首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
Offshore wind turbine (OWT) is a typical example of a slender engineering structure founded on large diameter rigid piles (monopiles). The natural vibration characteristics of these structures are of primary interest since the dominant loading conditions are dynamic. A rigorous analytical solution of the modified SSI eigenfrequency and damping is presented, which accounts for the cross coupling stiffness and damping terms of the soil–pile system and is applicable but not restrictive to OWTs. A parametric study was performed to illustrate the sensitivity of the eigenfrequency and damping on the foundation properties, the latter being expressed using the notion of dimensionless parameters (slenderness ratio and flexibility factor). The application of the approximate solution that disregards the off diagonal terms of the dynamic impedance matrix was found to overestimate the eigenfrequency and underestimate the damping. The modified SSI eigenfrequency and damping was mostly affected by the soil–pile properties, when the structural eigenfrequency was set between the first and second eigenfrequency of the soil layer. Caution is suggested when selecting one of the popular design approaches for OWTs, since the dynamic SSI effects may drive even a conservative design to restrictive frequency ranges, nonetheless along with advantageous – from a designers perspective – increased damping.  相似文献   

2.
The influence of inclined piles on the dynamic response of deep foundations and superstructures is still not well understood and needs further research. For this reason, impedance functions of deep foundations with inclined piles, obtained numerically from a boundary element–finite element coupling model, are provided in this paper. More precisely, vertical, horizontal, rocking and horizontal–rocking crossed dynamic stiffness and damping functions of single inclined piles and 2 × 2 and 3 × 3 pile groups with battered elements are presented in a set of plots. The soil is assumed to be a homogeneous viscoelastic isotropic half‐space and the piles are modeled as elastic compressible Euler–Bernoulli beams. The results for different pile group configurations, pile–soil stiffness ratios and rake angles are presented. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

3.
Dynamic response of single piles to seismic waves is fundamentally different from the free‐field motion because of the interaction between the pile and the surrounding soil. Considering soil–pile interaction, this paper presents a new displacement model for the steady‐state kinematic response of single piles to vertically incident P‐waves on the basis of a continuum model. The governing equations and boundary conditions of the two undetermined functions in the model are obtained to be coupled by using Hamilton's principle. Then, the two unknown functions are decoupled and solved by an iterative algorithm numerically. A parametric study is performed to investigate the effects of the properties of the soil–pile system on the kinematic response of single piles. It is shown that the effects of the pile–soil modulus ratio, the slenderness ratio of the pile, and the frequency of the incident excitations are very significant. By contrast, the influence of soil damping on the kinematics of the system is slight and can be neglected. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

4.
Nonlinear lateral interaction in pile dynamics   总被引:4,自引:0,他引:4  
A model for pile lateral response to transient dynamic loading and to harmonic loading is presented allowing for nonlinear soil behaviour, discontinuity conditions at the pile-soil interface and energy dissipation through different types of damping. The approach is used to establish equivalent linear stiffness and damping parameters of single piles as well as dynamic interaction factors for approximate nonlinear analysis of pile groups. The applicability of these parameters to the pile-group analysis was examined, and a reasonable agreement with the direct analysis was found. The superposition technique may be used to analyze the response of small pile groups. Also, the dynamic stiffness of pile groups is greatly affected by both the nonlinear behavior of the soil and the slippage and gapping between the pile and soil. For a basic range of soil and pile parameters, equivalent linear stiffness and damping parameters of single piles and interaction factors for approximate nonlinear analysis are provided.  相似文献   

5.
双排桩计算方法探讨   总被引:4,自引:0,他引:4  
双排桩围护结构是一种新型的围护结构,这种结构具有较大的侧向刚度,可以有效地限制围护结构的变形,不必设置支撑,是深基坑支护结构的优选方案之一。但其实际受力机理比较复杂,前后排桩之间的土对结构的作用较难确定,针对这一问题,本文提出了一个新的计算模型,即将前、后排桩及桩间土视为一个整体;前排桩爱驻动土压力,基坑深度以下的后排桩受被动土压力,并进行了桩-接触面-土的非线性分析,提出了一些具有参考价值的结论。  相似文献   

6.
This paper presents the results of lateral impact load field tests carried out on a system of three steel pipe piles vibro-driven into soft clay in a near-shore marine environment, with the aim of evaluating the pile–soil–pile dynamic interaction. Piles are arranged in an “L” shaped horizontal layout and are instrumented with accelerometers at their free heads. The obtained results show the complex dynamic behaviour at very small strain of the vibrating soil–water–piles system. The role of different type of waves in the pile to pile interaction is investigated by analyzing the results in the time and frequency domains and by means of a time–frequency analysis. The effects of the pile spacing and input direction on these interaction mechanisms are also presented. Finally, important dynamic parameters of the soil, such as the velocities of the shear waves and surface waves (Scholte waves) of the upper soil are directly estimated from the time delays between signals recorded at the pile heads.  相似文献   

7.
This study investigated the seismic performance and soil‐structure interaction of a scoured bridge models with pile foundation by shaking table tests using a biaxial laminar shear box. The bridge pier model with pile foundation comprised a lumped mass representing the superstructure, a steel pier, and a footing supported by a single aluminum pile within dry silica sand. End of the pile was fixed at the bottom of the shear box to simulate the scenario that the pile was embedded in a firm stratum of rock. The bridge pier model was subjected to one‐directional shakes, including white noise and earthquake records. The performance of the bridge pier model with pile foundation was discussed for different scoured conditions. It is found that the moment demand of pile increases with the increase of scoured depth whereas the moment demand of the bridge pier decreases, and this transition may induce the bridge failure mechanism transform from pier to pile. The seismic demand on scoured pile foundations may be underestimated and misinterpreted to a certain degree. When evaluating the system damping ratio with SSI, the system response may not be significantly changed even if the soil viscous damping contribution is varied. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

8.
The paper presents a numerical model for the dynamic analysis of pile groups with inclined piles in horizontally layered soil deposits. Piles are modelled with Euler–Bernoulli beams, while the soil is supposed to be constituted by independent infinite viscoelastic horizontal layers. The pile–soil–pile interaction as well as the hysteretic and geometric damping is taken into account by means of two‐dimensional elastodynamic Green's functions. Piles cap is considered by introducing a rigid constraint; the condensation of the problem permits a consistent derivation of both the dynamic impedance matrix of the soil–foundation system and the foundation input motion. These quantities are those used to perform inertial soil–structure interaction analyses in the framework of the substructure approach. Furthermore, the model allows evaluating the kinematic stress resultants in piles resulting from waves propagating in the soil deposit, taking into account the pile–soil–pile interactions. The model validation is carried out by performing accuracy analyses and comparing results in terms of dynamic impedance functions, kinematic response parameters and pile stress resultants, with those furnished by 3D refined finite element models. To this purpose, classical elastodynamic solutions are adopted to define the soil–pile interaction problem. The model results in low computational demands without significant loss of precision, compared with more rigorous approaches or refined finite element models. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

9.
An effective way to study the complex seismic soil‐structure interaction phenomena is to investigate the response of physical scaled models in 1‐g or n‐g laboratory devices. The outcomes of an extensive experimental campaign carried out on scaled models by means of the shaking table of the Bristol Laboratory for Advanced Dynamics Engineering, University of Bristol, UK, are discussed in the present paper. The experimental model comprises an oscillator connected to a single or a group of piles embedded in a bi‐layer deposit. Different pile head conditions, that is free head and fixed head, several dynamic properties of the structure, including different masses at the top of the single degree of freedom system, excited by various input motions, e.g. white noise, sinedwells and natural earthquake strong motions recorded in Italy, have been tested. In the present work, the modal dynamic response of the soil–pile–structure system is assessed in terms of period elongation and system damping ratio. Furthermore, the effects of oscillator mass and pile head conditions on soil–pile response have been highlighted, when the harmonic input motions are considered. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

10.
Modern seismic design codes stipulate that the response analysis should be conducted by considering the complete structural system including superstructure, foundation, and ground. However, for the development of seismic response analysis method for a complete structural system, it is first imperative to clarify the behavior of the soil and piles during earthquakes. In this study, full‐scale monotonic and reversed cyclic lateral loading tests were carried out on concrete piles embedded into the ground. The test piles were hollow, precast, prestressed concrete piles with an outer diameter of 300 mm and a thickness of 60 mm. The test piles were 26 m long. Three‐dimensional (3D) finite element analysis was then performed to study the behavior of the experimental specimens analytically. The study revealed that the lateral load‐carrying capacity of the piles degrades when subjected to cyclic loading compared with monotonic loading. The effect of the use of an interface element between the soil and pile surface in the analysis was also investigated. With proper consideration of the constitutive models of soil and pile, an interface element between the pile surface and the soil, and the degradation of soil stiffness under cyclic loading, a 3D analysis was found to simulate well the actual behavior of pile and soil. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

11.
土-桩-框架结构非线性相互作用的精细数值模型及其验证   总被引:1,自引:0,他引:1  
利用有限元软件ABAQUS,建立了土-桩-框架结构非线性相互作用(SSI)的二维精细有限元模型,分别采用记忆型粘塑性嵌套面模型和损伤塑性模型模拟土体和混凝土材料,采用梁单元和rebar单元模拟RC桩基及其内部纵筋,采用接触面对法模拟桩土接触效应,取得了良好的计算效果。将自由场、框架、土-桩-框架结构模型的分析结果和其它成熟的计算软件进行对比,验证了数值模型的有效性。分析发现:桩基外侧靠近承台处的土体的非线性反应很强烈,而桩基内部土体的非线性反应较小,很大程度上只是跟随群桩一起运动。由于桩土动力接触,桩顶的加速度反应可能超出上部结构,并且桩顶的加速度时程曲线上有非常明显的"针"状突变。随着地震动强度的增加,上部框架逐渐表现出单自由度体系的动力特征,加速度反应谱有从多个波峰退化为单一波峰的趋势。  相似文献   

12.
Simple methods of analysis are developed for computing the dynamic steady-state axial response of floating pile groups embedded in homogeneous and non-homogeneous soil deposits. Physically-motivated approximations are introduced to account for the interaction between two individual piles. It is found that such an interaction arises chiefly from the ‘interference’ of wave fields originating along each pile shaft and spreading outward. For homogeneous deposits the wave fronts originating at an individual pile are cylindrical and the interaction is essentially independent of pile flexibility and slenderness. For non-homogeneous deposits the wave fronts are non-cylindrical and ray-theory approximations are invoked to derive pile flexibility-dependent interaction functions. Results are presented for the dynamic stiffness and damping of several pile groups, as well as for distribution of the applied load among individual piles. For deposits with modulus proportional to depth, the agreement with the few rigorous solutions available is encouraging. A comprehensive parameter study focuses on the effects of soil inhomogeneity and pile-group configuration. It is demonstrated that the ‘dynamic group efficiency’ may far exceed unity at certain frequencies. Increasing soil inhomogeneity tends to reduce the respective resonant peaks and lead to smoother interaction functions, in qualitative agreement with field evidence.  相似文献   

13.
Results from a benchmark test on full-scale piles are used to investigate the response of piles to lateral spreading. In the experiment, two single piles, a relatively flexible pile that moves together with the surrounding soil and a relatively stiff pile that does not follow the ground movement have been subjected to large post-liquefaction ground displacement simulating piles in laterally spreading soils. The observed response of the piles is first presented and then the results are used to examine the lateral loads on the pile from a non-liquefied soil at the ground surface and to evaluate the stiffness characteristics of the spreading soils. The measured ultimate lateral pressure from the crust soil on the stiff pile was about 4.5 times the Rankine passive pressure. The back-calculated stiffness of the liquefied soil was found to be in the range between 1/30 and 1/80 of the initial stiffness of the soil showing gradual decrease in the course of lateral spreading.  相似文献   

14.
Fixed offshore platforms supported by pile foundations are required to resist dynamic lateral loading due to wave forces. The response of a jacket offshore tower is affected by the flexibility and nonlinear behaviour of the supporting piles. For offshore towers supported by clusters of piles, the response to environmental loads is strongly affected by the pile–soil–pile interaction. In the present study, the response of fixed offshore platforms supported by clusters of piles is investigated. The soil resistance to the pile movement is modelled using dynamic py curves and tz curves to account for soil nonlinearity and energy dissipation through radiation damping. The load transfer curves for a single pile have been modified to account for the group effect. The wave forces on the tower members and the tower response are calculated in the time domain using a finite element package (ASAS). Several parameters affecting the dynamic characteristics of the platform and the platform response have been investigated.  相似文献   

15.
This paper presents the results of a large-scale shake table test at E-Defense facility on a pile group located adjacent to a gravity-type quay wall and were subjected to liquefaction-induced large ground displacements. Extensive liquefaction-induced large ground lateral spreading displaced the quay wall about 2.2 m and damaged the pile foundation. The pile foundation consisted of a six-pile group which supported a footing and a superstructure model. Large lateral soil displacements were measured by several sensors such as inclinometers and the results favorably agreed with the directly observed deformations. Soil lateral displacement decreased as the distance from the quay wall increased landward. The piles were densely instrumented and the measured bending strain records were able to explain the damage to the piles. Lateral pressures of the liquefied soil exerted on the piles were measured using earth pressure (EP) sensors. The application of two design guidelines (JRA [1] and JSWA [2]) for estimation of liquefaction-induced lateral pressure on piles is discussed and their advantages and shortcomings are addressed. Furthermore, two simplified methods (Shamoto et al. [3] and Valsamis et al. [4]) are employed to predict the extent of liquefaction-induced large ground displacements and they are compared to the measured deformations. Finally, their accuracy for predicting the liquefaction-induced lateral displacements is evaluated and practical recommendations are made.  相似文献   

16.
While seismic codes do not allow plastic deformation of piles, the Kobe earthquake has shown that limited structural yielding and cracking of piles may not be always detrimental. As a first attempt to investigate the consequences of pile yielding in the response of a pile-column supported bridge structure, this paper explores the soil–pile-bridge pier interaction to seismic loading, with emphasis on structural nonlinearity. The pile–soil interaction is modeled through distributed nonlinear Winkler-type springs and dashpots. Numerical analysis is performed with a constitutive model (Gerolymos and Gazetas 2005a, Soils Found 45(3):147–159, Gerolymos and Gazetas 2005b, Soils Found 45(4):119–132, Gerolymos and Gazetas 2006a, Soil Dyn Earthq Eng 26(5):363–376) materialized in the OpenSees finite element code (Mazzoni et al. 2005, OpenSees command language manual, p 375) which can simulate: the nonlinear behaviour of both pile and soil; the possible separation and gapping between pile and soil; radiation damping; loss of stiffness and strength in pile and soil. The model is applied to the analysis of pile-column supported bridge structures, focusing on the influence of soil compliance, intensity of seismic excitation, pile diameter, above-ground height of the pile, and above or below ground development of plastic hinge, on key performance measures of the pier as is: the displacement (global) and curvature (local) ductility demands and the maximum drift ratio. It is shown that kinematic expressions for performance measure parameters may lead to erroneous results when soil-structure interaction is considered.  相似文献   

17.
The paper presents a numerical model for the analysis of the soil–structure kinematic interaction of single piles and pile groups embedded in layered soil deposits during seismic actions. A finite element model is considered for the pile group and the soil is assumed to be a Winkler‐type medium. The pile–soil–pile interaction and the radiation problem are accounted for by means of elastodynamic Green's functions. Condensation of the problem permits a consistent and straightforward derivation of both the impedance functions and the foundation input motion, which are necessary to perform the inertial soil–structure interaction analyses. The model proposed allows calculating the internal forces induced by soil–pile and pile‐to‐pile interactions. Comparisons with data available in literature are made to study the convergence and validate the model. An application to a realistic pile foundation is given to demonstrate the potential of the model to catch the dynamic behaviour of the soil–foundation system and the stress resultants in each pile. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

18.
A procedure that uses the structural damping (SD) concept for estimating the capacity of a pile based on the Statnamic (STN) pile load test results, formerly used by the authors for short piles, is extended in this paper for the STN tested long piles. Similar to segmental unloading point method procedures for long piles, the shaft length is divided into several segments and each segment is assumed to behave as a mass of a single degree of freedom. The SD concept is then applied to each segment to consider the displacement related soil damping instead of the velocity dependent damping. Instrumented strain gauge data at different levels of the shaft are required for the interpretation method. Three case studies are presented in this paper to study the validity and applicability of the present method. The predicted results are also compared to the available test or analytical data.  相似文献   

19.
《震灾防御技术》2022,17(4):643-650
利用振动台模型试验和有限元数值模拟的方法对土质地基-群桩-钢框架结构体系动力相互作用的规律和特征进行研究,并讨论了基桩长径比对于体系动力相互作用特征的影响。试验地基土体模型为均匀粉质黏土,剪切波速约为213 m/s;群桩基础由9根长2.0 m、直径0.1 m的基桩3×3对称布置;上部结构模型简化为三层钢框架结构。本文研究结果表明:土-桩-钢框架结构体系的阻尼比相较固定基础情形有所增加,输入相同地震动时其地震反应小于固定基础情形;动力相互作用体系中运动相互作用的贡献与惯性相互作用相当,不应忽略;随着基桩长径比的增大,运动相互作用增大,钢框架结构的加速度反应增大。  相似文献   

20.
Fiber-reinforced polymers (FRP)–concrete composites provide an attractive alternative to conventional pile materials such as steel, concrete and wood by improving the durability of deep foundations. In the current study, FRP tubes with different taper angles are filled with self-consolidating concrete (SCC) and driven into dense sand that is enclosed in a large pressurized soil chamber. Driving tests are conducted on FRP–SCC composite piles to determine how the pile material and geometric configuration affect its driving performance. Dynamic data is employed to determine the soil parameters in the TNO model (i.e., soil quake and damping constant) using the DLTWAVE signal-matching program. The driveability of FRP–SCC and traditional pile materials is compared using the wave equation analysis program PDPWAVE. The experimental data and the wave equation analyses indicate that the taper shape has a favourable effect on the driveability and static resistance of piles. It is also found that the driveability of FRP–SCC composite piles is similar to that of conventional prestressed concrete and steel piles. However, empty FRP tubes required a much higher driving energy. Their low flexural resistance along with risk of buckling can hinder their driveability in different soil conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号