首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   169篇
  免费   7篇
  国内免费   4篇
测绘学   1篇
大气科学   15篇
地球物理   53篇
地质学   49篇
海洋学   8篇
天文学   42篇
综合类   1篇
自然地理   11篇
  2023年   1篇
  2022年   3篇
  2021年   1篇
  2020年   6篇
  2019年   5篇
  2018年   8篇
  2017年   7篇
  2016年   8篇
  2015年   2篇
  2014年   4篇
  2013年   10篇
  2012年   4篇
  2011年   6篇
  2010年   9篇
  2009年   12篇
  2008年   9篇
  2007年   11篇
  2006年   7篇
  2005年   9篇
  2004年   8篇
  2003年   5篇
  2002年   4篇
  2001年   8篇
  2000年   3篇
  1998年   1篇
  1997年   4篇
  1996年   2篇
  1994年   1篇
  1991年   1篇
  1990年   1篇
  1989年   1篇
  1987年   1篇
  1986年   2篇
  1985年   1篇
  1984年   2篇
  1983年   1篇
  1982年   2篇
  1981年   2篇
  1978年   3篇
  1977年   3篇
  1974年   1篇
  1963年   1篇
排序方式: 共有180条查询结果,搜索用时 15 毫秒
1.
Tillage, especially in semiarid Mediterranean environment, enhances the mineralization process of soil organic matter (SOM) and, in turn, decreases aggregate stability. Furthermore, continuous tillage leads to the formation of plough pan beneath the tilled layer. In the present study, we investigated the effect of an innovative self-propelled machine (spading machine, SM) for shallow tillage on SOM, water stable aggregates (WSA) and soil penetration resistance (PR). Such effects were compared to those of chisel plough (CP), rotary tiller (RT) and no tillage (NT). Each tilling method was applied up to a depth of 15 cm, whereas in NT only a brush cutter was used for weed control. Soil analyses were performed at the start of the experiment (March 2009, T0), in April 2010 (T1), May 2012 (T3), and June 2014 (T5) at both 0–15 and 15–30 cm. Compared to T0, soil PR increased with time in all the treatments and generally followed the order SM?<?RT?<?CP?<?NT. In soil tilled with the SM, soil PR never exceeded 2.5 MPa that was demonstrated to be a critical value for root elongation, and no evidence of the formation of plough pan beneath the tilled layer was observed. SOC as well as water content and WSA were higher in SM compared with CP and RT. In conclusion, the spading machine was proved to be more efficient in lowering the soil PR and in avoiding the formation of the plough pan. Furthermore, SM increased SOC and WSA.  相似文献   
2.
Intensive irrigated agriculture substantially modifies the hydrological cycle and often has major environmental impacts. The article focuses upon a specific concern—the tendency for progressive long-term increases in the salinity of groundwater recharge derived from irrigated permeable soils and replenishment of unconfined aquifers in more arid regions. This process has received only scant attention in the water-resource literature and has not been considered by agricultural science. This work makes an original contribution by analysing, from scientific principles, how the salinisation of groundwater recharge arises and identifies the factors affecting its severity. If not proactively managed, the process eventually will impact irrigation waterwell salinity, the productivity of agriculture itself, and can even lead to land abandonment. The types of management measure required for mitigation are discussed through three detailed case histories of areas with high-value groundwater-irrigated agriculture (in Spain, Argentina and Pakistan), which provide a long-term perspective on the evolution of the problem over various decades.  相似文献   
3.
Bulletin of Earthquake Engineering - The frictional behavior of steel-PTFE interfaces for use in seismic isolation has been studied extensively in the past. However, alternative polymers, such as...  相似文献   
4.
This paper reports improvements to algorithms for the simulation of 3-D hydraulic fracturing with the Generalized Finite Element Method (GFEM). Three optimizations are presented and analyzed. First, an improved initial guess based on solving a 3-D elastic problem with the pressure from the previous step is shown to decrease the number of Newton iterations and increase robustness. Second, an improved methodology to find the time step that leads to fracture propagation is proposed and shown to decrease significantly the number of iterations. Third, reduced computational cost is observed by properly recycling the linear part of the coupled stiffness matrix. Two representative examples are used to analyze these improvements. Additionally, a methodology to include the leak-off term is presented and verified against asymptotic analytical solutions. Conservation of mass is shown to be well satisfied in all examples.  相似文献   
5.
6.
Active gully systems developed on highly weathered or loose parent material are an important source of runoff and sediment production in degraded areas. However, a decrease of land pressure may lead to a return of a partial vegetation cover, whereby gully beds are preferred recolonization spots. Although the current knowledge on the role of vegetation on reducing sediment production on slopes is well developed, few studies exist on the significance of restoring sediment transport pathways on the total sediment budget of degraded mountainous catchments. This study in the Ecuadorian Andes evaluates the potential of vegetation to stabilize active gully systems by trapping and retaining eroded sediment in the gully bed, and analyses the significance of vegetation restoration in the gully bed in reducing sediment export from degraded catchments. Field measurements on 138 gully segments located in 13 ephemeral steep gullies with different ground vegetation cover indicate that gully bed vegetation is the most important factor in promoting short‐term (1–15 years) sediment deposition and gully stabilization. In well‐vegetated gully systems ( ≥ 30% of ground vegetation cover), 0.035 m3 m–1 of sediment is deposited yearly in the gully bed. Almost 50 per cent of the observed variance in sediment deposition volumes can be explained by the mean ground vegetation cover of the gully bed. The presence of vegetation in gully beds gives rise to the formation of vegetated buffer zones, which enhance short‐term sediment trapping even in active gully systems in mountainous environments. Vegetation buffer zones are shown to modify the connectivity of sediment fluxes, as they reduce the transport efficiency of gully systems. First calculations on data on sediment deposition patterns in our study area show that gully bed deposition in response to gully bed revegetation can represent more than 25 per cent of the volume of sediment generated within the catchment. Our findings indicate that relatively small changes in landscape connectivity have the potential to create strong (positive) feedback loops between erosion and vegetation dynamics. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   
7.
On October 30, 2016, a seismic event and its aftershocks produced diffuse landslides along the SP 209 road in the Nera River Gorge (Central Italy). Due to the steep slopes and the outcropping of highly fractured and bedded limestone, several rockfalls were triggered, of which the main event occurred on the slope of Mount Sasso Pizzuto. The seismic shock acted on a rock wedge that, after an initial slide, developed into a rockfall. The debris accumulation blocked the SP 209 road and dammed the Nera River, forming a small lake. The river discharge was around 3.6 m3/s; the water overtopped the dam and flooded the road. By a preliminary topographic survey, we estimated that the debris accumulation covers an area of about 16,500 m2, while the volume is around 70,000 m3. The maximum volume occupied by the pre-existing talus mobilized by the rockfall is about 20% of the total volume. Besides blocking the road, the rockfall damaged a bridge severely, while, downstream of the dam, the water flow caused erosion of a road embankment. A rockfall protection gallery, a few hundred meters downstream of the dam, was damaged during the event. Other elastic nets and rigid barriers were not sufficient to protect the road from single-block rockfalls, with volumes around 1–2 m3. Considering the geological and geomorphological conditions, as well as the high seismicity and the socioeconomic importance of the area, a review of the entire rockfall protection systems is required to ensure protection of critical infrastructure and local communities.  相似文献   
8.
During September 2008 and February 2009, the NR/V Alliance extensively sampled the waters of the Sea of Marmara within the framework of the Turkish Straits System (TSS) experiment coordinated by the NATO Undersea Research Centre. The observational effort provided an opportunity to set up realistic numerical experiments for modeling the observed variability of the Marmara Sea upper layer circulation at mesoscale resolution over the entire basin during the trial period, complementing relevant features and forcing factors revealed by numerical model results with information acquired from in situ and remote sensing datasets. Numerical model solutions from realistic runs using the Regional Ocean Modeling System (ROMS) produce a general circulation in the Sea of Marmara that is consistent with previous knowledge of the circulation drawn from past hydrographic measurements, with a westward meandering current associated with a recurrent large anticyclone. Additional idealized numerical experiments illuminate the role various dynamics play in determining the Sea of Marmara circulation and pycnocline structure. Both the wind curl and the strait flows are found to strongly influence the strength and location of the main mesoscale features. Large displacements of the pycnocline depth were observed during the sea trials. These displacements can be interpreted as storm-driven upwelling/downwelling dynamics associated with northeasterly winds; however, lateral advection associated with flow from the Straits also played a role in some displacements.  相似文献   
9.
An effective way to study the complex seismic soil‐structure interaction phenomena is to investigate the response of physical scaled models in 1‐g or n‐g laboratory devices. The outcomes of an extensive experimental campaign carried out on scaled models by means of the shaking table of the Bristol Laboratory for Advanced Dynamics Engineering, University of Bristol, UK, are discussed in the present paper. The experimental model comprises an oscillator connected to a single or a group of piles embedded in a bi‐layer deposit. Different pile head conditions, that is free head and fixed head, several dynamic properties of the structure, including different masses at the top of the single degree of freedom system, excited by various input motions, e.g. white noise, sinedwells and natural earthquake strong motions recorded in Italy, have been tested. In the present work, the modal dynamic response of the soil–pile–structure system is assessed in terms of period elongation and system damping ratio. Furthermore, the effects of oscillator mass and pile head conditions on soil–pile response have been highlighted, when the harmonic input motions are considered. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
10.
We report on our analysis of two XMM-Newton observations of the Vela pulsar performed in December 2000 (total exposure time: 96.5 ks). We succeeded in resolving the pulsar spectrum from the surrounding bright nebular emission taking advantage both of the accurate calibration of the EPIC point spread function and of the Chandra/HRC surface brightness map of the nebula. This made it possible to assess to pulsar spectral shape disentangling its thermal and non-thermal components. Exploiting the photon harvest, we have also been able to perform a phase-resolved study of the pulsar emission.   相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号