latent heat fluxes for the mosaic parts withLRauLhetero < 1 could be estimated by typical scalingcurves for the homogeneous CBL. Traditional similarity scaling models for the CBLcould not be applied for the mosaic parts with LRau/Lhetero > 1.For some horizontally non-homogeneous CBLs, horizontal sensible heat fluxes werecomparable with the vertical fluxes. The largest horizontal sensible heat fluxes occurred at the top of the surface layer and below the top of the CBL.Formerly affiliated to the Frontier Observational Research System for Global ChangeFormerly affiliated to the Frontier Observational Research System for Global Change  相似文献   

11.
High-resolution simulations with a mesoscale model are performed to estimate heat and moisture budgets of a well-mixed boundary layer. The model budgets are validated against energy budgets obtained from airborne measurements over heterogeneous terrain in Western Germany. Time rate of change, vertical divergence, and horizontal advection for an atmospheric column of air are estimated. Results show that the time trend of specific humidity exhibits some deficiencies, while the potential temperature trend is matched accurately. Furthermore, the simulated turbulent surface fluxes of sensible and latent heat are comparable to the measured fluxes, leading to similar values of the vertical divergence. The analysis of different horizontal model resolutions exhibits improved surface fluxes with increased resolution, a fact attributed to a reduced aggregation effect. Scale-interaction effects could be identified: while time trends and advection are strongly influenced by mesoscale forcing, the turbulent surface fluxes are mainly controlled by microscale processes.  相似文献   

12.
The maximum height of the convective boundary layer(CBL)over the Taklimakan Desert can exceed 5000 m during summer and plays a crucial role in the regional circulation and weather.We combined the Weather Research and Forecasting Large Eddy Simulation(WRF-LES)with data from Global Positioning System(GPS)radiosondes and from eddy covariance stations to evaluate the performance of the WRF-LES in simulating the characteristics of the deep CBL over the central Taklimakan Desert.The model reproduced the evolution of the CBL processes reasonably well,but the simulations generated warmer and moister conditions than the observation as a result of the over-prediction of surface fluxes and large-scale advection.Further simulations were performed with multiple configurations and sensitivity tests.The sensitivity tests for the lateral boundary conditions(LBCs)showed that the model results are sensitive to changes in the time resolution and domain size of the specified LBCs.A larger domain size varies the distance of the area of interest from the LBCs and reduces the influence of large forecast errors near the LBCs.Comparing the model results using the original parameterization of sensible heat flux with the Noah land surface scheme and those of the sensitivity experiments showed that the desert CBL is sensitive to the sensible heat flux produced by the land surface scheme during daytime in summer.A reduction in the sensible heat flux can correct overestimates of the potential temperature profile.However,increasing the sensible heat flux significantly reduces the total time needed to increase the CBL to a relatively low altitude(3 km)in the middle and initial stages of the development of the CBL rather than producing a higher CBL in the later stages.  相似文献   

13.
The impact of sea waves on sensible heat and momentum fluxes is described. The approach is based on the conservation of heat and momentum in the marine atmospheric surface layer. The experimental fact that the drag coefficient above the sea increases considerably with increasing wind speed, while the exchange coefficient for sensible heat (Stanton number) remains virtually independent of wind speed, is explained by a different balance of the turbulent and the wave-induced parts in the total fluxes of momentum and sensible heat.Organised motions induced by waves support the wave-induced stress which dominates the surface momentum flux. These organised motions do not contribute to the vertical flux of heat. The heat flux above waves is determined, in part, by the influence of waves upon the turbulence diffusivity.The turbulence diffusivity is altered by waves in an indirect way. The wave-induced stress dominates the surface flux and decays rapidly with height. Therefore the turbulent stress above waves is no longer constant with height. That changes the balance of the turbulent kinetic energy and of the dissipation rate and, hence the diffusivity.The dependence of the exchange coefficient for heat on wind speed is usually parameterized in terms of a constant Stanton number. However, an increase of the exchange coefficient with wind speed is not ruled out by field measurements and could be parametrized in terms of a constant temperature roughness length. Because of the large scatter, field data do not allow us to establish the actual dependence. The exchange coefficient for sensible heat, calculated from the model, is virtually independent of wind speed in the range of 3–10 ms-1. For wind speeds above 10 ms-1 an increase of 10% is obtained, which is smaller than that following from the constant roughness length parameterization.The investigation was in part supported by the Netherlands Geosciences Foundation (GOA) with financial aid from the Netherlands Organization for Scientific Research (NWO).  相似文献   

14.
RAMS模式在金塔地区非均匀下垫面上的适用性研究   总被引:1,自引:1,他引:0       下载免费PDF全文
为检验RAMS模式在金塔地区的模拟性能, 首先选2005年7月2~3日金塔地区的一次晴好天气过程, 然后利用RAMS及MM5模式对该过程进行了48 h三重嵌套的数值模拟, 最后对金塔绿洲、 戈壁及沙漠点近地面各变量的模拟值及实测值进行了对比分析。结果表明: RAMS模式对绿洲、 戈壁和沙漠不同下垫面近地面温度的模拟表现良好, 基本模拟出了近地面相对湿度的日变化趋势, 较好地模拟出了绿洲\_沙漠环流引起的绿洲“冷岛效应”和临近绿洲的戈壁与沙漠上空的“逆湿”现象; RAMS模式对绿洲下垫面潜热通量的模拟比感热通量更接近实况, 而对戈壁和沙漠下垫面感热通量的模拟好于潜热通量, 三种下垫面上净辐射的模拟都与观测值较接近; 同MM5模式的模拟结果比较, RAMS模式对非均匀下垫面净辐射、 感热通量的数值模拟更优于MM5模式。这表明RAMS模式在金塔地区应用的可行性。  相似文献   

15.
Based on measurements at Sodankylä Meteorological Observatory the regional (aggregated) momentum and sensible heat fluxes are estimated for two days over a site in Finnish Lapland during late winter. The forest covers 49% of the area. The study shows that the forest dominates and controls the regional fluxes of momentum and sensible heat in different ways. The regional momentum flux is found to be 10–20% smaller than the measured momentum flux over the forest, and the regional sensible heat flux is estimated to be 30–50% of the values measured over a coniferous forest.The regional momentum flux is determined in two ways, both based on blending height theory. One is a parameterised method, the other represents a numerical solution of an aggregation model. The regional sensible heat flux is determined from the theory of mixed-layer growth. At near neutral conditions the regional momentum flux can be determined independently of the regional sensible heat flux. At unstable conditions the two models become coupled.The information that is needed by the parameterised blending height method and by the mixed-layer evolution method in order to derive the regional fluxes of momentum and sensible heat can be obtained from radiosonde profiles of wind speed and temperature.  相似文献   

16.
Spectral analysis was performed on aircraft observations of a convective boundary layer (CBL) that developed over a thermally inhomogeneous, well-marked mesoscale land surface. The observations, part of the GAME-Siberia experiment, were recorded between April and June 2000 over the Lena River near Yakutsk City. A special integral parameter termed the ‘reduced depth of the CBL’ was used to scale the height of the mixed layer with variable depth. Analysis of wavelet cospectra and spectra facilitated the separation of fluxes and other variables into small-scale turbulent fluctuations (with scales less than the reduced depth of the CBL, approximately 2 km) and mesoscale fluctuations (up to 20 km). This separation approach allows for independent exploration of the scales. Analyses showed that vertical distributions obeyed different laws for small-scale fluxes and mesoscale fluxes (of sensible heat, water vapour, momentum and carbon dioxide) and for other variables (wind speed and air temperature fluctuations, coherence and degree of anisotropy). Vertical profiles of small-scale turbulent fluxes showed a strong decay that differed from generally accepted similarity models for the CBL. Vertical profiles of mesoscale fluxes and other variables clearly showed sharp inflections at the same relative (with respect to the reduced depth of the CBL) height of approximately 0.55 in the CBL. Conventional similarity models for sensible heat fluxes describe both small-scale turbulent and mesoscale flows. The present results suggest that mesoscale motions that reach up to the relative level of 0.55 could be initiated by thermal surface heterogeneity. Entrainment between the upper part of the CBL and the free atmosphere may cause mesoscale motions in that region of the CBL.  相似文献   

17.
曾剑  张强  王春玲 《气象学报》2016,74(6):876-888
东亚夏季风边缘摆动区既是气候敏感区,也是生态脆弱区和农牧交错带,其特殊陆面能量空间分布格局和演变特征对理解该区域天气和气候变化有重要意义。然而受限于陆面观测资料缺乏,对这部分陆面特征的认识仍非常有限。通过对34 a陆面模拟集成产品的分析,发现夏季风边缘摆动区内潜热和感热通量在空间上表现出明显的过渡特征,由摆动区外的相对均衡状态进入到摆动区内的“突变转换”;陆面能量平衡具有明显的区域特征,能量平衡各分量在纬向和经向都表现出了“阶梯型”的变化。就演变而言,区域平均感热和潜热没有表现出规律性的递减或递增趋势,波动幅度在±20%以内,但在20世纪末存在一个较为明显的摆动相位转换:1997年之前夏季风边缘摆动区夏季风相对活跃,潜热通量总体高于其气候值而感热通量则低于其气候值,之后出现了相反的现象。此外,区内感热和潜热通量对气候环境干湿性质非常敏感,两者存在明显的线性关系。   相似文献   

18.
We conduct a high-resolution large-eddy simulation (LES) case study in order to investigate the effects of surface heterogeneity on the (local) structure parameters of potential temperature \(C_T^2\) and specific humidity \(C_q^2\) in the convective boundary layer (CBL). The kilometre-scale heterogeneous land-use distribution as observed during the LITFASS-2003 experiment was prescribed at the surface of the LES model in order to simulate a realistic CBL development from the early morning until early afternoon. The surface patches are irregularly distributed and represent different land-use types that exhibit different roughness conditions as well as near-surface fluxes of sensible and latent heat. In the analysis, particular attention is given to the Monin–Obukhov similarity theory (MOST) relationships and local free convection (LFC) scaling for structure parameters in the surface layer, relating \(C_T^2\) and \(C_q^2\) to the surface fluxes of sensible and latent heat, respectively. Moreover we study possible effects of surface heterogeneity on scintillometer measurements that are usually performed in the surface layer. The LES data show that the local structure parameters reflect the surface heterogeneity pattern up to heights of 100–200 m. The assumption of a blending height, i.e. the height above the surface where the surface heterogeneity pattern is no longer visible in the structure parameters, is studied by means of a two-dimensional correlation analysis. We show that no such blending height is found at typical heights of scintillometer measurements for the studied case. Moreover, \(C_q^2\) does not follow MOST, which is ascribed to the entrainment of dry air at the top of the boundary layer. The application of MOST and LFC scaling to elevated \(C_T^2\) data still gives reliable estimates of the surface sensible heat flux. We show, however, that this flux, derived from scintillometer data, is only representative of the footprint area of the scintillometer, whose size depends strongly on the synoptic conditions.  相似文献   

19.
The convective boundary layer over pasture and forest in Amazonia   总被引:1,自引:0,他引:1  
Summary The coupling between different types of surface (tropical forest or grass) and the Convective Boundary Layer (CBL) has been investigated using observational (rawinsoundings) data collected over Rondônia in southwest Amazonia. The data reported here support the notion that deforestation may modify the dynamics of the boundary layer, in particular during the dry season. In this period the sensible heat fluxes are very high over pasture, creating a CBL around 550m deeper compared to that over the forest. The measurements showed the height of the fully developed CBL for pasture to be 1650m, compared to around 1100m for forest. During the wet season the height of the CBL is lower than during the dry season and has the same height (around 1000m) for forest and pasture sites. The CBL over pasture is hotter and drier than over forest during the dry season, but during the wet season the air temperatures and humidities are similar. Comparing the CBL growth during the dry and wet season, there is evidence that the CBL properties over the forest are not dependent on the surface characteristics, but over the pasture they are.  相似文献   

20.
This study examines the seasonal cycle of the components of the surface energy balance in the Volta basin in West Africa as part of the GLOWA-Volta project. The regional climate is characterized by a strong north–south gradient of mean annual rainfall and the occurrence of pronounced dry and wet seasons within one annual cycle, causing a strong seasonal variation in the natural vegetation cover. The observations are conducted with a combined system, consisting of a Large Aperture Scintillometer (LAS) for areally averaged sensible heat flux, radiometers and sensors for soil heat flux. For comparisons the eddy-covariance (EC) method providing the fluxes of momentum, sensible and latent heat is utilized as well. The measurements of a seasonal cycle in 2002/2003 were gathered including the rapid wet-to-dry transition after the wet season at two locations in Ghana, one in the humid tropical southern region and one in the northern region. A direct comparison and the energy balance closure of the two methods are investigated for daytime and nighttime separately. An attempt is made to understand and explain the differences between the two methods and the closure of energy budget found for these. It is found that the two systems correspond well during daytime. During nighttime the LAS seems to perform more realistically than the EC system. Considering the fact that a LAS system is much easier to use in the climate conditions of the Volta basin, it is concluded that the LAS approach is very suitable in this type of climate conditions. Surface conductances are estimated by rearranging the Penman–Monteith equation and compared to a Jarvis-type model optimised for savannah conditions. It is found that temperature dependence should be included in the conductance formulation in contrast to earlier findings. Based on the findings the gathered dataset can be used for further model studies of the climate and environment of West Africa.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号