首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
A computer simulation model for transverse‐dune‐field dynamics, corresponding to a uni‐directional wind regime, is developed. In a previous formulation, two distinct problems were found regarding the cross‐sectional dune shape, namely the erosion in the lee of dunes and the steepness of the windward slopes. The first problem is solved by introducing no erosion in shadow zones. The second issue is overcome by introducing a wind speedup (shear velocity increase) factor, which can be accounted for by adding a term to the original transport length, which is proportional to the surface height. By incorporating these features we are able to model dunes whose individual shape and collective patterns are similar to those observed in nature. Moreover we show how the introduction of a non‐linear shear‐velocity‐increase term leads to the reduction of dune height, and this may result in an equilibrium dune field configuration. This is thought to be because the non‐linear increase of the transport length makes the sand trapping efficiency lower than unity, even for higher dunes, so that the incoming and the outgoing sand flux are in balance. To fully describe the inter‐dune morphology more precise dynamics in the lee of the dune must be incorporated. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

2.
Barchan dunes are common on Earth, Mars and Titan. Previous studies have shown that their formation, migration and evolution are influenced by the wind regime and other factors, but details vary among regions. Understanding barchan morphology and migration will both improve our understanding of dune geomorphology and provide a basis for describing the environmental conditions that affect the formation and development of these dunes on Earth and other planets. Here, we provide detailed measurements of barchan dune migration in China's Quruq Desert, in the lower reaches of the Tarim River. We monitored their migration direction and rate, and their morphological changes during migration, by comparing Google Earth images acquired in 2003 and 2014. The dunes migrated west-southwest, close to the local resultant drift direction. The migration rate averaged 8.9 to 32.1 m year−1, with obvious spatial variation. In addition to the wind regime, the migration rate depended on dune morphology, density and vegetation cover; the rate was negatively related to dune height, density and vegetation cover, but positively linearly related to the length/width ratio (LU/W) and to the decrease in this ratio from 2003 to 2014. We found correlations among the dune morphometric parameters, but the relationships were weaker than in previous research. Due to the complexity of the factors that affect the processes that underlie sand dune development and migration, the morphological changes during dune migration were also complex. Our measurements suggest that the aeolian environment played a dominant role in dune migration and its spatial variation in the Quruq Desert. These results will support efforts to control dune migration in the western Quruq Desert and improve our understanding of dune morphodynamics. © 2019 John Wiley & Sons, Ltd.  相似文献   

3.
A self‐consistent model which describes transverse dune migration in equilibrium is introduced. It shows that an equilibrium expression for dune migration speed (c d) must take into account sand trapping efficiency (T E), and that T E is strongly related to the wind speedup over the windward surface. An expression for sand trapping efficiency (T E) is analytically derived from a microscale analysis of sand grain deposition on the slip face. Sand trapping efficiency (T E) is mainly determined by shear velocity on a level surface (u*(−∞)), and rapidly decreases as u*(−∞) increases. For each dune height (H), dune migration speed (c d) first increases, and then decreases monotonically after reaching the maximum, as the shear velocity on a level surface (u*(−∞)) increases. Dune migration speed (c d) is not inversely proportional to dune height (H). For low dunes, small sand trapping efficiency (T E) suppresses c d, whereas for high dunes, wind speedup and large T E resist the decrease of c d. Some field data show the same tendency. The dune‐to‐plane‐bed transition observed in subaqueous and venusian bedforms could be associated with the decrease of sand trapping efficiency (T E). Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

4.
This study examines the spatial distribution of wind speed across a coastal dune system located at Jockey's Ridge State Park, North Carolina. The study area consists of a trough blowout through a foredune ridge, and the landforms that have developed behind the foredune. Wind speed and direction were measured simultaneously with single sensors placed at a fixed height in 13 locations across the blowout/dune complex. Fractional wind speed‐up is computed for sampling stations using data from a mast located on the beach as the reference. Results show that wind speeds were generally accelerated across the study site. The highest speeds were recorded on the foredune ridges adjacent to the blowout. Wind was accelerated through the center of the blowout throat and along the downwind lateral wall. Further into the blowout, at the base of the ramp to the depositional lobe, higher wind speeds shifted to the upwind lateral wall and continued to accelerate up the ramp as air exited to the rear. Significant variations in the wind speed‐up pattern were associated with different wind approach angles, with greater speed‐up occurring when the winds were aligned normal to the dune system. The speed‐up decreased as the angle of approach became increasingly oblique to the ridge. The patterns of wind speed‐up across the site point to the influence of topography on airflow. To quantify the relationship, measures of several topographic variables were obtained along sample transects running upwind from each sample station along flow lines representing different wind approach angles. Examination of correlation coefficients between wind speed‐up and topographic variables suggests that for groups of stations with similar topographic characteristics, 30–50% of the variations in speed‐up may be explained by the upwind topographic variability. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

5.
As with most dune fields, the White Sands Dune Field in New Mexico forms in a wind regime that is not unimodal. In this study, crescentic dune shape change (deformation) with migration at White Sands was explored in a time series of five LiDAR‐derived digital elevation models (DEMs) and compared to a record of wind direction and speed during the same period. For the study period of June 2007 to June 2010, 244 sand‐transporting wind events occurred and define a dominant wind mode from the SW and lesser modes from the NNW and SSE. Based upon difference maps and tracing of dune brinklines, overall dune behavior consists of crest‐normal migration to the NE, but also along‐crest migration of dune sinuosity and stoss superimposed dunes to the SE. The SW winds are transverse to dune orientations and cause most forward migration. The NNW winds cause along‐crest migration of dune sinuosity and stoss bedforms, as well as SE migration of NE‐trending dune terminations. The SSE winds cause ephemeral dune deformation, especially crestal slipface reversals. The dunes deform with migration because of differences in dune‐segment size, and differences in the lee‐face deposition rate as a function of the incidence angle between the wind direction and the local brinkline orientation. Each wind event deforms dune shape, this new shape then serves as the boundary condition for the next wind event. Shared incidence‐angle control on dune deformation and lee‐face stratification types allows for an idealized model for White Sands dunes. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

6.
Submarine dune dynamics are controlled by tidal currents and wind forces. According to the relative influence of these forces and the nature of dune sediment, different bedform behaviors can be observed. The footprint of the different hydrodynamic agents is recorded into the internal architecture of dunes. This paper is concerned with bedforms that compose the thick sediment wedge located in the eastern English Channel, off the Bay of Somme. This sedimentary archive constitutes an interesting feature to achieve a better understanding of seabed sediment dynamics and its timeline building stages. The dynamics of large submarine dunes, which are organized in fields, are studied thanks to bathymetric and seismic data over the periods 1937–1993 and 1993–2007. Dune morphology presents low lee and stoss side slopes (on average 8° and 3°, respectively) and dune migration rate is not very high. Dune movements are in the direction of residual tidal currents, i.e. toward the east, with mean migration rates around 0·8 to 5 ± 0·25 m yr?1 and up to 6·6 ± 0·7 m yr?1, respectively, at multi‐decennial and decennial time scales. The dune internal architecture is complex with superimposed eastward prograding units, displaying locally opposite progradation. Second‐order discontinuities (dip of 0·5°–4° perpendicular to dune crests) constitute dune master bedding. By counting the number of second‐order reflectors between 1937–1993 and 1993–2007, the formation periodicity of these bounding surfaces is estimated to range from 4 to 18 years. These time intervals coincide with the long‐term tidal cyclicities and also with the inter‐annual to decennial variability of storm activity in northern Europe. Two theories were made to interpret the dune internal structures: the second‐order surfaces are interpreted either as the depositional surfaces corresponding to the marks of weak energy periods (weak tidal and storm action), or as erosive surfaces due to an opposite direction of dune migration provoked temporarily by exceptional storms from the northeast. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

7.
In this work we analyze a dark erg on Mars that could be considered a mega‐dune (draa) where secondary dunes of different morphology are superposed over a main crescent‐shaped bedform (primary dune). The presence of a complex, multi‐directional wind regime is indicated as one of the main causes for the accumulation of a tall draa, presenting an analogy to the Great Sand Dunes in Colorado. In both cases, main regional winds from the SW blow in opposition to winds from the NE which are enhanced by the topography. Such a complex wind regime leads to the development of star and reversing dunes and is accurately predicted by atmospheric models on a regional and local scale. Signs of activity in the form of grainflow scars are also noted over the slip faces of many dunes, suggesting that easterly winds are actively shaping the study draa in the present‐day climatic setting. The presence of this draa on Mars suggests a complex interaction between regional and local topographically controlled flows and a consistent availability of sand. The future study of an analogue terrestrial site such as the Great Sand Dunes could be fundamental for understanding the evolution of similar Martian dune fields. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

8.
Repeated surveying of two sites on a Namib linear dune between 1980 and 2001 provides a 21‐year record of dune surface change. The surveys con?rm the view that the dunes are not inactive relics but are responding to the present‐day wind regime. They also provide no evidence that the dunes are migrating laterally. Examination of wind data for the survey period provides some evidence that the form of the crest of the dunes is actively responding to the natural year‐by‐year climate variability, such that an increase in the frequency of easterly winds leads to the development of a double‐crested form while fewer easterly winds lead to a single‐crested form. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

9.
A relatively unknown coastal zone of southern Mozambique in Africa is covered by vast mobile and stabilized dunefields. The aeolian dynamics of these transgressive dunefields are studied based on mobility and stability models, statistical analysis of climate data and topographic profiles. Detailed analyses of regional winds, rainfall records, atmospheric temperature records and annual monitoring of dune migration rates helped to find reliable data about instantaneous aeolian sand transport rates, wind drift potential, dune mobility and dune migration rates. The data obtained suggest that the coastal transgressive dunefields are controlled by the southeast winds, availability of loose sediments on the beach, the presence of headland boundary between Maputo and Gaza provinces and the appropriate deposition spaces between the coastline and lacustrine‐lagoon systems. Two distinctive segments of transgressive dunefields were identified in the region studied, including the northern segment of Maputo province with active (mobile) and semi‐vegetated dunes that migrate 23 m/yr landward, and Gaza province dunefields with stabilized (vegetated) and semi‐vegetated dunes. The data obtained in this research have considerable potential to make a valuable contribution to the study of coastal dunefields. Copyright © 2018 John Wiley & Sons, Ltd.  相似文献   

10.
The introduction of vegetation to bare barchan dunes can result in a morphological transformation to vegetated parabolic dunes. Models can mimic this planform inversion, but little is known about the specific processes and mechanisms responsible. Here we outline a minimalist, quantitative, and process‐based hypothesis to explain the barchan–parabolic transformation. The process is described in terms of variations in the stabilization of wind‐parallel cross‐sectional dune slices. We hypothesize that stabilization of individual ‘dune slices’ is the predictable result of feedbacks initiated from colonization of vegetation on the slipface, which can only occur when slipface deposition rates are less than the deposition tolerance of vegetation. Under a constant vegetation growth regime the transformation of a barchan dune into a parabolic dune is a geometric response to spanwise gradients in deposition rates. Initial vegetation colonization of barchan horns causes shear between the anchored sides and the advancing centre of the dune, which rotates the planform brinkline angle from concave‐ to convex‐downwind. This reduces slipface deposition rate and allows vegetation to expand inward from the arms to the dune centre. The planform inversion of bare barchans dunes into vegetated parabolic dunes ultimately leads to complete stabilization. Our hypothesis raises several important questions for future study: (i) are parabolic dunes transitional landforms between active and vegetation‐stabilized dune states? (ii) should stabilization modelling of parabolic dune fields be treated differently than linear dunes? and (iii) are stabilized parabolic dune fields ‘armoured’ against re‐activation? Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

11.
Although dunes fronted by sandy beaches constitute approximately 80 per cent of South Africa's coastline, few studies have addressed the formation and life cycle of coastal foredunes, the small, ephemeral shore‐parallel dune ridges typically less than 5 m high and 20 m wide, which form seaward of the storm line. This study used regular, detailed topographic surveys of embryo and foredunes at Tugela mouth, an aggrading stretch of shoreline on the subtropical east coast of South Africa, over a 32‐month period, to gain insight into the formation and motion of these highly mobile landforms over the short term. Average wind drift potential at Tugela mouth during the study period, at 2·35 m s?1, was an order of magnitude lower than that typical of most parts of the eastern South African coast. The dominant sand‐moving wind for the region was from the southwest to west‐southwest at 10·7 to 13·8 m s?1, with a secondary vector from north to north‐northeast at 10·8 to 13·8 m s?1. Signi?cant shoreline retreat, a result of the low sediment yield of the Tugela River during the study period, was one of the main results. This provided the context for redistribution of sand from the inland to the seaward side of the study area, a consequence of the dominant wind direction, and for frequent creation and destruction of short‐lived embryo dunes. Those foredunes which survived the whole study period tended to increase in height, but there was no consistent directional trend in foredune crest movement throughout the 32 months. The study results generally supported Psuty's model of foredune development, but could not con?rm his contention of landward retreat of dune forms under conditions of shoreline erosion. This may be due to the relatively short duration of the study, or possibly to low wind drift potential at the site. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

12.
Changes in wind speed and sediment transport are evaluated at a gap and adjacent crest of a 2 to 3 m high, 40 m wide foredune built by sand fences and vegetation plantings on a wide, nourished fine sand beach at Ocean City, New Jersey. Anemometer masts, cylindrical sand traps and erosion pins were placed on the beach and dune during two obliquely onshore wind events in February and March 2003. Results reveal that: (1) changes in the alongshore continuity of the beach and dune system can act as boundaries to aeolian transport when winds blow at an angle to the shoreline; (2) oblique winds blowing across poorly vegetated patches in the dune increase the potential for creating an irregular crest elevation; (3) transport rates and deflation rates can be greater within the foredune than on the beach, if the dune surface is poorly vegetated and the beach has not had time to dry following tidal inundation; (4) frozen ground does not prevent surface deflation; and (5) remnant sand fences and fresh storm wrack have great local but temporary effect on transport rates. Temporal and spatial differences due to sand fences and wrack, changes in sediment availability due to time‐dependent differences in surface moisture and frozen ground, combined with complex topography and patchy vegetation make it difficult to specify cause–effect relationships. Effects of individual roughness elements on the beach and dune on wind flow and sediment transport can be quantified at specific locations at the event scale, but extrapolation of each event to longer temporal and spatial scales remains qualitative. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

13.
The eastern portion of the Maranhão coast is characterized by large active dune‐fields located in a tropical setting. This article combines the analysis of dune‐field morphologic patterns with the classical analysis of grain size and heavy minerals to study the sedimentary dynamics of the active aeolian system in this region. Based on the heavy mineral analysis, the main sedimentary suppliers feeding the system are the westward alongshore drift bringing sand from the coast east of the Parnaíba River mouth and the river itself. The absence of well‐defined variation patterns of the two morphometric parameters studied, dune spacing and crest length, reflects complex sedimentary dynamics and transport pathways, inside the aeolian system, despite the unidirectional wind. During the wet season, the interdune plains are flooded and the system is intensely reworked by intermittent drainages. During the dry season, the deposits formed by the drainages and interdune lakes become temporary internal sedimentary sources for the system. Due to this combined aeolian‐fluvial transport, the sediment source area has a planar geometry, with contributions from the beach and interdune plains, and not linear as expected in a typical case of source only in the beach. The areal limits of the dune‐fields is the main boundary condition controlling the dune‐field patterns, as dune spacing and crest length, by changing the sedimentary inflow–outflow balance and interactions between migration dunes. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

14.
Field‐measured patterns of mean velocity and turbulent airflow are reported for isolated barchan dunes. Turbulence was sampled using a high frequency sonic anemometer, deriving near‐surface Reynolds shear and normal stresses. Measurements upwind of and over a crest‐brink separated barchan indicated that shear stress was sustained despite a velocity reduction at the dune toe. The mapped streamline angles and enhanced turbulent intensities suggest the effects of positive streamline curvature are responsible for this maintenance of shear stress. This field evidence supports an existing model for dune morphodynamics based on wind tunnel turbulence measurements. Downwind, the effect of different dune profiles on flow re‐attachment and recovery was apparent. With transverse incident flow, a re‐attachment length between 2·3 and 5·0h (h is dune brink height) existed for a crest‐brink separated dune and 6·5 to 8·6h for a crest‐brink coincident dune. The lee side shear layer produced elevated turbulent stresses immediately downwind of both dunes, and a decrease in turbulence with distance characterized flow recovery. Recovery of mean velocity for the crest‐brink separated dune occurred over a distance 6·5h shorter than the crest‐brink coincident form. As the application of sonic anemometers in aeolian geomorphology is relatively new, there is debate concerning the suitability of processing their data in relation to dune surface and streamline angle. This paper demonstrates the effect on Reynolds stresses of mathematically correcting data to the local streamline over varying dune slope. Where the streamline angle was closely related to the surface (windward slope), time‐averaged shear stress agreed best with previous wind tunnel findings when data were rotated along streamlines. In the close lee, however, the angle of downwardly projected (separated) flow was not aligned with the flat ground surface. Here, shear stress appeared to be underestimated by streamline correction, and corrected shear stress values were less than half of those uncorrected. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

15.
The spatial–temporal variations of a dune system can be determined by using diverse ‘geomatic’ methodologies: geodesy, global positioning system (GPS) and photogrammetry. In the case of the Liencres dune system, a study will be carried out using the ‘close‐range’ photogrammetry technique and the topography technique (total station and GPS). In order to determine the dynamic of the dune system it is necessary to repeat the process of study after a specific interval of time. For this reason, three dimensional data should be available in two different time periods, between which the displacement of the object of analysis (the front portion of the dune) will be significant enough to evaluate its magnitude. This work analyses the viability of photogrammetry for the determination of the spatial–temporal changes of a coastal parabolic dune. Two factors have been analysed: first, the comparison of the photogrammetric results with the results obtained from topographic methods (total station and GPS), and second, the quantification of the displacement of the dune system. The analysis of the correspondence between the movement of different parts of the dune and the influence of the intensity and direction of the prevailing wind in the area is also desired. The dune advanced 12·15 ± 0·06 m (an average of 8·5 m/yr), and the partial implications for the dynamic of human modified processes on the natural park have been established. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

16.
17.
Concepts derived from previous studies of offshore winds on natural dunes are evaluated on a dune maintained for shore protection during three offshore wind events. The potential for offshore winds to form a lee‐side eddy on the backshore or transfer sediment from the dune and berm crest to the water are evaluated, as are differences in wind speed and sediment transport on the dune crest, berm crest and a pedestrian access gap. The dune is 18–20 m wide near the base and has a crest 4.5 m above backshore elevation. Two sand‐trapping fences facilitate accretion. Data were obtained from wind vanes on the crest and lee of the dune and anemometers and sand traps placed across the dune, on the beach berm crest and in the access gap. Mean wind direction above the dune crest varied from 11 to 3 deg from shore normal. No persistent recirculation eddy occurred on the 12 deg seaward slope. Wind speed on the berm crest was 85–89% of speed at the dune crest, but rates of sediment transport were 2.27 times greater during the strongest winds, indicating that a wide beach overcomes the transport limitation of a dune barrier. Limited transport on the seaward dune ramp indicates that losses to the water are mostly from the backshore, not the dune. The seaward slope gains sand from the landward slope and dune crest. Sand fences causing accretion on the dune ramp during onshore winds lower the seaward slope and reduce the likelihood of detached flows during offshore winds. Transport rates are higher in access gaps than on the dune crest despite lower wind speeds because of flatter slopes and absence of vegetation. Transport rates across dunes and through gaps can be reduced using vegetation and raised walkover structures. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

18.
Sedimentary architecture and genesis of residual dune ridges in a temperate climate are presented and implications for their use as archive of changes in long-term precipitation and wind climate are discussed. Residual dunes are common features of wet aeolian systems, where they form sets of shallow ridges, oriented perpendicular to the prevailing wind direction. Residual dune ridges of the study area are vegetated and typically elevate 0.6 to 2.5 m above the surrounding interdune flats. They develop on the lower stoss side of active transgressive dunes, triggered by periods of elevated groundwater table and hence colonization of the foot of the dune by rapid growing pioneer vegetation. Stabilized by plants, the growing ridge detaches from the active transgressive dune and gets abandoned within years in the course of the downwind-migration of the transgressive dune. Grain-size data suggest a main sediment supply from the transgressive dune and only minor input from other sources. Ground-penetrating radar reveals that the residual dune ridges are composed of windward-dipping as well as leeward-dipping sedimentary beds. Leeward-dipping strata reflect sediment supply from the parental dune, whereas windward-dipping beds are seen to result from sediment redistribution along the ridge and sediment supply from the adjacent swales during the ridge growth period. Multi-annual to multi-decadal variability in precipitation leads to the development of sequences composed of tens of ridges, spanning time periods of several centuries. Spacing of individual ridges in these sequences is controlled not by long-term variability in precipitation alone, but probably also reflects variable wind intensity which affects the migration rate of the parental dune. The important role of vegetation in ridge construction makes these landforms a demonstrative example of landscape development by geo-biosphere interacting processes.  相似文献   

19.
The Mars Global Digital Dune Database (MGD3) now extends from 90°N to 65°S. The recently released north polar portion (MC‐1) of MGD3 adds ~844 000 km2 of moderate‐ to large‐size dark dunes to the previously released equatorial portion (MC‐2 to MC‐29) of the database. The database, available in GIS‐ and tabular‐format in USGS Open‐File Reports, makes it possible to examine global dune distribution patterns and to compare dunes with other global data sets (e.g. atmospheric models). MGD3 can also be used by researchers to identify areas suitable for more focused studies. The utility of MGD3 is demonstrated through three example applications. First, the uneven geographic distribution of the dunes is discussed and described. Second, dune‐derived wind direction and its role as ground truth for atmospheric models is reviewed. Comparisons between dune‐derived winds and global and mesoscale atmospheric models suggest that local topography may have an important influence on dune‐forming winds. Third, the methods used here to estimate north polar dune volume are presented and these methods and estimates (1130 km3 to 3250 km3) are compared with those of previous researchers (1158 km3 to 15 000 km3). In the near future, MGD3 will be extended to include the south polar region. Published in 2011. This article is a US Government work and is in the public domain in the USA.  相似文献   

20.
For development of embryo dunes on the highly dynamic land–sea boundary, summer growth and the absence of winter erosion are essential. Other than that, however, we know little about the specific conditions that favour embryo dune development. This study explores the boundary conditions for early dune development to enable better predictions of natural dune expansion. Using a 30 year time series of aerial photographs of 33 sites along the Dutch coast, we assessed the influence of beach morphology (beach width and tidal range), meteorological conditions (storm characteristics, wind speed, growing season precipitation, and temperature), and sand nourishment on early dune development. We examined the presence and area of embryo dunes in relation to beach width and tidal range, and compared changes in embryo dune area to meteorological conditions and whether sand nourishment had been applied. We found that the presence and area of embryo dunes increased with increasing beach width. Over time, embryo dune area was negatively correlated with storm intensity and frequency. Embryo dune area was positively correlated with precipitation in the growing season and sand nourishment. Embryo dune area increased in periods of low storm frequency and in wet summers, and decreased in periods of high storm frequency or intensity. We conclude that beach morphology is highly influential in determining the potential for new dune development, and wide beaches enable development of larger embryo dune fields. Sand nourishment stimulates dune development by increasing beach width. Finally, weather conditions and non‐interrupted sequences of years without high‐intensity storms determine whether progressive dune development will take place. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号