首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The purpose of the current study is to compare the influence of different aerobic conditions(biostimulation(BS),bioaugmentation(BA),and a combination of biostimulation and bioaugmentation(BB))on polycyclic aromatic hydrocarbons(PAH)degradation and compare the degraded amount with single step XAD-4 extraction as a new tool for bioavailability assessment for chronically contaminated sediment samples obtained from territory of Autonomous Province Vojvodina of Serbia(S1,S2,and S3).A great number of papers dealing with biodegradation of PAHs in spiked sediment or soil have been published,but to the authors’knowledge,a limited number of papers studied aged,historically polluted sediment and a sum of chosen U.S.Environmental Protection Agency(USEPA)PAHs.A significant reduction(up to67%)in PAH concentration was observed,while the percentage of reduction varied depending on the sediment sample and treatment used.BS treatment successfully stimulated growth of indigenous bacteria.Further,PAH-degrading strain Sphingomonas paucimobilis F8 inoculated in BA and BB treatment survived for up to 7 weeks after it was suppressed by unfavorable conditions or native microbes.Degraded amounts generally showed good correlation with results obtained from XAD-4 extraction.Results obtained in the current study represent a good start for standardizing a XAD-4 extraction technique as a simplified,easier,and lower cost method for bioavailability assessment.  相似文献   

2.
A field trial experiment was carried out to assess the potential of bioremediation for mobilisation of carbon in organic-rich sediments. Both bioaugmentation (bio-fixed microorganisms) and biostimulation (oxygen release compounds--ORC) protocols have been tested and the response of the bacterial community has been described to assess the baseline for bioremediation potential. Multifactorial ANOVA revealed that bioaugmentation protocol had an effect in stimulate mobilisation processes and significantly enhanced extra-cellular enzymatic activity rates. In contrast biostimulation treatment did not have an effect on mobilisation rates but contributed to enhance bacterial efficiency through a maximization of the bacterial production:enzymatic activity ratio. Average calculation of net mobilised carbon showed that 23% increase of mobilised pool was accounted for bioaugmentation in summer. Although biostimulation accounted for a smaller increase in mobilised carbon (<10%), the use of ORC resulted in an increased mineralisation and net carbon loss via respiration. Based on our results, a conceptual model for application of bioremediation to face the problem of sediment eutrophication is discussed.  相似文献   

3.
Xu R  Lau AN  Lim YG  Obbard JP 《Marine pollution bulletin》2005,51(8-12):1062-1070
A 95-day field trial on the bioremediation of oil in beach sediment using Osmocote and chitosan was conducted on an inter-tidal foreshore in Singapore. Osmocote was the key factor in enhancing nutrient levels in sediments, the metabolic activity of the indigenous microbial biomass, and the biodegradation of aliphatics and polycyclic aromatic hydrocarbons (PAHs) with ring number of 2 and 3. In contrast, chitosan did not enhance these parameters in the presence of Osmocote. However, the addition of chitosan to Osmocote amended sediments significantly enhanced biodegradation of recalcitrant 4–6-ring PAHs. This is most likely due to the high oil adsorbancy capacity of chitosan, which enhances the bioavailability of high ring number PAHs to the microbial biomass.  相似文献   

4.
A separation procedure was developed for analysis of polychlorinated biphenyls (PCBs), polycyclic aromatic hydrocarbons (PAHs) and organochlorine pesticides (OCPs) in urban air, while simultaneously eliminating the interfering compounds. This was carried out by optimization of a column chromatograph with regard to the eluent type (n‐hexane and n‐pentane), volume of eluent, type of sorbent material (silica gel and florisil) and activation level of the sorbent material. The determination of the level of PCBs and PAHs was carried out using gas chromatography (GC) equipped with a mass selective detector (MSD), while determination of the OCPs was carried out by GC equipped with an electron capture detector (μ‐ECD). The use of a silica gel column (10 g, 5% deactivated with H2O) with 70 mL of n‐hexane gave satisfactory separation of PCBs from PAHs and OCPs. After collecting the PCBs with 70 mL of n‐hexane, 3·20 mL of n‐hexane:ethyl acetate, (1:1, v:v) was adequate for elution of the PAHs and OCPs from the column. The primary aim of this study was to develop a multimethod for analyses of PCBs, PAHs, and OCPs in urban air as well as reducing solvent and sorbent consumption and analysis time during the clean‐up procedure compared to the US EPA standard methods (EPA methods TO‐13A for PAHs and TO‐4A for both PCBs and OCPs).  相似文献   

5.
Polycyclic aromatic hydrocarbons are ubiquitous pollutants in the environment, and most high molecular weight PAHs cause mutagenic, teratogenic and potentially carcinogenic effects. While several strains have been identified that degrade PAHs, the present study is focused on the degradation of PAHs in a marine environment by a moderately halophilic bacterial consortium. The bacterial consortium was isolated from a mixture of marine water samples collected from seven different sites in Chennai, India. The low molecular weight (LMW) PAHs phenanthrene and fluorine, and the high molecular weight (HMW) PAHs pyrene and benzo(e)pyrene were selected for the degradation study. The consortium metabolized both LMW and HMW PAHs. The consortium was also able to degrade PAHs present in crude oil-contaminated saline wastewater. The bacterial consortium was able to degrade 80% of HMW PAHs and 100% of LMW PAHs in the saline wastewater. The strains present in the consortium were identified as Ochrobactrum sp., Enterobacter cloacae and Stenotrophomonas maltophilia. This study reveals that these bacteria have the potential to degrade different PAHs in saline wastewater.  相似文献   

6.
Polycyclic aromatic hydrocarbons (PAHs) are ubiquitous pollutants in the environment and are derived from both man-made and natural resources. The present study is focused on the degradation of PAHs by a halotolerant bacterial strain under saline conditions. The bacterial strain VA1 was isolated from a PAH-degrading consortium that was enriched from marine water samples that were collected from different sites at Chennai, India. In the present study, a clearing zone formed on PAH-amended mineral salt agar media confirmed the utilization of PAH by the bacterial strain VA1. The results show that the strain VA1 was able to degrade anthracene (88%), phenanthrene (98%), naphthalene (90%), fluorene (97%), pyrene (84%), benzo(k)fluoranthene (57%) and benzo(e)pyrene (50%) at a 30 g/L NaCl concentration. The present study reveals that the VA1 strain was able to degrade PAHs in petroleum wastewater under saline conditions. The promising PAH-degrading halotolerant bacterial strain, VA1, was identified as Ochrobactrum sp. using biochemical and molecular techniques.  相似文献   

7.
Yu KS  Wong AH  Yau KW  Wong YS  Tam NF 《Marine pollution bulletin》2005,51(8-12):1071-1077
The biodegradability of a mixture of PAHs, namely fluorene (Fl), phenanthrene (Phe) and pyrene (Pyr), in mangrove sediment slurry was investigated. At the end of week 4, natural attenuation based on the presence of autochthonous microorganisms degraded more than 99% Fl and Phe but only around 30% of Pyr were degraded. Biostimulation with addition of mineral salt medium degraded over 97% of all three PAHs, showing that nutrient amendment could enhance Pyr degradation. Bioaugmentation with inoculation of a PAH-degrading bacterial consortium enriched from mangrove sediments did not show any promotion effect and the degradation percentages of three PAHs were similar to that by natural attenuation. Some inhibitory effect was observed in bioaugmentation treatment in week 1 with only 50% Fl and 70% Phe degraded. These results indicate that autochthonous microbes may interact and even compete with the enriched consortium during PAH biodegradation. Natural attenuation appeared to be the most appropriate way to remedy Fl- and Phe-contaminated mangrove sediments while biostimulation was more capable to degrade Pyr-contaminated sediments. The study also shows that although a large portion of the added PAHs (more than 95%) was adsorbed onto the sediments at the beginning of the experiment, most PAHs were degraded in 4 weeks, suggesting that the degraders could utilize the adsorbed PAHs efficiently.  相似文献   

8.
Six sediment cores collected at four contaminated river mouths and two harbor entrances in Kaohsiung Harbor (Taiwan) were analyzed to evaluate the sources and potential toxicity of polycyclic aromatic hydrocarbons (PAHs). PAHs presented the wide variations ranging from 369 ± 656 to 33,772 ± 14,378 ng g−1 at the six sampling sites. The composition of PAHs presented a uniform profile reflecting the importance of atmospheric input from vehicle exhausts or coal combustion in the river mouths. PAHs diagnostic ratios indicated a stronger influence of coal combustion in the Salt River mouth and the prevalence of petroleum combustion and mixed sources in the other rivers and harbor entrances. PAHs toxicity assessment using the mean effect range-median quotient (m-ERM-q: 0.011–1.804), benzo[a]pyrene-toxicity equivalent (TEQcarc: 22–2819 ng TEQ g−1), and dioxin-toxicity equivalent (TEQfish: 37–5129 pg TEQ g−1) identified the Salt River mouth near the industrial area of the harbor as the most affected area.  相似文献   

9.
The distribution, sources, and ecological risk assessment of 16 polycyclic aromatic hydrocarbons (PAHs) in surface sediments from the Nantong coast in China were investigated. The results indicated that the total concentrations of the 16 PAHs in the surface sediments from the study area ranged from 1.4 to 87.1 ng g? 1 dw (mean value 19.9 ng g? 1 dw), which were generally low compared to the adjacent offshore area and other coastal zones around the world. The selected PAH ratios and the principal components analysis for each site showed that petroleum combustion and petrogenic pollution (mainly caused by petroleum spills) were the dominant PAHs sources in the surface sediments of the coast. The ecological risk assessment indicated that most of the individual PAHs had few negative effects in this area.  相似文献   

10.
The composition and spatial distribution of aliphatic and polycyclic aromatic hydrocarbons (PAHs) were investigated in biota and coastal sediments from four countries surrounding the Gulf (Bahrain, Qatar, United Arab Emirates and Oman). The levels of total petroleum hydrocarbons (TPH), aliphatic unresolved mixture and PAHs in sediments and biota were relatively low compared to world-wide locations reported to be chronically contaminated by oil. Only in the case of the sediments collected near the BAPCO oil refinery in Bahrain, having concentrations of 779 μg g−1 total petroleum hydrocarbon equivalents and 6.6 μg g−1 ∑PAHs, can they be categorized as chronically contaminated. Some evidence of oil contamination was also apparent in sediments and bivalves around Akkah Head and Abu Dhabi in the UAE, and near Mirbat in Oman. Contaminant patterns in sediments and biota indicated that the PAHs were mainly from fossil sources, with the exception of the high PAH concentrations in sediments near the BAPCO refinery that contained substantial concentrations of carcinogenic PAH combustion products.  相似文献   

11.
万宏滨  周娟  罗端  杨浩  黄昌春  黄涛 《湖泊科学》2020,32(6):1632-1645
为明确长江中游地区湖泊沉积物中多环芳烃(PAHs)的分布特征、来源及其生态风险,于2018年7月采集了该地区12个湖泊的表层沉积物样品.采用气相色谱-质谱联用仪(GC-MS)测定了沉积物中16种PAHs的含量.结果表明:12个湖泊沉积物中均检测出16种优控PAHs,PAHs的总含量在572.7~1766.2 ng/g (dw)之间(均值为976.5±285.0 ng/g (dw)).武汉市东湖沉积物中PAHs含量最高,达到1634.8±111.4 ng/g (dw).与国内外其他地区湖泊沉积物相比,长江中游地区湖泊沉积物中PAHs含量高于国内偏远地区的抚仙湖、青海湖及博斯腾湖,低于东部地区的巢湖、太湖及美国经济工业发达地区的湖泊.根据单体PAH的聚类分析结果,12个湖泊可以分成3种类型,类型1主要以低环为主,占比为64.04%±7.02%,类型2低环和中高环分布相对平均,分别为50.76%±5.17%和49.24%±5.17%,类型3低、中、高环分布相对平均,占比分别为35.35%±3.56%、26.17%±0.45%和38.48%±3.84%.综合该区域PAHs的分布特征及异构体比值法与主成分分析法的结果表明,类型1湖泊沉积物中PAHs主要来源为煤炭、木材等生物质的燃烧源;类型2和类型3湖泊沉积物中PAHs主要来源为煤炭、木材等生物质的低温燃烧以及机动车等燃烧汽油、柴油的尾气排放和工业炼焦等化石燃料的高温燃烧源.沉积物中PAHs与总有机碳(TOC)之间显著的相关性表明,沉积物中TOC含量是影响长江中游湖泊沉积物中PAHs归趋分布的主要因素.长江中游流域湖泊沉积物中PAHs的RQNCs值均小于800,且RQMPCs值大于1的风险商值法生态风险评价结果表明,长江中游流域湖泊表层沉积物中PAHs整体呈中等风险水平.  相似文献   

12.
The fate and transport of highly hydrophobic chemicals are affected by the partitioning between water and dissolved organic carbon. Large variation in the partition coefficient (KDOCw) is often found, due to the selection of model organic matter or potential experimental artifacts. To investigate the roles of the type of organic matter on the partitioning of highly hydrophobic compounds, the partition coefficients of eight selected polycyclic aromatic hydrocarbons (PAHs), with 3–6 aromatic rings, were determined using a passive dosing/extraction method between water and model dissolved organic matter (humic acid, fulvic acid, sodium dodecyl sulfate micelle (SDS), and 2‐hydroxypropyl‐β‐cyclodextrin). Although the KDOCw values for 3–4 ring PAHs in this study were close to those reported in the literature, experimental KDOCw values between Aldrich humic acid (AHA) and water were higher than values reported in the literature for 5–6 ring PAHs. The KDOCw values were highest for AHA, followed by SDS and Suwannee river fulvic acid (SFA). The slopes of the linear regression between log KDOCw and log Kow were 1.23 (± 0.13), 0.82 (± 0.09), and 0.59 (± 0.13) for AHA, SDS, and SFA, respectively. The differences in the KDOCw values between AHA and the other organic matter (SDS, SFA, and CD) increased with increasing hydrophobicity of the PAHs, showing that the sorption of highly hydrophobic chemicals to the humic acid fraction may be important in the presence of mixed organic matter.  相似文献   

13.
The effects of biochar and hyper-thermal inoculum on polycyclic aromatic hydrocarbon-degrading bacterial communities (PAHBC) during the livestock manure composting are studied here. The experiment is performed on composting of livestock manure and wheat straw amended with biochar and hyper-thermal inoculum. Physicochemical properties, enzyme activity, polycyclic aromatic hydrocarbons (PAHs), and microbial activities are monitored and the comprehensive assessment is analyzed during the composting process. The results show that the dominant phyla Firmicutes, Proteobacteria, and Actinomycetes that are potential PAH-degrading bacterial community hosts are enriched. Meanwhile, the addition of biochar and hyper-thermal inoculum enhances the abundance of PAHBC. Therefore, the biostimulation of biochar and hyper-thermal inoculum could affect the frequency and composition of PAHBC.  相似文献   

14.
《Marine pollution bulletin》2014,78(1-2):110-117
Sea microlayer (SML) and subsurface water (SSW) samples were collected around Xiamen Island to study the enrichment and partitioning of polycyclic aromatic hydrocarbons (PAHs). Total PAH concentrations ranged from 93.43 to 411.05 ng L−1 in the SML and 49.29–279.42 ng L−1 in the SSW. Compared with the results of previous studies before pollution control measurements, PAHs levels decreased significantly. The enrichment factors (EFs) of dissolved and particulate PAHs varied from 0.68 to 2.71 and 0.43–3.56. EFs showed the consistent enrichment trends with sites and exhibited different enrichment characteristics between 2 and 3 ring PAHs and 4 ring PAHs. Furthermore, the much higher concentrations of BaP (strong carcinogenicity) were accompanied by higher EFs in the SML samples from the Western Xiamen Harbour, which together indicated the risk of impacts to the fish eggs that usually float on the SML water after exposure to oil spills and combustion, contributed directly by the port and shipping activities.  相似文献   

15.
PAH-degrading bacteria, including Novosphingobium sp. PCY, Microbacterium sp. BPW, Ralstonia sp. BPH, Alcaligenes sp. SSK1B, and Achromobacter sp. SSK4, were isolated from mangrove sediments. These isolates degraded 50–76% of 100 mg/l phenanthrene within 2 weeks. Strains PCY and BPW also degraded pyrene at 98% and 71%, respectively. Furthermore, all of them probably produced biosurfactants in the presence of hydrocarbons. Interestingly, PCY has a versatility to degrade various PAHs. Molecular techniques and plasmid curing remarkably revealed the presence of the alpha subunit of pyrene dioxygenase gene (nidA), involving in its pyrene/phenanthrene degrading ability, located on megaplasmid of PCY which has never before been reported in sphingomonads. Moreover, genes encoding ferredoxin, reductase, extradiol dioxygenase (bphA3A4C) and exopolysaccharide biosynthetase, which may be involved in PAH degradation and biosurfactant production, were also found in PCY. Therefore, we conclude that these isolates, especially PCY, can be the candidates for use as inoculums in the bioremediation.  相似文献   

16.
The remediation of mangrove sediment contaminated with mixed polycyclic aromatic hydrocarbons (PAHs) having 3-, 4- and 5-rings by natural attenuation, bioaugmentation, phytoremediation and its combination was compared by greenhouse microcosm studies. At Days 90 and 154, the decreases of PAHs in contaminated mangrove sediment by phytoremediation, planted with one-year old Aegiceras corniculatum, and bioaugmentation, the inoculation of PAH-degrading bacterial strains isolated from mangrove sediment, either SCSH (Mycobacterium parafortuitum) or SAFY (Sphingobium yanoikuyae), were not better than that by natural attenuation (the non-vegetated and un-inoculated microcosms). The populations of SCSH and SAFY in sediment could not be maintained even with repeated inoculation, suggesting that the two isolates were not able to compete with the indigenous microbes and had little enhancement effect. Although some PAHs were accumulated in roots, root uptake only accounted for <15% of the spiked PAHs and the effect of plants on remediation were also insignificant. At the end of the 154-day experiment, the mass balance calculation revealed that the overall losses of PAHs by phytoremediation were comparable to that by bioaugmentation but were lower than that by natural attenuation, especially for the high molecular weight PAHs. Under natural attenuation, around 90% fluorene, 80% phenanthrene, 70% fluoranthene, 68% pyrene and 32% benzo[a]pyrene in contaminated sediment were removed. These results demonstrated that the mangrove sediment itself had sufficient indigenous microorganisms capable of naturally remedying PAH contamination.  相似文献   

17.
Pseudomonas putida MHF 7109 has been isolated and identified from cow dung microbial consortium for biodegradation of selected petroleum hydrocarbon compounds – benzene, toluene, and o‐xylene (BTX). Each compound was applied separately at concentrations of 50, 100, 250, and 500 mg L?1 in minimal salt medium to evaluate degradation activity of the identified microbial strain. The results indicated that the strain used has high potential to degrade BTX at a concentration of 50 mg L?1 within a period of 48, 96, and 168 h, respectively; whereas the concentration of 100 mg L?1 of benzene and toluene was found to be completely degraded within 120 and 168 h, respectively. Sixty‐two percent of o‐xylene were degraded within 168 h at the 100 mg L?1 concentration level. The maximum degradation rates for BTX were 1.35, 1.04, and 0.51 mg L?1 h?1, respectively. At higher concentrations (250 and 500 mg L?1) BTX inhibited the activity of microorganisms. The mass spectrometry analysis identified the intermediates as catechol, 2‐hydroxymuconic semialdehyde, 3‐methylcatechol, cis‐2‐hydroxypenta‐2,4‐dienoate, 2‐methylbenzyl alcohol, and 1,2‐dihydroxy‐6‐methylcyclohexa‐3,5‐dienecarboxylate, for BTX, respectively. P. putida MHF 7109 has been found to have high potential for biodegradation of volatile petroleum hydrocarbons.  相似文献   

18.
In this research, the bioremediation of dispersed crude oil, based on the amount of nitrogen and phosphorus supplementation in the closed system, was optimized by the application of response surface methodology and central composite design. Correlation analysis of the mathematical‐regression model demonstrated that a quadratic polynomial model could be used to optimize the hydrocarbon bioremediation (R2 = 0.9256). Statistical significance was checked by analysis of variance and residual analysis. Natural attenuation was removed by 22.1% of crude oil in 28 days. The highest removal on un‐optimized condition of 68.1% were observed by using nitrogen of 20.00 mg/L and phosphorus of 2.00 mg/L in 28 days while optimization process exhibited a crude oil removal of 69.5% via nitrogen of 16.05 mg/L and phosphorus 1.34 mg/L in 27 days therefore optimization can improve biodegradation in shorter time with less nutrient consumption.  相似文献   

19.
巢湖表层沉积物中多环芳烃分布特征及来源   总被引:6,自引:2,他引:4  
于2010年,采用野外采样调查、色谱分析与统计比较的方法,研究巢湖表层沉积物中27个采样点中多环芳烃(PAHs)分布特征及污染来源.结果表明:巢湖表层沉积物中检测出的14种优控PAHs总浓度为116.0~2832.2 ng/g(DW),平均值为898.9±791.0 ng/g(DW).多环芳烃组成主要以5~6环PAHs为主,占总量的32%~58%.沉积物中总有机碳含量与PAHs总量呈现良好相关性.利用蒽/(蒽+菲)与苯并[a]蒽/(苯并[a]蒽+屈)比值法对PAHs来源进行解析得出,巢湖表层沉积物中PAHs主要来源为燃烧源.与国内其它水体PAHs含量对比表明,巢湖沉积物中PAHs污染处于中等水平.生态风险评估得出南淝河表层沉积物中PAHs存在生态风险,其它采样点表层沉积物中PAHs生态风险均较低.  相似文献   

20.
Adaptive site management and aggressive bioremediation in the source zone of a complex chlorinated dense nonaqueous phase liquid (DNAPL) site reduced total chlorinated hydrocarbon mass discharge by nearly 80%. Successful anaerobic bioremediation of chlorinated hydrocarbons can be impaired by inadequate concentrations of electron donors, competing electron acceptors, specific inhibitors such as chloroform, and potentially by high contaminant concentrations associated with residual DNAPL. At the study site, the fractured bedrock aquifer was impacted by a mixture of chlorinated solvents and associated daughter products. Concentrations of 1,1,2,2‐tetrachloroethane (1,1,2,2‐TeCA), 1,1,2‐trichloroethane (1,1,2‐TCA), and 1,2‐dichloroethane (1,2‐DCA) were on the order of 100 to 1000 mg/L. Chloroform was present as a co‐contaminant and background sulfate concentrations were approximately 400 mg/L. Following propylene glycol injections, concentrations of organohalide‐respiring bacteria including Dehalococcoides and Dehalogenimonas spp. increased by two to three orders of magnitude across most of the source area. Statistical analysis indicated that reaching volatile fatty acid concentrations greater than 1000 mg/L and depleting sulfate to concentrations less than 50 mg/L were required to achieve a Dehalococcoides concentration greater than the 104 cells/mL recommended for generally effective reductive dechlorination. In a limited area, chloroform concentrations greater than 5 mg/L inhibited growth of Dehalococcoides populations despite the availability of electron donor and otherwise appropriate geochemical conditions. After implementing a groundwater recirculation system targeting the inhibited area, chloroform concentrations decreased permitting significant increases in concentrations of Dehalococcoides and vinyl chloride reductase gene copies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号