首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
The rockmagnetic and palaeomagnetic signal in pyrrhotite bearing limestones of different contact-metamorphic settings were investigated related to intrusions ranging from small sills to large magmatic complexes. Magnetic susceptibility, the pyrrhotite/magnetite ratio and thermal modelling serve as an investigative tool to define three metamorphic zonations: a contact zone of a mixed magnetic assemblage and low susceptibilities, a pyrrhotite bearing transitional zone, where full thermoremanent magnetisations (TRMs) are acquired due to temperatures above the Curie temperature of pyrrhotite (Tc,po), and a marginal zone containing pyrrhotite and magnetite generated at temperatures below Tc,po. The fact that TRMs can consist of independent pTRMs is successfully tested by modified Thellier experiments. It is shown that a metamorphic environment with low fluid circulation provides a scenario for the recording of independent pTRMs. Multicomponent behaviour of the NRM residing in samples from the transitional zone can therefore be interpreted as a continuous record of Earth magnetic field variations.  相似文献   

2.
A detailed rock magnetic investigation of loess/palaeosol samples from the section at Lingtai on the central Chinese Loess Plateau (CLP) is presented. Thermal demagnetisation of isothermal remanent magnetisation (IRM) and Curie temperature measurements suggest the presence of magnetite, maghemite and hematite as remanence carrying components. Bulk and grain size fractionated samples have been analysed using coercivity spectra of remanence acquisition/demagnetisation curves, which identify four main remanence carriers in different grain size fractions of loesses and palaeosols. A linear source mixing model quantifies the contribution of the four components which have been experimentally derived as dominating endmembers in specific grain size fractions. Up to two thirds of the total IRM of the palaeosols are due to slightly oxidised pedogenic magnetite. Two detrital components dominate up to 90% of the IRM of the loess samples and are ascribed to maghemite of different oxidation degree. Detrital hematite is present in all samples and contributes up to 10% of the IRM. The iron content of the grain size fractions gives evidence that iron in pedogenically grown remanence carriers does not originate from the detrital iron oxides, but rather from iron-bearing clays and mafic silicates. The contribution of pedogenic magnetite to the bulk IRM increases with the increasing degree of pedogenesis, which depends in turn on climate change.  相似文献   

3.
福建三明地区被污染土壤的磁学性质及其环境意义   总被引:44,自引:8,他引:36       下载免费PDF全文
对福建三明某钢铁厂和火电厂附近的污染表土样品进行了多参数的岩石磁学测试分析,包括χ T曲线、磁滞回线、等温剩磁获得曲线等. 三明地区污染表土中的磁性矿物有磁铁矿、赤铁矿和磁黄铁矿. 样品中磁性矿物的平均粒度较粗,为较大的准单畴,甚至多畴,粒度明显大于成土作用所产生的磁性颗粒. 粗粒的磁铁矿颗粒是污染物的主要磁性组分. 虽然磁化率测量可以作为一种简单、快速而且廉价的检测污染土壤的方法,但同时辅以必要的岩石磁学测量将有利于提取更多的污染信息. 对于低磁化率的污染土壤,亚铁磁性硫化物的存在可以作为土壤可能被污染的证据之一.  相似文献   

4.
Rock magnetic measurements of Nihewan sediments from Xujiayao section demonstrate that magnetite, hematite and maghemite are dominant remanent magnetization carriers. Monitoring the variations of magnetic susceptibility (MS) and saturating isothermal remanent magnetization (SIRM) at low temperature are the attractive ways of detecting the presence of magnetite, maghemitization and superparamagnetic grain sizes. Low-temperature MS investigations suggest that susceptibility enhancement for Xujiayao samples is mainly due to the remarkable presence of SD/MD magnetite to some degree though some magnetite grains have been partially oxidized at some depths. It is tentatively concluded that both SD/MD magnetite and hematite are of detrital origin and carry a characteristic remanent magnetization (ChRM), whereas maghemite can be attributed to be chemical origin, overprinting a reversed polarity component of Matuyama age.  相似文献   

5.
断层带内的流体不仅可以通过水岩反应改变断裂岩的矿物组成和化学成分,从而导致化学性质和物理性质的变化,而且可以影响或控制断裂带的变形行为.断裂带中岩石磁学特征是由特定化学环境下磁性矿物的种类和含量所决定的,因此,从矿物学和地球化学角度探讨断裂岩的磁性变化,对揭示断层的变形行为和环境具有一定的指示作用.本文以汶川科钻WFSD-3P钻孔中龙门山灌县—安县断裂带断裂岩为研究对象,运用高分辨率磁化率测试、XRD矿物成分半定量分析、XRF元素扫描以及不同价态Fe元素含量分析等多种方法开展断层磁学变化和变形环境的研究.磁化率测试结果表明灌县—安县断裂带断层泥的磁化率值普遍低于对应的围岩磁化率平均值.结合前人研究成果表明造成该断层泥低磁化率异常的原因是在间震期的长期流体作用下,铁磁性矿物(例如磁铁矿)转变成顺磁性矿物(铁硫化物、菱铁矿或含铁的黏土矿物).新生铁硫化物和含铁黏土矿物是在间震期缓慢形成的,而黏土矿物含量的增加弱化了断层强度,促进断层蠕滑,这说明断层泥低磁化率异常可能指示了该断裂在间震期长期缓慢活动,即为蠕滑变形.断层泥中黄铁矿的发育和高Fe2+和S元素、低Fe3+的特征显示灌县—安县断裂作用环境通常是在低温、还原环境中进行的.这些结果与低磁化率值的相关性暗示断层泥低磁化率异常可能对活动断层的低温还原环境具有指示意义.  相似文献   

6.
Rock magnetic investigations of Permo-Carboniferous carbonate sediments from two areas on Spitsbergen are described, conducted to identify the carriers of the NRM in these rocks. Since microscopic and magnetic separation techniques could not profitably be applied, the nature of magnetic minerals was investigated by thermal demagnetization of the NRM and decay of saturation isothermal remanence (Irs) during heating to 600°C, as well as by the distribution of the median destructive fields of the NRM and observation of magnetic susceptibility after subsequent heatings. The results show that the NRM of these limestones resides mainly in magnetite, but creation of magnetic pyrrhotite and of fresh magnetite is observed during heating to 600°C. Presence of sulphides indicates that magnetite is an oxidation product of pyrite or of non-magnetic pyrrhotite. Examination of rock magnetic properties of limestones leads to the conclusion that most of the magnetite in the rocks of the Bellsund area is of detrital origin, whereas the rocks at Festningen contain magnetite derived from pyrite probably during an early stage of the diagenetic process.  相似文献   

7.
Paleomagnetic, rock magnetic, and sedimentary micro-textural data from an early Miocene mudstone sequence exposed in Okhta River, Sakhalin, Russia, indicate the presence of pyrrhotite and magnetite at different stratigraphic levels. Sites that contain only magnetite have a reversed polarity characteristic remanent magnetization (ChRM) with a low-coercivity overprint, which coincides with the present-day geomagnetic field direction. Pyrrhotite-bearing sites have stable normal polarity ChRMs that are significantly different from the present-day field direction. After correction for bedding tilt, the ChRM data fail a reversals test. However, the normal polarity pyrrhotite ChRM directions become antipodal to the tilt-corrected magnetite ChRM directions and are consistent with the expected geocentric axial dipole field direction at the site latitude after 40% partial unfolding. These data suggest that the pyrrhotite magnetization was acquired during folding and after lock-in of the magnetite remanences. Electron microscope observations of polished sections indicate that fluid-associated halos surround iron sulphide nodules. Pyrrhotite is present in randomly oriented laths in and around the nodules, and the nodules do not appear to have been deformed by sediment compaction. This observation is consistent with a late diagenetic origin of pyrrhotite. Documentation of a late diagenetic magnetization in pyrrhotite-bearing sediments here, and in recent studies of greigite-bearing sediments, suggests that care should be taken to preclude a late origin of magnetic iron sulphides before using such sediments for geomagnetic studies where it is usually crucial to establish a syn-depositional magnetization.  相似文献   

8.
对采自河南嵩县祁雨沟7号角砾岩筒的黄铁矿样品进行了详细的磁化率随温度变化特征研究,加热的最高温度为700℃,结果表明黄铁矿受热分解最终生成磁黄铁矿.黄铁矿通过两个可能的途径转变为磁黄铁矿:一个是黄铁矿颗粒首先经表面吸附氧的氧化转变为磁铁矿,随温度升高新生成的磁铁矿与黄铁矿晶格中挥发出的硫进一步反应转变为磁黄铁矿;另一可能途径是黄铁矿直接脱硫转变为磁黄铁矿,此反应为磁黄铁矿的主要来源.氩气环境下加热过程中,从约380℃开始即有磁铁矿生成,但直到约535℃才有磁黄铁矿的生成.在535℃~560℃的加热过程中生成的磁黄铁矿居里温度不稳定,直到加热至高于约560℃时才生成居里温度稳定的磁黄铁矿.氩气环境下,黄铁矿受热生成的磁性矿物的类型仅受最高温度的控制,与高温段的滞留时间无明显关系,而其生成量同时受最高温度和高温段滞留时间的控制.  相似文献   

9.
We carried out thermomagnetic susceptibility analyses of fault rocks from core samples from Hole B of the Taiwan Chelungpu Fault Drilling Project (TCDP) to investigate the cause of high magnetic susceptibilities in the fault core. Test samples were thermally and mechanically treated by heating to different maximum temperatures of up to 900 °C and by high-velocity frictional tests before magnetic analyses. Thermomagnetic susceptibility analyses of natural fault rocks revealed that magnetization increased at maximum heating temperatures above 400 °C in the heating cycle, and showed three step increases, at 600 to 550 °C and at 300 °C during the cooling cycle. These behaviors are consistent with the presence of pyrite, siderite and chlorite, suggesting that TCDP gouge originally included these minerals, which contributed to the generation the magnetic susceptibility by thermomechanical reactions. The change in magnetic susceptibility due to heating of siderite was 20 times that obtained by heating pyrite and chlorite, so that only a small fraction of siderite decomposition is enough to cause the slight increase of the susceptibility observed in the fault core. Color measurement results indicate that thermal decomposition by frictional heating took place under low-oxygen conditions at depth, which prevented the minerals from oxidizing to reddish hematite. This finding supports the inference that a mechanically driven chemical reaction partly accounts for the high magnetic susceptibility. A kinetic model analysis confirmed that frictional heating can cause thermal decomposition of siderite and pyrite. Our results show that decomposition of pyrite to pyrrhotite, siderite and, to some extent, chlorite to magnetite is the probable mechanism explaining the magnetic anomaly within the Chelungpu fault zone.  相似文献   

10.
渤海南部莱州湾Lz908孔沉积物的岩石磁学性质   总被引:2,自引:2,他引:0       下载免费PDF全文
亚洲大陆边缘海和陆表海在区域的物质和能量交换以及区域气候与环境演化过程中扮演了关键角色.磁性地层学和环境磁学方法是建立年代框架和环境演变序列的有效手段,但是,由于该地区边缘海和陆表海沉积物中磁性矿物来源十分复杂,磁性地层学和环境磁学研究的重要基础是要精细地解译沉积物的岩石磁学性质.为此,本文利用渤海南部莱州湾Lz908孔与钻孔附近的现代沉积物样品进行了详细的岩石磁学对比研究.结果显示,渤海南部沉积物中的磁性矿物主要是较粗颗粒(较大的准单畴至多畴)磁铁矿,还有少量磁赤铁矿,部分沉积物还含有赤铁矿和针铁矿,其中磁铁矿是特征剩磁的主要载体;莱州湾现代河流-海洋沉积物和钻孔样品之间的磁性特征无显著差异,说明莱州湾沉积物堆积之后尚未经历明显的沉积后期改造.  相似文献   

11.
Thermal effects related to burial and hydrothermal alteration leads to chemical remanent magnetization (CRM). We present an experimental study of CRM production by heating claystones at 95 °C. A vertical magnetic field of 2 mT was applied to the claystones during heating and the evolution of the remanence during heating in air is monitored intermittently for up to four months. Solid fragments (9 to 26 g) of claystones are included in a Teflon holder that is placed in the oven under a controlled atmosphere. Newly formed grains acquire a CRM and a thermoviscous magnetization (TVRM), both being parallel to the applied magnetic field. CRM is related to the amount of newly formed grains that pass the critical volume during the reaction. To measure the acquired remanence, the claystones are first cooled in a zero magnetic field and then measured using a 2G SQUID magnetometer.In the frame of the research programme on the feasibility of radioactive waste disposal in a deep geological formation, we investigate the magnetic transformation of Mont Terri Lower Dogger claystones (Switzerland) due to thermal imprinting at 95 °C. We simulate the dehydration that occurs in the walls of galleries after excavation when interstitial water evaporates and rehydration when the galleries are refilled allowing water to move towards dehydrated zones. During dehydration, the remanence gains one order of magnitude at the beginning of the experiment and then it follows a linear rate of 0.23 ± 0.07 mA m− 1/day between 3 and 14 days. The magnetic susceptibility increases by a few percent. The increase of the remanence and of the magnetic susceptibility stops after 15 days. Mass monitoring indicates that interstitial water evaporates when remanence and magnetic susceptibility stabilizes. During rehydration, the remanence increases again whilst magnetic susceptibility drops by a few percent. After 20 days, the remanence during rehydration follows a rate of 0.42 ± 0.15 mA m− 1/day. By contrast, when rehydration takes place later, after 66 days, the rate is much lower (0.09 ± 0.04 mA m− 1/day). Low temperature investigation of magnetic properties indicates an initial magnetic assemblage of magnetite and pyrrhotite. Newly formed magnetite and hematite carry the remanence. We propose that magnetite is formed at the expense of pyrite. Hematite results from the progressive oxidation of newly formed magnetite. Our results suggest the possibility that any claystones that pass the oil window can be remagnetized due to the unique action of temperature.  相似文献   

12.
Magnetic susceptibility (MS) of natural specimens of hematite and goethite is studied under continuous heating with various additives: with carbon (sugar), nitrogen (carbamide), and elemental sulfur. It is found that heating of hematite with carbon above 450°C results in the formation of single-domain magnetite, while the magnetic susceptibility rises by a factor of 165. The increase in magnetic susceptibility on heating of hematite with nitrogen above 540°C reflects the generation of a single-domain maghemite with the Curie point of about 650°C, which is stable to heating. After the first heating, the magnetic susceptibility increases by 415 times. The subsequent cycle of thermal treatment results in the transition of maghemite to hematite, a decrease of MS, and an increase of coercivity. Heating with sulfur produces a stable single-domain magnetite at a temperature above the Curie point, which is manifested in the cooling curves. Here, the MS increases by a factor of 400. The heating curves for goethite exhibit a sharp drop in susceptibility to a temperature of 350–360°C, which reflects the transition of hematite to goethite. Heating of hematite with carbon produces stable maghemite at above 530°C, and with sulphur and nitrogen, it produces magnetite. When heated with pyrite, hematite reduces to magnetite under the action of sulfur released from pyrite.  相似文献   

13.
风成黄土是陆地上分布最广泛的沉积物之一,记载了各种古气候演化信息.目前巴基斯坦的黄土研究甚少,磁化率与气候对应的变化机制研究尚未开展.本文对位于巴基斯坦印度河平原Bahawalpur地区新发现的黄土-古土壤剖面进行系统的岩石磁学研究,结合粒度和漫反射光谱(DRS)数据,讨论巴基斯坦黄土的磁化率变化机制.实验结果显示:Bahawalpur(BH)剖面黄土层主要的载磁矿物为磁铁矿,同时含有少量磁赤铁矿和针铁矿,磁性颗粒以原生的MD和PSD颗粒为主.相对于黄土层,古土壤层则是以针铁矿为主,含有顺磁性矿物和少量磁铁矿.BH剖面磁化率与成土作用关系和中国黄土高原典型剖面相反,磁化率的变化可能存在一个阈值12.8×10-8 m3·kg-1,在阈值之上,强磁性矿物(磁铁矿、磁赤铁矿)占主导;阈值之下,以弱磁性矿物(主要是针铁矿)为主,这种磁性矿物的转变可能导致磁化率降低.本文可为今后利用磁化率解读该地区地层蕴含的古气候信息提供新线索.  相似文献   

14.
Summary A metabasic dyke of pre-Cambrian age passing through Dhaiya village in Dhanbad, consists of metanorite, metadolerite and epidiorite. A magnetic study of this dyke has been undertaken. 14 magnetic traverses were taken with Schmidt vertical force variometer. Direction and intensity of N.R.M. have been determined for 15 oriented samples, with an astatic magnetometer. Magnetic susceptibility of 36 samples has been determined. Microscopic study (thin and polished sections) of samples has been done. The intensity of N.R.M. is upto 11.830×10–3 c.g.s. units susceptibility varies from 53×10–6 to 750×10–6 c.g.s. units and the Koenigsberger ratio from 3.3 to 236.6. The magnetic profiles are interpreted taking into account both remanence and susceptibility. In case of metanorite and metadolerite, more than 80% of the anomaly is caused by remanence. Negative anomalies in some cases is due to negative inclination of remanent magnetization. Very low anomalies (less than 50 gammas) over epidiorite are due to loss of magnetism (both remanent and induced) of these rocks due to felspathization. A new mechanism has been proposed to account for the scatter in magnetic directions for metamorphosed igneous rocks. The rotation, during metamorphism, of magnetic grains (magnetite, ilmenite etc.) enclosed in the lenticular rock-forming minerals causes deviation of the magnetic vector from its original position. Two more causes have been suggested here to explain the variation of intensity of N.R.M. of metabasic rocks: (i) Ilmenite exsolved from titaniferous augite partly contributes to the N.R.M. (ii) magnetite dust injected into felspars by solutions during metamorphism, causing cloudiness in felspars, partly contributes to the N.R.M. The wide scatter in remanent magnetic direction in these rocks is due to the effects of metamorphism. The magnetic directions fall under two groups: one with positive inclination and the other with negative inclination; both the groups being, in general, magnetized normally in the horizontal direction. This indicates normal magnetization in northern and southern hemispheres respectively. This probably means that the place was in the northern and southern hemispheres at the time of original emplacement of the dolerite magma and of metamorphism respectively, the metamorphism, not affecting all the rocks uniformly.  相似文献   

15.
The observation of a magnetic susceptibility ellipsoid whose maximum axis corresponds to the minimum axis of petrofabric (pole of bedding or schistosity) is referred to as an inverse magnetic fabric. The investigation of the magnetic properties of some ferroan carbonate monocrystals and paramagnetic limestones demonstrates thatc-axis preferred orientation of paramagnetic carbonates results in a maximum susceptibility parallel to the flattening direction.Inverse magnetic fabrics due to magnetite are also encountered in weakly deformed limestones. A mineralogical model based on the property of single-domain grains to have a zero susceptibility parallel to their long axis is proposed. However, more complex cases are also encountered.  相似文献   

16.
北京密云水库表层沉积物磁性矿物的鉴别   总被引:1,自引:0,他引:1       下载免费PDF全文
本文对密云水库表层沉积物中的磁性矿物进行了岩石磁学和透射电子显微学的综合研究.本实验建立的磁选方法实现将70%~85%左右的磁性矿物从沉积物中分离出来.岩石磁学研究表明,密云水库沉积物中的磁性矿物以多畴和单畴磁铁矿为主,还含有少量高矫顽力弱磁性载磁矿物(可能为赤铁矿).对磁选矿物的透射电镜观测表明,样品中部分单畴磁铁矿具有纳米尺寸和化学纯度高等特点,为拉长的立方-八面体磁铁矿,是趋磁细菌产生的化石磁小体;多畴磁铁矿多数具有微米尺寸,形状不规则,为碎屑成因;超顺磁磁铁矿粒径约为5~20nm,且含硅、铝等元素,可能为自生成因.研究结果表明,岩石磁学和透射电子显微学的综合应用可以更全面、准确地分析沉积物中磁性矿物的成分、含量、粒径和化学成分等信息,为环境磁学、生物地磁学和古地磁学研究提供依据.  相似文献   

17.
A characteristic magnetic transition at 30–34 K is shown to provide a powerful tool for the identification of pyrrhotite with concentration down to 10 ppm through the same low-temperature techniques as applied to magnetite and hematite, extended down to liquid helium temperature. A review of rock magnetic and petrological data on pyrrhotite suggests that this mineral should be considered as a major carrier of paleomatnetic signals. Unblocking temperature up to 350°C and extreme resistance against AF may be encountered in fine grained pyrrhotite.  相似文献   

18.
提供了扬子克拉通太古代基底崆岭群20件代表性岩石样品的密度与磁性参数的测量结果.结果表明,变碎屑岩与TTG(英云闪长-奥长花岗-花岗间长质)片麻岩(13个样品)的磁化率与饱和剩磁普遍大于斜长角闪岩和辉长岩.前者的磁化率与饱和剩磁平均值分别为1213×10-6SI与19.94A/m,而后者的则为802×10-6SI与10.77A/m.变碎屑岩与TTG片麻岩呈明显的亚铁磁性状态;斜长角闪岩和辉长岩则以顺磁性或顺磁性与亚铁磁性混合状态分布为主.热磁分析结果表明,变碎屑岩与TTG片麻岩的剩磁载体以磁铁矿与磁赤铁矿为主;斜长角门岩和辉长岩则明显含有磁黄铁矿与次要的磁铁矿.变碎屑岩与TTG片麻岩的磁性具有很强的非均一性.推断崆岭群中的变碎屑岩为麻粒岩相变质级,视深度相当于大陆下地壳;而斜长角闪岩的变质级明显低于变碎屑岩,可能为角门岩相,视深度相当于中地壳.变碎屑岩与TTG片麻岩磁性的强非均一性可能与该区后期广泛发生的混合岩化作用密切相关。  相似文献   

19.
Summary A statistical treatment is presented of the observed values of natural remanent magnetization and of magnetic susceptibility of natural minerals: magnetite, chromite, ilmenite pyrrhotite, haematite, cassiterite and garnets. It was found that for most minerals the distribution of the natural remanent magnetization as well as the magnetic susceptibility is logarithmically normal at a significance level of p=0.05. The typical values of Jn and x, the limits of the intervals of reliability of these typical values for p=0.05, and the standard deviations of the distribution were determined for the individual minerals. The end values of the sets were tested by two independent tests of extreme deviations at a level of significance of p=0.05. Following statistical deliberations it was proved that the lognormal distribution of the Jn and x values depended on the number of factors affecting these values, independently of the type of distribution of these so-called disturbing factors. By generalizing for rocks it was shown that the lognormal and normal types of distribution of Jn and x values are extreme cases as regards the observable types with rocks.  相似文献   

20.
利用一件采自河北汉诺坝周坝地区变泥质岩包体样品,结合系统的低温和高温磁性测量结果,探讨了应用热磁实验鉴别样品中所含原生磁性矿物的多解性问题. 结果表明, 饱和等温剩余磁化强度(SIRM)在室温~250℃以及280℃~380℃的降低分别由高钛钛磁铁矿的剩磁解阻过程(一种物理过程)以及由磁赤铁矿转换成赤铁矿(一种矿物相变)引起.样品在500℃以后磁化率的升高则是由磁铁矿从钛磁赤铁矿中出溶所致.因此,κ T(即磁化率随温度变化)曲线中呈现约580℃居里点是由加热过程中次生的磁铁矿引起,而并非代表原始(即加热前)样品中的磁铁矿成分.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号