首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Concentrations of polycyclic aromatic hydrocarbons were determined in species of commercial fish and lobsters following an oil-spill just off the protected Madagascan coastline. Samples were collected along the coastline within and outside the affected area. Summed PAH concentrations ranged from 1.9 μg kg−1 to 63 μg kg−1 wet weight, but with no higher molecular weight PAHs (>202 Da) being detected. All concentrations of benzo[a]pyrene, benz[a]anthracene and dibenz[a,h]anthracene were <0.1 μg kg−1 wet weight, well within the EU and UK set limits for the protection of human health. Additionally, samples were calculated as the benzo[a]pyrene toxic equivalency quotient (TEQ) and found to be well below the level of concern in relation to health of human consumers. Evaluation of the biota PAH data indicated the origin of PAH was predominantly petrogenic with >80% arising from oil sources. Profile studies indicate a low-level multisource petrogenic contamination probably representing a pre-spill background for the area.  相似文献   

2.

The control of soil pollution in China has become an issue, and in this study, a compound contaminated site was selected and focus on the site and its nearby environment, organochlorine pesticides (OCPs) were investigated in both soil (top and deep soil) and air samples. The main pollutants in top soils at site are dichlorodiphenyltrichloroethane (DDTs, 0.05–104 mg/kg d.w., avg: 14.5 mg/kg d.w.) and hexachlorobenzene (HCB, 0.02–4.85 mg/kg d.w., avg: 0.72 mg/kg d.w.) which is in accordance with its production history. As for the deep soils, ΣOCPs at site were found concentrated at workshops especially the technical pesticide workshop (5.29–22.1 mg/kg d.w., avg: 9.15 mg/kg d.w.) and the history DDTs’ workshop (4.00–64.8 mg/kg d.w., avg: 20.4 mg/kg d.w). Around site, OCPs were mainly concentrated at layers of −20 cm and the −40 cm and decreased with distance being far away, at 5000 m, the ΣOCPs was comparable with normal agriculture soil (22.1−91.4 ng/g d.w., avg: 55.4 ng/g d.w.). ΣOCPs in the air samples ranged 64.6–823 ng/m3 (avg: 459 ng/m3) at site and 9.93–176 ng/m3 (avg: 50.8 ng/m3) around site which are all dominated with DDTs and HCHs. Soil–air exchange fugacity was calculated to judge the transportation of the OCPs and the results showed soils at the site and its nearby areas (within 5000 m) are releasing most of the OCPs into air, and accordingly through evaluation, inhalation was found to be the major source for human health risk, which is a great threat to the workers at site and the nearby residents.

  相似文献   

3.
Polycyclic aromatic hydrocarbons (PAHs) and organochlorine pesticides (OCs) are generally present in the marine environment in complex mixtures. The ecotoxicological nature of contaminant interactions, however, is poorly understood, with most scientific observations derived from single contaminant exposure experiments. The objective of this experiment was to examine dose-response relationships between antioxidant parameters and body contaminant levels in mussels exposed to different exposure regimes under laboratory conditions. Accordingly, the green-lipped mussel, Perna viridis, was challenged with a mixture of PAHs (anthracene, fluoranthene, pyrene, benzo[a]pyrene) and OC pesticides (α-HCH, aldrin, dieldrin, p,p′-DDT) over a 4 week period. Contaminants were delivered under four different dosing regimes, with all treatments receiving the same total contaminant load by the end of the exposure period. Antioxidant biomarkers were measured after 1, 2, 3 and 4 weeks, including glutathione (GSH), gluathione-S-transferase (GST), superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), glutathione reductase (GR) and lipid peroxidase (LPO). GST and CAT were induced in hepatic tissues in most of the exposure regimes, with the majority of significant induction occurring in a constant exposure regime and a two-step alternate exposure regime. Significant differences among exposure regimes were detected in the body burden of contaminants after 28 days. Hepatic CAT and GSH are proposed as potentially useful biomarkers as they showed good correlation with target contaminants and were not readily affected by different dosing patterns.  相似文献   

4.
Biomarkers are generally applied to detect pollution in environmental monitoring. Such biological responses should accurately reflect the stress over time in a quantitative manner. As such, the initial and maximum responses induced by stress, as well as adaptation and recovery of these biomarkers, need to be fully understood or else erroneous false-negative or false-positive may be arrived. However, most of the biomarker studies only provided information on initially induced responses under different concentrations of toxicants, while biological adaptation and recovery were poorly known. In this study, the time required for induction, adaptation and recovery of lysosomal integrity in green-lipped mussel Perna viridis upon exposure to benzo[a]pyrene was investigated over a period of 62 days. Maximum induction occurred on day 6 when lysosomal integrity was significantly reduced by 51%, and no further change or adaptation was detected thereafter. When mussels were depurated in clean seawater after 18 days of exposure to benzo[a]pyrene, a gradual recovery was observed, with lysosomal integrity returning to its background level and showing a complete recovery after 20 days of depuration. Lysosomal integrity was significantly correlated with the body burden concentrations of benzo[a]pyrene and condition index of the mussels. The relatively fast induction (6 days) and recovery (20 days) without apparent adaptation suggested that lysosomal integrity in P. viridis can serve as a good biomarker in biomonitoring, as its response is not likely to generate both false-negative and false-positive results.  相似文献   

5.
6.
《Marine pollution bulletin》2009,58(6-12):503-514
Polycyclic aromatic hydrocarbons (PAHs) and organochlorine pesticides (OCs) are generally present in the marine environment in complex mixtures. The ecotoxicological nature of contaminant interactions, however, is poorly understood, with most scientific observations derived from single contaminant exposure experiments. The objective of this experiment was to examine dose-response relationships between antioxidant parameters and body contaminant levels in mussels exposed to different exposure regimes under laboratory conditions. Accordingly, the green-lipped mussel, Perna viridis, was challenged with a mixture of PAHs (anthracene, fluoranthene, pyrene, benzo[a]pyrene) and OC pesticides (α-HCH, aldrin, dieldrin, p,p′-DDT) over a 4 week period. Contaminants were delivered under four different dosing regimes, with all treatments receiving the same total contaminant load by the end of the exposure period. Antioxidant biomarkers were measured after 1, 2, 3 and 4 weeks, including glutathione (GSH), gluathione-S-transferase (GST), superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), glutathione reductase (GR) and lipid peroxidase (LPO). GST and CAT were induced in hepatic tissues in most of the exposure regimes, with the majority of significant induction occurring in a constant exposure regime and a two-step alternate exposure regime. Significant differences among exposure regimes were detected in the body burden of contaminants after 28 days. Hepatic CAT and GSH are proposed as potentially useful biomarkers as they showed good correlation with target contaminants and were not readily affected by different dosing patterns.  相似文献   

7.
A cloud point extraction procedure is presented for the preconcentration and simultaneous determination of Ag+ and Pd2+ in various samples. After complexation with 2‐((2‐((1H‐benzo[d]imidazole‐2‐yl)methoxy)phenoxy)methyl)‐1H‐benzo[d]imidazol (BIMPI), which was used as a new chelating agent, analyte ions were quantitatively extracted to a phase rich in Triton X‐114 following centrifugation, and determination was carried out by flame atomic absorption spectrometry (FAAS). Under the optimum experimental conditions (i. e., pH = 7.0, 15.0·10–5 mol/L BIMPI and 0.036% (w/v) Triton X‐114), calibration graphs were linear in the range of 28.0–430.0 μg/L and 57.0–720.0 μg/L with detection limits of 10.0 and 25.0 μg/L for Ag+ and Pd2+, respectively. The enrichment factors were 35.0 and 28.0 for Ag+ and Pd2+, respectively. The method has been successfully applied to evaluate these metals in some real samples, including waste water, soil and hydrogenation catalyst samples.  相似文献   

8.
土体剪切波速是进行土层地震反应分析的动力学参数,对场地地震动参数确定具有重要意义。基于地质地貌分析,将大同盆地划分为5类典型地质单元。对盆地1429个钻孔剪切波速资料进行分析,探讨VS30与VS20的相关性,研究土体埋深、岩性、地质单元、标贯击数及密实度等地质特征对VS的影响,并基于地质单元、剪切波速比、密实度系数及第四系上部覆盖层厚度相关性分析给出土体VS30预测模型。研究结果表明,基于典型地质特征的VS30预测模型拟合优度R2>0.90,预测精度很高,对于离散性较大、直接拟合估算较差及无剪切波速场地来说,以区分地质单元及土体类型的方式进行VS30分解预测是良好的研究思路。首次在区分地质单元及土体类型的前提下提出剪切波速比及密实度系数,并将其与第四系上部覆盖层厚度综合应用于VS30预测研究。研究结果可为大同盆地城市防震减灾规划、震害预测、区域性地震安全评价提供重要技术支撑。  相似文献   

9.
Fifty-seven surface sediment samples were collected from the coast of southwest Taiwan and analyzed for polycyclic aromatic hydrocarbons (PAHs). Concentrations of total PAHs (28 PAH compounds) ranged from 15 to 907 ng g−1 dry weight. Diagnostic ratios showed that PAHs in the sediments of the Gaoping estuary were predominantly of petroleum origin, whereas sediments from the Kaohsiung coast contained principally combustion-derived PAHs. Principal component analysis indicated that emissions from automobiles and coal burning were the main sources of combustion-derived PAHs. The relatively high ratios of perylene/penta-aromatic PAH isomers in sediments from the Tainan coast and some off-shore stations on the Kaohsiung coast suggest a significant diagenetic PAH contribution. The study shows that certain diagnostic ratios are useful and sensitive in delineating the distribution of PAHs from specific sources in southwest Taiwan. The phenanthrene/anthracene ratio is a better indicator than the methylphenanthrenes/phenanthrene ratio for tracing petrogenic PAHs, and the benzo(a)anthracene/chrysene and indeno(1,2,3-c,d)pyrene/benzo(g,h,i)perylene ratios are more specific than the benzo(a)pyrene/benzo(e)pyrene and benzo(b)fluoranthcene/benzo(k)fluoranthcene ratios in distinguishing PAHs from various pyrogenic sources.  相似文献   

10.
The kinetics of oxidation of carcinogenic benzo(a)pyrene (0.1 nM solution in phosphate buffer) catalyzed by enzyme protein of soil and water plants (potato tubers and alga Nitella sp.) has been studied. The benzo(a)pyrene oxidation rate is determined by the phenoloxidase activity of the enzyme protein from both sources to an equal degree and expressed by the Michaelis-Menten equation. The values for kcat and apparent Km were (0.97 ± 0.14) Ms?1 and 33 ± 6 μM, respectively. The presence of other compounds (including protein substances) in acetone preparations of potato tubers considerably suppresses its catalytic activity in relation to benzo(a)pyrene. Consequently, in the polluted biosphere some water plants, such as alga Nitella sp., and potato tuber can transform carcinogenic benzo(a)pyrene (BP). As oxidation products, all three BP-quinones, i.e. 1,6-, 3,6-and 6,12-diones, were identified.  相似文献   

11.
Study of the Biological Degradation of Polycyclic Aromatic Hydrocarbons in a Laboratory-scale Plant A one-stage laboratory-scale wastewater treatment plant composed of a bubble column reactor with sedimentor and sludge recycle is fed with an oil/water emulsion from a contaminated site. The oil phase is highly contaminated with polycyclic aromatic hydrocarbons (PAH). The samples are taken regularly at defined points of the treatment plant (influent, reactor, return sludge, effluent). The analysis of PAH is performed by HPLC. We can show that all analysed PAH including the poorly degradable carcinogenic substances such as benzo[a]pyrene are biologically transformed. Additional measurements of the toxic and mutagenic potential of the wastewater show that in the laboratory-scale plant full removal of the carcinogenic potential is not achieved. This is due to the fact that during the biological transformation of higher condensated PAH mutagenic dead-end metabolites are produced.  相似文献   

12.
Woo S  Kim S  Yum S  Yim UH  Lee TK 《Marine pollution bulletin》2006,52(12):1768-1775
To investigate the genotoxic effect of marine sediments on aquatic organism, sediment samples were collected from 13 sites along the coast of Gwangyang Bay (Korea). Concentrations of polycyclic aromatic hydrocarbons (PAHs) in sediments were determined and the relationship between exposure of flounder blood cells to sediment extracts and DNA single-strand breakage in the blood cells was examined using the comet assay. Levels of DNA damage were proportionally increased by exposure concentration and the highest sediment-associated DNA damage was observed at the station showing the highest PAHs contamination. DNA damage in blood cells exposed to five types of PAHs (benzo[a]pyrene, fluoranthene, anthracene, pyrene and phenanthrene) and in flounder (Paralichthys olivaceus) exposed to benzo[a]pyrene (BaP) for 0, 2 and 4 days were assessed by measuring comet tail length. The tail lengths of five PAHs-exposed groups at 50 and 100 ppb were significantly different from the non-exposed group, and the genotoxic effect of BaP correlated with both concentration and duration of exposure. Throughout the study, significant differences in DNA breakage were recorded between cells exposed to sediment extracts or PAHs and non-exposed control. This study demonstrated the comet assay as a successful tool in monitoring contamination of marine sediments and assessing genotoxicity of PAHs in marine organisms, either in vitro or in vivo.  相似文献   

13.
In situ remediation technologies have the potential to alter subsurface properties such as natural organic matter (NOM) content or character, which could affect the organic carbon‐water partitioning behavior of chlorinated organic solvents, including dense nonaqueous phase liquids (DNAPLs). Laboratory experiments were completed to determine the nature and extent of changes in the partitioning behavior of trichloroethene (TCE) caused by in situ chemical oxidation or in situ surfactant flushing. Sandy porous media were obtained from the subsurface at a site in Orlando, Florida. Experiments were run using soil slurries in zero‐headspace reactors (ZHRs) following a factorial design to study the effects of porous media properties (sand vs. loamy sand with different total organic carbon [TOC] contents), TCE concentration (DNAPL presence or absence), and remediation agent type (potassium permanganate vs. activated sodium persulfate, Dowfax 8390 vs. Tween 80). Results revealed that the fraction of organic carbon (foc) of porous media after treatment by oxidants or surfactants was higher or lower relative to that in the untreated media controls. Isotherm experiments were run using the treated and control media to measure the distribution coefficient (Kd) of TCE. Organic carbon‐water partitioning coefficient values (Koc) calculated from the experimental data revealed that Koc values for TCE in the porous media were altered via treatment using oxidants and surfactants. This alteration can affect the validity of estimates of contaminant mass remaining after remediation. Thus, potential changes in partitioning behavior should be considered to help avoid decision errors when judging the effectiveness of an in situ remediation technology.  相似文献   

14.
Ambient air polycyclic aromatic hydrocarbon (PAH) samples were collected at a suburban (n = 63) and at an urban site (n = 14) in Izmir, Turkey. Average gas‐phase total PAH (∑14PAH) concentrations were 23.5 ng m?3 for suburban and 109.7 ng m?3 for urban sites while average particle‐phase total PAH concentrations were 12.3 and 34.5 ng m?3 for suburban and urban sites, respectively. Higher ambient PAH concentrations were measured in the gas‐phase and ∑14PAH concentrations were dominated by lower molecular weight PAHs. Multiple linear regression analysis indicated that the meteorological parameters were effective on ambient PAH concentrations. Emission sources of particle‐phase PAHs were investigated using a diagnostic plot of fluorene (FLN)/(fluorine + pyrene; PY) versus indeno[1,2,3‐cd]PY/(indeno[1,2,3‐cd]PY + benzo[g,h,i]perylene) and several diagnostic ratios. These approaches have indicated that traffic emissions (petroleum combustion) were the dominant PAH sources at both sites for summer and winter seasons. Experimental gas–particle partition coefficients (KP) were compared to the predictions of octanol–air (KOA) and soot–air (KSA) partition coefficient models. The correlations between experimental and modeled KP values were significant (r2 = 0.79 and 0.94 for suburban and urban sites, respectively, p < 0.01). Octanol‐based absorptive partitioning model predicted lower partition coefficients especially for relatively volatile PAHs. However, overall there was a relatively good agreement between the measured KP and soot‐based model predictions.  相似文献   

15.
The present paper evaluates the temporal and spatial impact of heavy metal containing (Cr, Zn, Cu, Ni, Cd and Fe) effluents of brass, electroplating and tannery industries on chemical and microbiological characteristics of affected soil and groundwater. Therefore, samples were drawn from three sites, S1, S2 and S3, with a longitudinally distant from effluent drain of 20, 200 and 700 m, respectively. In general, the metals concentration exceeded the standard limits not only in the discharged effluents but also in the soil and groundwater. The significant reduction of microbial biomass C and N, soil respiration and microbial coefficient with increasing metal content from S3 to S1 was recorded, the effect being more pronounced in summer. However, the Cmic/Nmic ratio decreased whilst the metabolic quotient ($q_{{\rm CO}_{{\rm 2}} } $ ) increased with increasing metal concentration in soil. The content of Zn (11.5 mg/L) and Bacillus sp. was at maximum in groundwater of brass and electroplating industry site, whereas that of tannery site contained maximum Cr (2.34 mg/L) and Enterobacter sp. The toxic metals adversely polluted the groundwater which made it to harbours Escherichia coli beyond the prescribed limit. To check the soil and groundwater pollution, eco‐friendly measures involving improved effluent treatment technology and site‐specific application of treated effluent are recommended.  相似文献   

16.
Polycyclic aromatic hydrocarbons (PAHs) and organochlorine pesticides (OCs) are generally present in the marine environment in complex mixtures. The ecotoxicological nature of contaminant interactions, however, is poorly understood, with most scientific observations derived from single contaminant exposure experiments. The objective of this experiment was to examine dose-response relationships between antioxidant parameters and body contaminant levels in mussels exposed to different exposure regimes under laboratory conditions. Accordingly, the green-lipped mussel, Perna viridis, was challenged with a mixture of PAHs (anthracene, fluoranthene, pyrene, benzo[a]pyrene) and OC pesticides (alpha-HCH, aldrin, dieldrin, p,p'-DDT) over a 4 week period. Contaminants were delivered under four different dosing regimes, with all treatments receiving the same total contaminant load by the end of the exposure period. Antioxidant biomarkers were measured after 1, 2, 3 and 4 weeks, including glutathione (GSH), gluathione-S-transferase (GST), superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), glutathione reductase (GR) and lipid peroxidase (LPO). GST and CAT were induced in hepatic tissues in most of the exposure regimes, with the majority of significant induction occurring in a constant exposure regime and a two-step alternate exposure regime. Significant differences among exposure regimes were detected in the body burden of contaminants after 28 days. Hepatic CAT and GSH are proposed as potentially useful biomarkers as they showed good correlation with target contaminants and were not readily affected by different dosing patterns.  相似文献   

17.
An igneous intrusion of 94m thick was discovered intruding into the Silurian sandstone from Tazhong 18 Well. The petroleum previously preserved in the Silurian sandstone reservoir was altered into black carbonaceous bitumen by abnormally high heat stress induced by the igneous intrusion. The reflectance of the carbonaceous bitumen reaches as high as 3.54%, indicating that the bitumen had evolved into a high thermal evolution level. Similar to the Silurian samples from the neighboring Tazhong 11, Tazhong 12, Tazhong 45 and Tazhong 47 wells, the distribution of C27, C28 and C29 steranes of the carbonaceous bitumen is still “V”-shaped and can still be employed as an efficient parameter in oil source correlation. The “V”-shaped distribution indicates that the hydrocarbons from the Tazhong 18 and the neighboring wells were all generated from the Middle-Upper Ordovician hydrocarbon source rocks. However, the oil source correlation parameters associated with and terpanes had been changed greatly by the high heat stress and can no longer be used in oil source correlation. The δ 13C values of the petroleum from the neighboring wells are between −32.53%. and −33.37%., coincident with those of the Paleozoic marine petroleum in the Tarim Basin. However, the δ 13C values of the carbonaceous bitumen from the Tazhong 18 Well are between −27.18%. and −29.26%., isotopically much heavier than the petroleum from the neighboring wells. The content of light hydrocarbons (nC14nC20) of the saturated hydrocarbon fraction in the carbonaceous bitumen is extremely higher than the content of heavy hydrocarbons. The light/heavy hydrocarbon ratios (ΣnC21 nC22 + are between 4.56 and 39.17. In the saturated fraction, the even numbered hydrocarbons are predominant to the odd numbered, and the OEP (Odd to Even Predominance) values are between 0.22 and 0.49. However, the content of light hydrocarbons in the petroleum from the neighboring wells is relatively low and the content of the even numbered hydrocarbons is almost equal to that of the odd numbered. Compared with the samples from the neighboring wells, the abundance of non-alkylated aromatic hydrocarbons, such as phenanthrenes, and polycyclic aromatic hydrocarbons (PAHs), such as fluoranthane, pyrene, benzo[a]anthracene and benzofluoranthene, are relatively high. Supported by the National Key Basic Research and Development Project (Grant No. 2005CB422103)  相似文献   

18.
Abstract

Time-domain reflectometry (TDR) is an electromagnetic technique for measurements of water and solute transport in soils. The relationship between the TDR-measured dielectric constant (Ka ) and bulk soil electrical conductivity ([sgrave]a) to water content (θW) and solute concentration is difficult to describe physically due to the complex dielectric response of wet soil. This has led to the development of mostly empirical calibration models. In the present study, artificial neural networks (ANNs) are utilized for calculations of θw and soil solution electrical conductivity ([sgrave]w) from TDR-measured Ka and [sgrave]a in sand. The ANN model performance is compared to other existing models. The results show that the ANN performs consistently better than all other models, suggesting the suitability of ANNs for accurate TDR calibrations.  相似文献   

19.
Interpreting rainfall‐runoff erosivity by a process‐oriented scheme allows to conjugate the physical approach to soil loss estimate with the empirical one. Including the effect of runoff in the model permits to distinguish between detachment and transport in the soil erosion process. In this paper, at first, a general definition of the rainfall‐runoff erosivity factor REFe including the power of both event runoff coefficient QR and event rainfall erosivity index EI30 of the Universal Soil Loss Equation (USLE) is proposed. The REFe factor is applicable to all USLE‐based models (USLE, Modified USLE [USLE‐M] and Modified USLE‐M [USLE‐MM]) and it allows to distinguish between purely empirical models (e.g., Modified USLE‐M [USLE‐MM]) and those supported by applying theoretical dimensional analysis and self‐similarity to Wischmeier and Smith scheme. This last model category includes USLE, USLE‐M, and a new model, named USLE‐M based (USLE‐MB), that uses a rainfall‐runoff erosivity factor in which a power of runoff coefficient multiplies EI30. Using the database of Sparacia experimental site, the USLE‐MB is parameterized and a comparison with soil loss data is carried out. The developed analysis shows that USLE‐MB (characterized by a Nash–Sutcliffe Efficiency Index NSEI equal to 0.73 and a root mean square error RMSE = 11.7 Mg ha?1) has very similar soil loss estimate performances as compared with the USLE‐M (NSEI = 0.72 and RMSE = 12.0 Mg ha?1). However, the USLE‐MB yields a maximum discrepancy factor between predicted and measured soil loss values (176) that is much lower than that of USLE‐M (291). In conclusion, the USLE‐MB should be preferred in the context of theoretically supported USLE type models.  相似文献   

20.
Groundwater samples collected at sites where in situ chemical oxidation (ISCO) has been deployed may contain binary mixtures of groundwater contaminants and permanganate (MnO4), an oxidant injected into the subsurface to destroy the contaminant. Commingling of the oxidant and contaminant in aqueous samples may negatively impact the quality of the sample as well as the analytical instruments used to quantify contaminant concentrations. In this study, binary mixtures comprised of (1) a multicomponent standard with permanganate and (2) groundwater samples collected at two ISCO field sites were preserved with ascorbic acid. Ascorbic acid reacts rapidly with the MnO4 and limits the reaction between MnO4 and the organic compounds in the mixture. Consequently, most of the compounds in the multicomponent standard were within the control limit for quality assurance. However, despite timely efforts to preserve the samples, the rapid reaction between permanganate and contaminant caused the concentration of several sensitive compounds to fall significantly below the lower control limit. Concentrations of volatile organic compounds in the field‐preserved binary mixture groundwater samples were greater than in samples refrigerated in the field and preserved upon arrival at the laboratory, indicating the time‐dependency and benefit of field preservation. The molar ratio of ascorbic acid required to neutralize KMnO4 was 1.64 (mol ascorbic acid/mol KMnO4); this provided a baseline to estimate the volume of ascorbic acid stock solution and/or the weight of crystalline ascorbic acid required to neutralize MnO4. Excess ascorbic acid did not negatively impact the quality of the aqueous samples, or analytical instruments, used in the analyses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号