首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
This paper presents new results of centrifuge model tests exploring the behavior of rocking shallow foundations embedded in dry sand, which provides a variety of factors of safety for vertical bearing. The results of slow (quasi‐static) cyclic tests of rocking shear walls and dynamic shaking tests of single‐column rocking bridge models are presented. The moment–rotation and settlement–rotation relationships of rocking footings are investigated. Concrete pads were placed in the ground soil to support some models with the objective of reducing the settlement induced by rocking. The behavior of rocking foundation was shown to be sensitive to the geometric factor of safety with respect to bearing failure, Lf/Lc, where Lf was the footing length, and the Lc was the critical soil‐footing contact length that would be required to support pure axial loading. Settlements were shown to be small if Lf/Lc was reasonably large. Placement of concrete pads under the edges of the footing was shown to be a promising approach to reduce settlements resulting from rocking, if settlements were deemed to be excessive and also had impacts on the energy dissipation and rocking moment capacity. A general discussion of the tradeoffs between energy dissipation and re‐centering of rocking foundations and other devices is included. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

2.
浅平基桥墩在承受强震作用时,其基础与地基之间会发生提离,地基土会进入塑性状态.精确模拟上述两个问题是非常困难的.本文分析中地基采用了能考虑基础提离及地基塑性的弹塑性Winkler地基模型,采用1940年El Centro(NS)地震记录作为输入,对三个不同高度的双柱式浅平基桥墩进行了非线性时程分析.研究结果表明,基础提离和地基塑性对双柱式桥墩的地震反应有很大影响.考虑地基非线性后,墩顶位移增大,剪力减小,对保护桥墩减小震害是有利的.  相似文献   

3.
为了研究全风化-强风化地区岩石嵌固基础抗拔性能及土体破坏模式,基于安徽省太湖县岩石嵌固基础抗拔性能现场试验,结合数值模拟对不同埋深、不同型式的岩石嵌固基础的抗拔性能进行分析。发现在基础埋深较浅时,坛子型和掏挖型基础抗拔性能及土体破坏模式大体相近;当基础埋深较深时,掏挖型基础抗拔性能明显优于坛子型。同时,对两种基础型式的经济效益进行比较分析,研究结果表明:掏挖型嵌固基础抗拔性能更优,同时具有更好的经济性和环保性,推荐在风化性较强的岩石地基输电线路工程中推广应用。  相似文献   

4.
RC buildings retrofitted by converting frame bays into RC walls   总被引:1,自引:1,他引:0  
Adding concrete walls by infilling certain frame bays with reinforced concrete is popular for seismic retrofitting, but is covered by codes only if the connection of the old concrete to the new ensures monolithic behavior. To avoid penalizing the foundation of the new wall with a very high moment resistance, the new concrete should not be thicker than, or surround, the old frame members. A cost-effective connection of these members to a thin new web is proposed, alongside a design procedure and detailing that conform to current codes. Owing to practical difficulties, footings of added walls are often small and weakly connected to the other footings, hence they uplift and rock during the earthquake. The model for uplift of 3D footings consists of two pairs of nonlinear-elastic springs in a cross layout and approximates also moderate nonlinearities in the soil continuum. It is used in nonlinear, static or dynamic, analyses of three buildings with added walls. The analyses of a clean, regular 4-story building show the benefit from uplift to the added walls and a certain adverse effect on some columns but not on beams, as well as the lack of a clear positive effect of tie-beams. The application to a 7-story and a 2-story real building with extreme, yet typical, irregularities in plan and elevation exemplifies the real-life restrictions in the use of added walls and shows their limits for the improvement of seismic performance; certain deficiencies in flexure or shear remain in both and are corrected at very low cost with local fiber reinforced polymer (FRP) jackets without new analysis of the building, as FRPs do not change the member effective stiffness or moment resistance.  相似文献   

5.
This paper explores the effectiveness of a new approach to foundation seismic design. Instead of the present practice of over‐design, the foundations are intentionally under‐dimensioned so as to uplift and mobilize the strength of the supporting (stiff) soil, in the hope that they will thus act as a rocking–isolation mechanism, limiting the inertia transmitted to the superstructure, and guiding plastic ‘hinging’ into soil and the foundation–soil interface. An idealized simple but realistic one‐bay two‐story reinforced concrete moment resisting frame serves as an example to compare the two alternatives. The problem is analyzed employing the finite element method, taking account of material (soil and superstructure) and geometric (uplifting and P–Δ effects) nonlinearities. The response is first investigated through static pushover analysis. It is shown that the axial forces N acting on the footings and the moment to shear (M/Q) ratio fluctuate substantially during shaking, leading to significant changes in footing moment‐rotation response. The seismic performance is explored through dynamic time history analyses, using a wide range of unscaled seismic records as excitation. It is shown that although the performance of both alternatives is acceptable for moderate seismic shaking, for very strong seismic shaking exceeding the design, the performance of the rocking‐isolated system is advantageous: it survives with no damage to the columns, sustaining non‐negligible but repairable damage to its beams and non‐structural elements (infill walls, etc.). Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

6.
The equations of motion of building systems with soil-structure interaction are formulated for foundations comprising a joint mat or a set of individual spread footings. The influence of soil-structure interaction and the possible effects of building and foundation rocking are examined by investigating the modal properties. Simplifications in the analysis are also suggested.  相似文献   

7.
A simplified discrete system in the form of a simple oscillator is developed to simulate the dynamic behavior of a structure founded through footings or piles on compliant ground, under harmonic excitation. Exact analytical expressions for the fundamental natural period and the corresponding damping coefficients of the above system are derived, as function of geometry and the frequency-dependent foundation impedances. In an effort to quantify the coupling between swaying and rocking oscillations in embedded foundations such as piles, the reference system is translated from the footing–soil interface to the depth where the resultant soil reaction is applied, to ensure a diagonal impedance matrix. The resulting eccentricity is a measure of the coupling effect between the two oscillation modes. The amounts of radiation damping generated from a single pile and a surface footing are evaluated. In order to compare the damping of a structure on a surface footing and a pile, the notion of static and geometric equivalence is introduced. It is shown that a pile may generate significantly higher radiation damping than an equivalent footing, thus acting as an elementary protective system against seismic action.  相似文献   

8.
The earthquake responses of structures are usually analyzed under the assumption that the foundation is firmly bonded to the soil (fixed at their base). Such analyses often predict a base overturning moment that exceeds the available overturning resistance due to gravity loads, which implies that a portion of the foundation mat or some of the individual column footings, as the case may be, would intermittently uplift during the earthquake. In addition, p-delta phenomena are another valuable parameter that influence the response of structure with foundation uplift. Therefore it is a vital subject to investigate the influence of uplift on earthquake response of structures with including the p-delta effects. In the current paper, the investigation has been performed using finite element method with considering nonlinear material behavior. The computer program used already incorporates foundation uplift in a more realistic approach than structural models available in literature. The response of structures was compared in four cases: 1—with foundation uplift, 2—without foundation uplift, 3—with including the p-delta effects and 4—without including the p-delta effects. Some additional parametric studies have been conducted such as slender of structure, elastic modulus of soil and bi-directional input ground motion. These studies show the importance of uplift foundation on the seismic behavior of structures and the beneficial effects of foundation uplift in computing the earthquake response of structures are demonstrated. In addition, p-delta effects are the main reason to resonate the differences between the four cases.  相似文献   

9.
This paper presents a new practical modeling approach, based on the beam-on-a-nonlinear Winkler foundation (BNWF) model, to simulate the 3D rocking, vertical and horizontal responses of shallow foundations using structural elements that are readily available in the element library of commercially available structural analysis programs. An assemblage of a moment-rotation hinge, shear hinge connected in series with an elastic frame member attached to the bottom end of ground story columns was proposed to model the response of the footing under combined action of vertical, horizontal and moment loading. To couple the responses of these hinges, two bounding surfaces equations were introduced and derived mathematically: a surface that defines the interaction between the rocking and vertical capacities of the footing along its width and length; and a surface that defines the interaction between the horizontal capacities of the footing along its width and length. Simple calculation steps to evaluate the geometric and mechanical properties of the proposed assemblage of structural elements are provided. The proposed modeling approach was verified using experimental results from large scale model foundations subjected to cyclic loading. Based on this study, it was found that the proposed assemblage can be reliably used in modeling the rocking and horizontal responses of shallow foundations under cyclic loading.  相似文献   

10.
The paper provides state-of-the-art information on the following aspects of seismic analysis and design of spread footings supporting bridge piers: (1) obtaining the dynamic stiffness (“springs” and “dashpots”) of the foundation; (2) computing the kinematic response; (3) determining the conditions under which foundation–soil compliance must be incorporated in dynamic structural analysis; (4) assessing the importance of properly modeling the effect of embedment; (5) elucidating the conditions under which the effect of radiation damping is significant; (6) comparing the relative importance between kinematic and inertial response. The paper compiles an extensive set of graphs and tables for stiffness and damping in all modes of vibration (swaying, rocking, torsion), for a variety of soil conditions and foundation geometries. Simplified expressions for computing kinematic response (both in translation and rotation) are provided. Special issues such as presence of rock at shallow depths, the contribution of foundation sidewalls, soil inhomogeneity and inelasticity, are also discussed. The paper concludes with parametric studies on the seismic response of bridge bents on embedded footings in layered soil. Results are presented (in frequency and time domains) for accelerations and displacements of bridge and footing, while potential errors from some frequently employed simplifications are illustrated.  相似文献   

11.
刘鹏 《地震工程学报》2015,37(1):120-125
沿着摇摆桥墩的概念提出一种限制位移桥墩连续刚构桥体系。该体系通过对连续刚构桥墩底和承台之间采取一定措施,使桥梁在地震发生时能够在限制的位移量内活动,减小输入到桥梁结构中的能量,达到减震的目的。通过对一座铁路连续刚构桥的分析,发现这种限制位移桥墩连续刚构桥体系能大幅减小桥墩的延性和强度地震需求,减震效果明显,在选择合适的限制位移量的情况下,可保证桥墩在高烈度罕遇地震作用下几乎保持弹性工作状态,震后经简单处理即可保证使用功能,为震后救援工作带来极大便利,也大大减少了修复成本。  相似文献   

12.
Allowing structures to uplift modifies their seismic response; uplifting works as a mechanical fuse and limits the forces transmitted to the superstructure. However, engineers are generally reluctant to construct an unanchored structure because the system could overturn due to lacking redundancy. Using a safety factor for the design of a flat rocking foundation, ie, designing it wider, goes against the main idea of this seismic modification method as the force demand for the structure increases. We propose to extend the flat base of a rocking block with curved extensions to better protect the block from overturning, yet not prevent its uplifting. After investigating the seismic response of such rocking blocks, we extend the study to investigate the seismic response of rolling and rocking frames comprising columns with curved base extensions. The equations of motion are derived, time history analyses are performed, and rocking spectra are constructed. We draw two important conclusions: (a) the response of a class of rocking oscillators with curved base extensions is equivalent to the response of a flat-base rocking oscillators of the same slenderness, yet larger size; (b) the rotation demand on two negative stiffness rocking and rolling oscillators with the same uplifting acceleration and the same size is roughly the same as long as the rocking oscillators are not close to overturning. The above findings can serve as a basis for the rational seismic design of structures supported on rocking columns with curved bases, a system that has been used since the 1960s.  相似文献   

13.
浅平基桥墩在承受强震作用时其基础与地基之间会发生提离,地基土会进入塑性状态。同时,当结构遭遇设防烈度地震或罕遇地震时,结构往往处于非线性状态,这都会导致桥梁的严重破坏。本文以兰州小西湖黄河大桥为工程背景,采用场地超越概率为10%人工地震波,研究了在弹塑性Winkler地基上同时考虑桥墩塑性时的结构地震反应。通过非线性时程反应分析得到:考虑地基和桥墩的非线性使得桥墩墩顶的位移增大,墩底弯矩减小,这对保护桥墩是有利的;同时得到,小西湖黄河大桥当遭遇罕遇地震(大震)时桥墩已进入屈服,但其屈服曲率不到破坏曲率的1/2,该桥能够满足“小震不坏、中震可修、大震不倒”的设计目标。  相似文献   

14.
Fluctuations in axial load imposed on a rocking footing will affect its moment capacity, the shape of its moment–rotation hysteresis, and potentially the system's seismic performance. Structural asymmetry increases the likelihood of axial load variation during earthquake excitations. To investigate this issue, a unique centrifuge testing program was carried out on low‐rise frame–wall–rocking foundation systems. In this paper, the seismic behaviors of asymmetric and symmetric models from this test program are systematically compared. Experimental results reveal that placing the lateral force resisting shear wall outboard produces significant axial load fluctuation, which in turn greatly deteriorate the lateral load‐carrying capacity of a foundation rocking dominated frame–wall system, particularly in its weak direction. However, it strengthens the system when loading is towards the shear wall, leading to a highly asymmetric hysteretic response. During earthquake loading, all asymmetric rocking foundation systems observe smaller peak roof accelerations, but larger peak and permanent roof drifts compared with the symmetric systems. Despite these differences in response, the axial load fluctuation and structural asymmetry do not significantly change the relative energy dissipated by the rocking foundations and inelastic structural components within each frame–wall–rocking foundation model. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

15.
Shallow foundations supporting building structures might be loaded well into their nonlinear range during intense earthquake loading. The nonlinearity of the soil may act as an energy dissipation mechanism, potentially reducing shaking demands exerted on the building. This nonlinearity, however, may result in permanent deformations that also cause damage to the building. Five series of tests on a large centrifuge, including 40 models of shear wall footings, were performed to study the nonlinear load-deformation characteristics during cyclic and earthquake loading. Footing dimensions, depth of embedment, wall weight, initial static vertical factor of safety, soil density, and soil type (dry sand and saturated clay) were systematically varied. The moment capacity was not observed to degrade with cycling, but due to the deformed shape of the footing–soil interface and uplift associated with large rotations, stiffness degradation was observed. Permanent deformations beneath the footing continue to accumulate with the number of cycles of loading, though the rate of accumulation of settlement decreases as the footing embeds itself.  相似文献   

16.
17.
Previous studies have suggested that rocking vibration accompanied by uplift motion might reduce the seismic damage to buildings subjected to severe earthquake motions. This paper reports on the use of shaking table tests and numerical analyses to evaluate and compare the seismic response of base‐plate‐yielding rocking systems with columns allowed to uplift with that of fixed‐base systems. The study is performed using half‐scale three‐storey, 1 × 2 bay braced steel frames with a total height of 5.3 m. Base plates that yield due to column tension were installed at the base of each column. Two types of base plates with different thicknesses are investigated. The earthquake ground motion used for the tests and analyses is the record of the 1940 El Centro NS component with the time scale shortened by a factor of 1/√2. The maximum input acceleration is scaled to examine the structural response at various earthquake intensities. The column base shears in the rocking frames with column uplift are reduced by up to 52% as compared to the fixed‐base frames. Conversely, the maximum roof displacements of the fixed and rocking frames are about the same. It is also noted that the effect of the vertical impact on the column associated with touchdown of the base plate is small because the difference in tensile and compressive forces is primarily due to the self‐limiting tensile force in the column caused by yielding of the base plate. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

18.
通过模型振动台试验研究了基于位移设计的钢筋混凝土桥墩的抗震性能。以完成的拟静力试验中的桥墩试件为参考原型,利用基于位移抗震设计方法和现行桥梁抗震规范方法设计了4根1:2的钢筋混凝土桥墩试件并进行了模型振动台试验。对小震、中震和大震作用下桥墩试件的破坏形态、加速度和位移反应、位移延性系数和地震总输入能(耗能)等方面进行了比较分析。综合拟静力试验和振动台试验结果,可以认为基于位移设计的钢筋混凝土桥墩能够达到预期的延性抗震要求。  相似文献   

19.
This paper aims at clarifying the role of dynamic soil–structure interaction in the seismic assessment of structure and foundation, when the non‐linear coupling of both subsystems is accounted for. For this purpose, the seismic assessment of an ideal set of bridge piers on shallow foundations is considered. After an initial standard assessment, based on capacity design principles, the evaluation of the seismic response of the piers is carried out by dynamic simulations, where both the non‐linear responses of the superstructure and of the foundation are accounted for, in the latter case through the macro‐element modeling of the soil–foundation system. The results of the dynamic simulations point out the beneficial effects of the non‐linear response of the foundation, which provides a substantial contribution to the overall energy dissipation during seismic excitation, thus allowing the structural ductility demand to decrease significantly with respect to a standard fixed‐base or linear‐elastic base assessment. Permanent deformations at the foundation level, such as rotation and settlement, turn out to be of limited amount. Therefore, an advanced assessment approach of the integrated non‐linear system, consisting of the interacting foundation and superstructure, is expected to provide more rationale and economic results than the standard uncoupled approach, which, neglecting any energy dissipation at the foundation level, generally overestimates the ductility demand on the superstructure. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

20.
Seismic damage of highway bridges during the 2008 Wenchuan earthquake   总被引:3,自引:2,他引:1  
Many highway bridges were severely damaged or completely collapsed during the 2008 Wenchuan earthquake.A field investigation was carried out in the strongly affected areas and over 320 bridges were examined. Damage to some representative highway bridges is briefly described and a preliminary analysis of the probable causes of the damage is presented in this paper. The most common damage included shear-flexural failure of the pier columns, expansion joint failure, shear key failure, and girder sliding in the transversal or longitudinal directions due to weak connections between girder and bearings. Lessons learned from this earthquake are described and recommendations related to the design of curved and skewed bridges, design of bearings and devices to prevent girder collapse, and ductility of bridge piers are presented.Suggestions for future seismic design and retrofitting techniques for bridges in moderate to severe earthquake areas are also proposed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号