首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This study aims to remove of Cu2+, Cd2+, and Pb2+ ions from solution and to investigate the adsorption isotherms, adsorption kinetics, and ion‐exchange affinities of these metals using waste activated sludge (AS) biomass. The adsorptions of the metals on biomass were optimal at an acidic pH value of 6.0 based on its monolayer capacities. Maximum monolayer capacities of AS biomass (qmax) were calculated as 0.478, 0.358, and 0.280 mmol g?1 for Cu2+, Cd2+, and Pb2+, respectively, and the adsorption equilibrium time was found as 60 min for each metal. The adsorbed amount of metal rose with increasing of initial metal ion concentration. The equilibrium adsorption capacity of AS for initial 0.25 mmol L?1 metal concentration was determined as 0.200, 0.167, and 0.155 mmol g?1 for Cu2+, Cd2+, and Pb2+ ions, respectively. These relevant values were determined as 0.420, 0.305, and 0.282 mmol g?1 for Cu2+, Cd2+, and Pb2+ ions, respectively, when initial metal concentration was 0.50 mmol L?1. In the multi‐metal sorption system, the adsorption capacity of AS biomass was observed in the order of Cu2+ > Cd2+ > Pb2+. In the presence of 100 mmol L?1 H+ ion, the order of ion‐exchange affinity with H+ was found as Cu2+ > Cd2+ > Pb2+. The adsorption kinetics were also found to be well described by the pseudo‐second‐order and intraparticle diffusion models. Two different rate constants were obtained as ki1 and ki2 and ki1 (first stage) was found to be higher than ki2 (second stage).  相似文献   

2.
In the present study, a novel adsorbent, poly (2‐hydroxyethylmethacrylate‐hydroxyapatite) [P(HEMA‐Hap)], was prepared and characterized. The synthesis was achieved by means of free‐radical polymerization and a number of structural characterization methods, including FT‐IR, XRD, TGA, SEM, BET‐porosity, and swelling tests. Pb2+ adsorption was performed using a series of pH, time, and temperature ranges. The reusability of the composite was also tested. The results obtained indicated that the novel adsorbent is able to bind Pb2+ ions with strong chemical affinity. The adsorption results were fitted to the classic Langmuir, Freundlich, and Dubinin–Radushkevich (D–R) sorption models. Thermodynamic parameters obtained demonstrated that the sorption process was spontaneous (ΔG < 0), endothermic (ΔH > 0), as expected. The process was also consistent with the pseudo‐second‐order model, and chemical adsorption was determined to be the rate‐controlling step. It was also shown that the composite could be used for five consecutive adsorption processes.  相似文献   

3.
In this work, 8‐hydroxyquinoline is used as the active sites in cross‐linked chitosan beads with epichlorohydrin (CT‐8HQ). The CT‐8HQ material was shaped in bead form and used for heavy metal removal from aqueous solution. The study was carried out at pH 5.0 with both batch and column methods and the maximum adsorption capacity of metal ions by the CT‐8HQ was attained in 4 h in the batch experiment. The adsorption capacity order was: Cu2+ > Ni2+ > Zn2+ for both mono‐ and multi‐component systems with batch conditions. From breakthrough curves with column conditions, the adsorption capacity followed the order Cu2+ > Zn2+ > Ni2+ for both mono‐ and multi‐component systems. The CT‐8HQ beads maintained good metal adsorption capacity for all five cycles with absorbent restoration achieved with the use of 1.0 mol L–1 HCl solution, with 90% regeneration.  相似文献   

4.
Low cost adsorbents were prepared from dried plants for the removal of heavy metals, nitrate, and phosphate ions from industrial wastewaters. The efficiency of these adsorbents was investigated using batch adsorption technique at room temperature. The dried plant particles were characterized by N2 at 77 K adsorption, scanning electron microscopy, energy dispersive X‐ray spectroscopy, Fourier transform infrared spectroscopy, and phytochemical screening. The adsorption experiments showed that the microparticles of the dried plants presented a good adsorption of heavy metals, phosphate, and nitrate ions from real wastewaters. This adsorption increased with increasing contact time. The equilibrium time was found to be 30 min for heavy metals and nitrate ions and 240 min for phosphate ions. After the adsorption process, the Pb(II) concentrations, as well as those of Cd(II), Cu(II), and Zn(II) were below the European drinking water norms concentrations. The percentage removal of heavy metals, nitrates, and phosphates from industrial wastewaters by dried plants was ~94% for Cd2+, ~92% for Cu2+, ~99% for Pb2+, ~97% for Zn2+, ~100% for ${\rm NO}_{{\rm 3}}^{{-} } $ and ~77% for ${\rm PO}_{{\rm 4}}^{3{-} } $ ions. It is proved that dried plants can be one alternative source for low cost absorbents to remove heavy metals, nitrate, and phosphate ions from municipal and industrial wastewaters.  相似文献   

5.
In view of water pollutants becoming more complex, both anionic and cationic pollutants need to be removed. The multi‐pollutants simultaneous removal is paid more and more attention. Hence, development composite materials for treatment complex wastewater are the aim of this study. In this research, iron–nickel nanoparticles deposited onto aluminum oxide (α‐Al2O3) and carbon nanotubes (CNTs) to form nanocomposite materials Fe–Ni/Al2O3 and Fe–Ni/CNTs, respectively, were used as adsorbents. The adsorption capacities of Fe–Ni/Al2O3 and Fe–Ni/CNTs for AO7, HSeO, and Pb2+ were observed to be 5.46, 8.28, 27.02, and 25.6 mg/g, 15.29 and 17.12 mg/g, separately. The composite materials with negative charges were superior in adsorption of anionic pollutants. Using orthogonal experimental design and analysis of variance to co‐treat dye AO7, HSeO and Pb2+ in aqueous solutions, seven testing factors were included: (1) adsorbent types, (2) amount of iron, (3) solution pHs, (4) AO7 concentrations, (5) Pb2+ concentrations, (6) HSeO concentrations and (7) reaction time. The experimental results showed that the removal of complex pollutants AO7, HSeO, and Pb2+ on Fe–Ni/CNTs could reach up to 90% in the optimal treatment conditions. When using Fe–Ni/CNTs as the adsorbent, the sorption isothermals were well fitted in the Freundlich isotherm, and R2 could reach up to 0.98.  相似文献   

6.
In this paper, a novel composite material the silica grafted by poly(N‐vinyl imidazole) (PVI), i.e., PVI/SiO2, was prepared using 3‐methacryloxypropyl trimethoxysilane (MPS) as intermedia through the “grafting from” method. The adsorption behavior of metal ions by PVI/SiO2 was researched by both static and dynamic methods. Experimental results showed that PVI/SiO2 possessed very strong adsorption ability for metal ions. For different metal ions, PVI/SiO2 exhibited different adsorption abilities with the following order of adsorption capacity: Cu2+ > Cd2+ > Zn2+. The adsorption material PVI/SiO2 was especially good at adsorbing Cu(II) ion and the saturated adsorption capacity could reach up to 49.2 mg/g. The empirical Freundlich isotherm was found to describe well the equilibrium adsorption data. Higher temperatures facilitated the adsorption process and thus increased the adsorption capacity. The pH and grafting amount of PVI had great influence on the adsorption amount. In addition, PVI/SiO2 particles had excellent eluting and regenerating property using diluted hydrochloric acid solution as eluent. The adsorption ability trended to steady during 10 cycles.  相似文献   

7.
This study investigates the influence of Ca2+ and Mg2+ on the removal of F? by magnesium potassium phosphate (MPP) from water. The kinetic experiments reveal that the F? concentration decreased from 3.5 to 3.31 mg L?1 in a single (F?) system and to 1.45 mg L?1 in a ternary system (F?, Ca2+, and Mg2+) after 1 min, respectively. Thus, the F? removal efficiencies are found to increase by about 53% with the co‐active effect of Ca2+ and Mg2+ in the solution. Moreover, Ca2+ and Mg2+ are almost completely removed in the F?, Ca2+, and Mg2+ system. According to the pseudo‐first‐order modeling, the rate constants k for F?, Ca2+, and Mg2+ are 0.00348, 0.0106, and 0.0159 min?1 respectively; thus, Mg2+ > Ca2+ > F?. In the ternary system, the removal efficiencies are 53.29–66.03% for F?, 99.99–100% for Ca2+, and 87.21–95.19% for Mg2+ with initial pH 5–10. The removal efficiencies of F? increases with increases in initial concentrations of F?, Ca2+, and Mg2+. The removal of F? is governed by two routes: 1) adsorption by electrostatic interactions and outer sphere surface complexation; 2) co‐precipitation with Ca3(PO4)2, CaHPO4, Mg3(PO4)2, and Mg(OH)2.  相似文献   

8.
Inorganic industrial waste landfills have the potential to contaminate subsurface groundwater supplies through migration of leachates down to the water table and into groundwater aquifers, despite the use of compacted low permeability clay or polyethene liners. This paper aims the removal of Cu2+ and Zn2+ in the leachate from an industrial waste landfill using natural materials (natural zeolite, expanded vermiculite, pumice, illite, kaolinite, and bentonite) as a liner material. Cu2+ and Zn2+ concentrations for all treatments decreased during the process. Of all the different natural materials, natural zeolite, expanded vermiculite and pumice, with bentonite, were effective in removing Cu2+ and Zn2+ present in the leachate. However, the use of illite and kaolinite with bentonite as liner materials could be of disadvantage in Cu2+ and Zn2+ removal from leachate. The adsorption kinetic models were also tested for the validity. The second order kinetics with the high correlation coefficients best described adsorption kinetic data.  相似文献   

9.
A macroporous, hydrophobically modified poly(acrylic acid‐acrylamide) hydrogel was prepared. The fourier transform infrared (FTIR) spectrum and field emission scanning electron microscopy (FE‐SEM) results showed that the hydrogel had a macroporous structure. The dynamic swelling and removal of cationic dyes, crystal violet (CV) and basic magenta (BM), by this macroporous hydrophobically modified poly(acrylic acid‐acrylamide) hydrogel were studied. The adsorption capacity and kinetic and isotherm studies of the cationic dyes into the hydrogels have been evaluated. It was found that the macroporous hydrophobically modified hydrogel (M) exhibited improved swelling and adsorption capacity compared with the non‐macroporous hydrophobically modified hydrogel (NM). The adsorption process agreed very well with the Langmuir model and the adsorption of the cationic dyes depended on the pH of the solution via a mechanism combining swelling, electrostatic, and hydrophobic interactions. Moreover, adsorption kinetic studies showed that the adsorption followed a pseudo‐second‐order kinetic model, indicating that chemical adsorption was the rate‐limiting step.  相似文献   

10.
Batch sorption technique was carried out for the removal of anionic dye Congo red (CR) from aqueous solution using raw rectorite (R‐REC) and organified rectorite (CTA+‐REC) modified by cetyltrimethylammonium bromide (CTAB) as adsorbents. The effects of organification degree of CTA+‐REC as well as the process parameters including the pH of dye solution, sorption time, and initial dye concentration on adsorption capacity for CR were investigated and the sorption kinetics was also evaluated. The results showed that the sorption behaviors of R‐REC and CTA+‐REC for CR followed pseudo‐second‐order kinetic model and the sorption equilibrium data perfectly obeyed the Langmuir isotherm. The thermodynamic parameters including entropy of sorption (ΔS0), enthalpy of sorption (ΔH0), and Gibbs free energy of sorption (ΔG0) were obtained and analyzed. Fourier transform infrared study revealed that a chemisorption process occurred between CR and CTA+‐REC. REC modified by cationic surfactants showed the higher adsorption capacities for CR compared to R‐REC and in theory would be used as an efficient and promising adsorbent for the removal of anionic dyes in wastewater treatment.  相似文献   

11.
In India, the annual production of tea is ca. 857,000 tonnes, which is 27.4% of the total world production. The amount of tea factory waste (TFW) produced per annum after processing is ca. 190,400 tonnes. TFW can be used as a low cost adsorbent for the removal of toxic metals from the aqueous phase. An investigation was carried out to study the feasibility of the use of TFW as an adsorbent for the removal of the heavy metal, zinc. Equilibrium, kinetic and thermodynamic studies were reported. The straight line plot of log (qeq) versus time t for the adsorption of zinc shows the validity of the Lagergren equation. The various steps involved in adsorbate transport from the solution to the surface of the adsorbent particles were dealt with by using a Weber‐Morris plot, qe versus t0.5 for the TFW. The rate controlling parameters, kid,1 and kid,2, were determined and it was found that the macro‐pore diffusion rate was much larger than micro‐pore diffusion rate. A batch sorption model, which assumes the pseudo‐second‐order mechanism, was used to predict the rate constant of sorption, the equilibrium sorption capacity and the initial sorption rate with the effect of initial zinc (II) ion concentration. Equilibrium data obtained from the experiments were analyzed with various isotherms, i. e., Freundlich, Langmuir, Redlich‐Peterson and Tempkin. The adsorption equilibrium was reached in 30 min and the adsorption data fitted well to all models. The maximum adsorption capacity of TFW for zinc (II) ions was determined to be 14.2 mg/g. The capacity of adsorption on Zn(II) increased with increasing temperatures and pH. The maximum uptake level of zinc was observed at pH of 4.2. The various thermodynamic parameters, i. e., ΔG°, ΔH° and ΔS°, were estimated. The thermodynamics of the zinc ion/TFW system indicated a spontaneous, endothermic and random nature of the process. The results showed that the TFW, which has low economical value, is a suitable adsorbent for the removal of zinc (II) ions from aqueous solutions.  相似文献   

12.
Competitive sorption of estriol (E3) and 17α‐ethinylestradiol (EE2) was studied on activated charcoal. Better sorption of E3 (88.9%) and EE2 (69.5%) was observed with single‐solute sorption system than with bi‐solute sorption system. Single‐solute sorption kinetics of E3 and EE2 were evaluated with two (Langmuir and Freundlich) and three (dual mode and Song) parameter models. Freundlich model (R2, 0.9915 (E3); 0.9875 (EE2)) showed good prediction compared to other models for single‐solute sorption. Adsorption capacity documented reduced efficacy (86.4% (E3); 65.9% (EE2)) due to induced competitive behavior between the estrogens in aqueous phase. Bi‐solute adsorption kinetics of E3 and EE2 were described by IAST with two and three parameter models. Among these models, IAST‐Freundlich model (R2, 0.9765 (E3); 0.9985 (EE2)) was best in predicting bi‐solute sorption of E3 and EE2 by activated charcoal. All these models showed favorable representation of both single‐ and bi‐solute sorption behaviors.  相似文献   

13.
Adsorption of Pb2+ from aqueous solution onto a sugarcane bagasse/multi-walled carbon nanotube (MWCNT) composite was investigated by using a series of batch adsorption experiments and compared with the metal uptake ability of sugarcane bagasse. The efficiency of the adsorption processes was studied experimentally at various pH values, contact times, adsorbent masses, temperatures and initial Pb2+ concentrations. A pH of 4.5 was found to be the optimum pH to obtain a maximum adsorption percentage in 120 min of equilibration time. The composite showed a much enhanced adsorption capacity for Pb2+ of 56.6 mg g−1 compared with 23.8 mg g−1 for bagasse at 28 °C. The Langmuir adsorption isotherm provided the best fit to the equilibrium adsorption data. The pseudo first-order, pseudo second-order, intraparticle diffusion and Elovich kinetics models were used to analyse the rate of lead adsorption and the results show that the Elovich model is more suitable. The thermodynamic parameters of adsorption, namely ΔG°, ΔH° and ΔS°, were determined over the temperature range of 20–45 °C. The adsorption of Pb2+ onto both bagasse and the sugarcane bagasse/MWCNT composite was found to be spontaneous but for the former adsorbent it was enthalpy-driven whereas for the latter it was entropy-driven. Desorption of the lead-loaded adsorbents was fairly efficient with 0.1 mol dm−3 HCl. Overall this composite has the potential to be a good adsorbent for the removal of Pb2+ from wastewaters.  相似文献   

14.
A new sorbent was prepared by loading rhodamine B on Amberlite IR‐120. Various physico‐chemical parameters such as effects of adsorbate concentration, contact time, pH, and temperature on the sorption of the dye have been studied. Thermodynamic parameters (ΔH° and ΔS°) were also evaluated for the sorption of dye. Kinetic studies revealed that the sorption of the dye was best fit for pseudo‐second‐order kinetic. The metal ion uptake in different solvent systems has been explored through column studies. On the basis of distribution coefficient (Kd), some heavy metal ions of analytical interest from binary mixtures have been separated. The limit of detection (LOD) for the Ni2+ and Fe3+ metal ions was 0.81 and 0.60 µg L?1, and the limit of quantification (LOQ) was found to be 2.72 and 2.0 µg L?1. This sorbent has also been successfully applied in the analysis of multivitamin formulation. The applicability of the modified resin in the separation of heavy metals constituting real and synthetic samples has been explored.  相似文献   

15.
Given the issue of lipids in effluent treatment systems and their negative impact on the environment, this study aimed to examine lipid degradation by homogenous catalytic ozonation with the aid of iron and manganese ions. This technology presents the possibility of completely mineralizing pollutants using hydroxyl radicals. Milk is chosen as the lipid source because of the high concentration of triglycerides in its matrix, this kind of lipid being the one found most frequently in food and, consequently, in effluent treatment systems. The milk pH value is controlled, and acidic, neutral, and basic conditions are evaluated. The rates of pseudo‐first‐order reactions and the effective value are estimated. It is shown that under acidic conditions low catalyst dosages are enough to cause the complete degradation of lipids. Under neutral conditions, a similar behavior is observed. Under basic conditions, higher catalyst dosages give higher reaction rates. The order of effectiveness of the catalysts under acidic and basic conditions is Fe2+ > Mn2+, with Mn2+ > Fe2+ under neutral conditions. Homogeneous catalytic ozonation is therefore efficient at lipid degradation. This technique is viable economically, since the lipid removal occurred at low ozone levels. In addition, the ions used as catalysts are naturally abundant.  相似文献   

16.
The experimental results on adsorption of ions pb2+, Zn2+ and Ag+ onto mineral surfaces in a mix system show that the reaction kinetics of adions adsorbed onto mineral surfaces was mainly controlled by their diffusion rates in solution. The concentration variations can be fit for the second-order rate equation with good determined coefficients r = 0.800 5—0.979 7. In the near neutral solution, the concentration of exchanged ions K+ and Na+ related to reaction time can be described by the fint-order rate equation with r = 0.855 7–0.997 7. Meanwhile, the complex diffusionexchange rate equation is suitable for describing the ca2 + concentration variation, as ions Pb2 + and Zn2+ were adions. Experimental data show that the amount of ions K+, Na+and Ca2+ release is much more than that of adion decrement in solution. This fact may suggest that the complexstion reaction of adions Pb2+, Z2+ and Ag+ with the mineral surfaces was the major reaction process while adions were not entering the phyllosilicate interlayers or CaCO3 lattice to exchange the ions K+, Na+ and Ca2+ at room temperature. Project supported by the National Natural Science Foundation of China (Grant No. 49773206) and the Natural Science Foundation of Guangdong Province (Grant No. 960504)  相似文献   

17.
This paper presents a biosorption procedure for the preconcentration of Pb2+ ions using Saccharomyces cerevisiae biomass. The influence of several factors including pH, biomass dosage, contact time, and temperature on biosorption efficiency were optimized. At optimum value of all the equilibrium, thermodynamic, and kinetic parameters of Pb2+ ion biosorption was investigated by testing the Langmuir and Freundlich models and first and second order kinetic models were applied. The biosorption capacity of S. cerevisiae biomass was determined 89.6 mg/g, while the retained Pb2+ ions by S. cerevisiae were reversibly eluted using 5 mol/L HNO3. Due to the high stability of S. cerevisiae the applied biomass can be used successively ten times with a slightly decrease (about 20%) in the recovery of Pb2+ ions. The calculated thermodynamic parameters, ΔG°, ΔH°, and ΔS° showed that the biosorption of Pb2+ ion onto S. cerevisiae biomass was feasible, spontaneous, and endothermic under examined conditions. The results of kinetic analysis showed that the biosorption processes of Pb2+ ions onto S. cerevisiae biomass followed pseudo second order kinetics.  相似文献   

18.
Interest in preconcentration techniques for the determination of metals at ultratrace levels still continues increasingly because of some disadvantages of flameless atomic absorption spectrometry and the high costs of other sensitive methods in compared to flame atomic absorption spectrometry (FAAS). Among preconcentration techniques, solid‐phase extraction is the most popular because of a number of advantages. In this work, thiol‐containing sulfonamide resin was synthesized, characterized, and applied as a new sorption material for solid phase extraction and determination of lead in natural water samples. The optimization of experimental conditions was performed using the parameters including pH, contact time, and volumes of initial and elution solutions. After preconcentration procedure, FAAS was used for determinations. The synthesized resin exhibits the superiority in compared to the other adsorption reagents because of the fact that there is no necessity of any complexing reagent as well as high sorption capacity. Consequently, 280‐fold improvement in the sensitivity of analytical scheme was achieved by combining the slotted tube atom trap‐atomic absorption spectrometry (STAT‐FAAS) and the developed preconcentration method. The limit of detection was found to be 0.15 ng mL?1. The Pb2+ concentrations in the studied water samples were found to be in the range of 0.9–6.7 ng mL?1.  相似文献   

19.
The present study was aimed at removing cadmium ions from aqueous solution through batch studies using adsorbents, such as, granular activated carbon (GAC) and activated clay (A‐clay). GAC was of commercial grade where as the A‐clay was prepared by acid treatment of clay with 1 mol/L of H2SO4. Bulk densities of A‐clay and GAC were 1132 and 599 kg/m3, respectively. The surface areas were 358 m2/g for GAC and 90 m2/g for A‐clay. The adsorption studies were carried out to optimize the process parameters, such as, pH, adsorbent dosage, and contact time. The results obtained were analyzed for kinetics and adsorption isotherm studies. The pH value was optimized at pH 6 giving maximum Cd removal of 84 and 75.2% with GAC and A‐clay, respectively. The adsorbent dosage was optimized and was found to be 5 g/L for GAC and 10 g/L for A‐clay. Batch adsorption studies were carried out with initial adsorbate (Cd) concentration of 100 mg/L and adsorbent dosage of 10 g/L at pH 6. The optimum contact time was found to be 5 h for both the adsorbents. Kinetic studies showed Cd removal a pseudo second order process. The isotherm studies revealed Langmuir isotherm to better fit the data than Freundlich isotherm.  相似文献   

20.
The sorption of reactive (textile) dyes onto cucurbituril, a cyclic polymer with hydrophobic cavity, was studied. Dye sorption is strongly enhanced by Ca2+ or Sr2+ concentrations up to 100 mmol/L for all studied dyes. Mg2+ and alkaline ions had similar effects for only one dye (Reactive Red 120), and only at higher concentrations. Concentrations above 100 mmol/L – depending on cation and dye – dissolve cucurbituril and prevent dye removal. As shown in previous studies by our group loadings obtained under suitable conditions (calcium concentration between 2 and 100 mmol/L, total salt concentration not exceeding 100 mmol/L) are 1 to 1.7 mol/mol or 0.9 to 1.8 g/g. The chemical mechanism responsible for the ionic influences is still under investigation. Generally, cucurbituril is a potent sorbent for reactive dyes. However, the technical application is still limited by the lack of a support material that would allow use in fixed bed filters.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号